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Math 222 Fall 2022, Lecture 21: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.8. Compositions

Next, we shall count various types of tuples of positive integers. BCs (= bino-
mial coefficients) will appear as answers rather often.

2.8.1. Compositions

How many ways are there to write the number 5 as a sum of 3 positive integers,
if the order matters? There are 6 of them:

5 = 2 + 2 + 1 = 2 + 1 + 2 = 1 + 2 + 2
= 1 + 1 + 3 = 1 + 3 + 1 = 3 + 1 + 1.

What if we replace 5 and 3 by two arbitrary nonnegative integers n and k ?
So we want to count the k-tuples (x1, x2, . . . , xk) of positive integers whose sum
is x1 + x2 + · · ·+ xk = n. The following theorem answers this question:

Theorem 2.8.1. Let P = {1, 2, 3, . . .} be the set of all positive integers.
Let n ∈ N and k ∈ N. Then,(

# of (x1, x2, . . . , xk) ∈ Pk satisfying x1 + x2 + · · ·+ xk = n
)

=

(
n − 1
n − k

)
(1)

=


(

n − 1
k − 1

)
, if n > 0;

[k = 0] , if n = 0.
(2)

Before we prove this, let us introduce some terminology for these tuples that
we are counting:

Definition 2.8.2. (a) A composition shall mean a tuple (i.e., finite list) of
positive integers. (This has nothing to do with the composition f ◦ g of two
maps f and g.)

(b) If k ∈ N, then a composition into k parts shall mean a k-tuple of
positive integers.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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(c) If n ∈ N, then a composition of n shall mean a tuple of positive integers
whose sum is n.

(d) If n, k ∈ N, then a composition of n into k parts shall mean a k-tuple
of positive integers whose sum is n.

Example 2.8.3. (a) The compositions of 5 into 3 parts are

(2, 2, 1) , (2, 1, 2) , (1, 2, 2) ,
(1, 1, 3) , (1, 3, 1) , (3, 1, 1)

(as we saw above).
(b) The compositions of 3 are

(1, 1, 1) , (1, 2) , (2, 1) , (3) .

These are compositions into 3, 2, 2 and 1 parts, respectively.
(c) The only composition of 0 is the 0-tuple (); it is a composition into 0

parts.

Theorem 2.8.1 can now be restated as follows: For any n, k ∈ N, we have

(# of compositions of n into k parts)

=

(
n − 1
n − k

)

=


(

n − 1
k − 1

)
, if n > 0;

[k = 0] , if n = 0.

Proof of Theorem 2.8.1. (See Theorem 2.10.1 in the 2019 notes for details.)
First, we WLOG assume that n > 0, since the n = 0 case is pretty trivial.

Thus, n ≥ 1, so that n − 1 ∈ N.
We shall now prove that

(# of compositions of n into k parts) =
(

n − 1
k − 1

)
.

To do so, we construct a bijection

C : {compositions of n into k parts} → {(k − 1) -element subsets of [n − 1]} .

We define this bijection as follows: For any composition (a1, a2, . . . , ak) of n into
k parts, we set

C (a1, a2, . . . , ak) := {a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ak−1}
= {a1 + a2 + · · ·+ ai | i ∈ [k − 1]} .
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1 This set C (a1, a2, . . . , ak) is called the partial sum set of (a1, a2, . . . , ak).
It is not hard to see that the map C is well-defined (indeed, if (a1, a2, . . . , ak)

is a composition of n into k parts, then the positivity of its entries a1, a2, . . . , ak
yields

0 < a1 < a1 + a2 < a1 + a2 + a3 < · · · < a1 + a2 + · · ·+ ak−1

< a1 + a2 + · · ·+ ak = n,

which shows that C (a1, a2, . . . , ak) is a (k − 1)-element subset of [n − 1]). Now,
how do we see that this map C is really a bijection? The easiest way is to
construct an inverse map. Explicitly, this inverse map C−1 sends every (k − 1)-
element subset {i1 < i2 < · · · < ik−1} of [n − 1] to the composition

(i1 − i0, i2 − i1, i3 − i2, . . . , ik−1 − ik−2, ik − ik−1) ,

where we set i0 := 0 and ik := n.
For a formal proof that all of this works, see §2.10.1 in the 2019 notes (which

in turn refer to solved homework).
Anyway, we now know that C is a bijection. Thus, the bijection principle

yields that

|{compositions of n into k parts}| = |{(k − 1) -element subsets of [n − 1]}| .

1Here is a geometric way to think of the map C:
Given a composition (a1, a2, . . . , ak) of n, we can subdivide the interval [0, n] on the real

line into k blocks (i.e., subintervals) of lengths a1, a2, . . . , ak (from left to right), as follows:

a1 a2 · · · ak

0 s1 s2 · · · sk−1 n .

The set C (a1, a2, . . . , ak) then consists of the k − 1 points s1, s2, . . . , sk−1 at which these blocks
begin and end (not counting the endpoints 0 and n of the big interval). Explicitly, it is easy
to see that si = a1 + a2 + · · ·+ ai for each i ∈ [k − 1], so that we obtain the formula

C (a1, a2, . . . , ak) = {a1 + a2 + · · ·+ ai | i ∈ [k − 1]}

by which we have defined C. Most properties of the map C become clear by looking at this
geometric interpretation.
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In other words,

(# of compositions of n into k parts)
= (# of (k − 1) -element subsets of [n − 1])

=

(
n − 1
k − 1

) (
by the combinatorial interpretation of BCs,

since n − 1 ∈ N

)
=

(
n − 1

(n − 1)− (k − 1)

)
(by the symmetry of BCs, since n − 1 ∈ N)

=

(
n − 1
n − k

)
.

Thus, we have proved Theorem 2.8.1.

2.8.2. Binary compositions

Here is a variant of Theorem 2.8.1 in which the entries of the tuples are sup-
posed to be 0’s and 1’s instead of being positive integers:

Theorem 2.8.4. Let n ∈ Z and k ∈ N. Then,(
# of (x1, x2, . . . , xk) ∈ {0, 1}k satisfying x1 + x2 + · · ·+ xk = n

)
=

(
k
n

)
.

Proof. (See Theorem 2.10.4 in the 2019 notes for details.)
A k-tuple (x1, x2, . . . , xk) ∈ {0, 1}k satisfies x1 + x2 + · · ·+ xk = n if and only

if it consists of n many 1’s and k − n many 0’s (because x1 + x2 + · · · + xk is
just the # of 1’s in (x1, x2, . . . , xk)). Thus, we can construct such a k-tuple by
choosing the positions in which its n many 1’s will be placed. This amounts

to choosing an n-element subset of [k], and this can be done in
(

k
n

)
many

ways.

2.8.3. Weak compositions

One particularly useful variant of compositions are the so-called weak compo-
sitions. These are defined as tuples of nonnegative integers (i.e., they differ
from compositions in that 0 is allowed as an entry). For example, the weak
compositions of 2 into 3 parts are

(1, 1, 0) , (1, 0, 1) , (0, 1, 1) ,
(0, 0, 2) , (0, 2, 0) , (2, 0, 0) .

Let us count weak compositions of n into k parts:
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Theorem 2.8.5. Let n ∈ N and k ∈ N. Then,(
# of (x1, x2, . . . , xk) ∈ Nk satisfying x1 + x2 + · · ·+ xk = n

)
=

(
n + k − 1

n

)
(3)

=


(

n + k − 1
k − 1

)
, if k > 0;

[n = 0] , if k = 0.

Proof of Theorem 2.8.5. Let P = {1, 2, 3, . . .}. There is a bijection

from
{
(x1, x2, . . . , xk) ∈ Nk | x1 + x2 + · · ·+ xk = n

}
to

{
(x1, x2, . . . , xk) ∈ Pk | x1 + x2 + · · ·+ xk = n + k

}
which sends

each weak composition (x1, x2, . . . , xk)

to the composition (x1 + 1, x2 + 1, . . . , xk + 1)

(that is, which adds 1 to each entry). Thus, by the bijection principle, we have(
# of (x1, x2, . . . , xk) ∈ Nk satisfying x1 + x2 + · · ·+ xk = n

)
=

(
# of (x1, x2, . . . , xk) ∈ Pk satisfying x1 + x2 + · · ·+ xk = n + k

)
=

(
n + k − 1
n + k − k

)
(by (1), applied to n + k instead of k)

=

(
n + k − 1

n

)
.

Using the symmetry of BCs (and a bit of case analysis to deal with the case of
k = 0), we can furthermore rewrite this as

(
n + k − 1

k − 1

)
, if k > 0;

[n = 0] , if k = 0.

Thus, Theorem 2.8.5 is proved.

Remark 2.8.6. Note that weak compositions appear in abstract algebra.
Indeed, consider the polynomial ring R [x1, x2, . . . , xk] in k indeterminates.

The degree-n part of this polynomial ring (i.e., the vector space of polynomi-
als that are homogeneous of degree n) is spanned by all monomials of degree
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n in the indeterminates x1, x2, . . . , xk. These monomials have the form

xa1
1 xa2

2 · · · xak
k , where a1, a2, . . . , ak ∈ N and a1 + a2 + · · ·+ ak = n.

So these monomials are in one-to-one correspondence with the weak com-
positions of n into k parts. Thus, the dimension of the degree-n part of the
polynomial ring is the # of these weak compositions. According to (3), this #

is
(

n + k − 1
n

)
.

2.8.4. Some other composition counting problems

Here is an assortment of other results about counting compositions. (See §2.10.4
in the 2019 notes for proofs.)

First, let us count all compositions of a number n (as opposed to just those
having a given length k):

Proposition 2.8.7. Let n ∈ N. Then,

(# of compositions of n) =

{
2n−1, if n > 0;
1, if n = 0.

Now, let us count compositions whose entries are 1’s and 2’s:

Proposition 2.8.8. Let n ∈ N. A {1, 2}-composition of n shall mean a com-
position (x1, x2, . . . , xk) of n such that x1, x2, . . . , xk ∈ {1, 2}. Then:

(a) The # of {1, 2}-compositions of n is the Fibonacci number fn+1.

(b) For any k ∈ N, the # of {1, 2}-compositions of n into k parts is
(

k
n − k

)
.

Next, we can try to count weak compositions of n into k parts whose en-
tries all belong to {0, 1, . . . , p − 1} for a given number p. When p = 2, this has

already been done (see Theorem 2.8.4 above), and the answer was
(

k
n

)
. Unfor-

tunately, no such simple answer exists for general p, but at least we can write
it as a finite sum:

Proposition 2.8.9. Let p ∈ N. Let n ∈ Z and k ∈ N. Then,(
# of (x1, x2, . . . , xk) ∈ {0, 1, . . . , p − 1}k such that x1 + x2 + · · ·+ xk = n

)
=

k

∑
j=0

(−1)j
(

k
j

)(
n − pj + k − 1

n − pj

)
.
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Finally, instead of counting compositions of n, let us sum their lengths:

Proposition 2.8.10. Let n be a positive integer. Then, the sum of the lengths
of all compositions of n is (n + 1) 2n−2.

See the 2019 notes for proofs of all of these propositions (they make nice
exercises).

A much harder problem is counting partitions: compositions whose entries
are arranged in weakly decreasing order (i.e., from highest to lowest). For
instance, the partitions of 5 are

(5) , (4, 1) , (3, 2) , (3, 1, 1) , (2, 2, 1) ,
(2, 1, 1, 1) , (1, 1, 1, 1, 1) .

There are 7 of them, which is not a very simple number! In general, there is no
explicit formula for the # of partitions of n, but there is at least one beautiful
recurrence and a whole lot of interesting identities. Partition identities are a
subject of their own. We will learn more about partitions in §3.7 (Lecture 25).

2.9. Multisubsets

Another counting problem that naturally leads to BCs is to count multisubsets
of a given set having a given size. Let us introduce the notion of a multisubset.

2.9.1. Definitions

Sets in mathematics are rather binary objects: A set either contains an element
or does not. It cannot “contain this element twice”. This is useful in some
situations and limiting in others. For the latter situations, the notion of a mul-
tiset has been invented. Essentially, a multiset is “a set that can contain some
elements multiple times”.

Instead of defining multisets per se, we will here only define the notion of
a multisubset, which is essentially a multiset whose elements come from a
given set T. Our multisubsets shall always be finite, so they can only contain
finitely many elements, and each element is contained only finitely many times.
Formally speaking, a multisubset of a set T is determined by specifying how
often it contains each given element of T. In other words, it is determined by
the function f : T → N which sends each t ∈ T to the multiplicity of t in this
multisubset (i.e., the number of times that t is contained in the multisubset).

For a rigorous definition, we simply define a multisubset to be such a func-
tion:
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Definition 2.9.1. Let T be a set.
A multisubset of T is formally defined as a map f : T → N such that only

finitely many t ∈ T satisfy f (t) ̸= 0. 2

Informally, we regard such a map f : T → N as a way to encode a “set
with multiplicities” – namely, the “set” in which each t ∈ T appears f (t)
many times. Accordingly, we will use the notation {a1, a2, . . . , ak}multi for
this multisubset f , where (a1, a2, . . . , ak) is a list of elements of T such that
each t ∈ T appears in this list exactly f (t) many times.

For example, if T = [8], then the map from [8] to N that is given in two-line
notation as (

1 2 3 4 5 6 7 8
1 0 0 3 2 1 0 1

)
is a multisubset of [8], and it can be written as

{1, 4, 4, 4, 5, 5, 6, 8}multi

(or as {4, 5, 4, 4, 5, 6, 1, 8}multi, or in many other ways). It contains the element
1 once, the element 4 thrice, the element 5 twice, the element 6 once and the
element 8 once.

Note that {1, 1}multi ̸= {1}multi, even though {1, 1} = {1}. Thus, mul-
tisubsets are basically “subsets with multiplicities”. However, {1, 2}multi =
{2, 1}multi, since multisets don’t come with an ordering of their elements.

The size of a multisubset is easily defined:

Definition 2.9.2. Let T be a set. Let f be a multisubset of T. Then, the size
of f is defined to be the number ∑

t∈T
f (t) ∈ N.

This means that the size of a multisubset f is the number of elements of f ,
counted with multiplicities (i.e., the sum of the multiplicities of all elements of
f ). Equivalently, any multisubset that has the form {a1, a2, . . . , ak}multi has size
k (no matter whether the elements a1, a2, . . . , ak are distinct or not).

Next time, we will answer the following question: How many multisubsets
of a given set T have a given size k ? (The analogous question about subsets
has been answered back in Lecture 6.)

2The latter condition is meant to ensure that our multisubset is finite even if T itself might be
infinite.
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