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Math 222 Fall 2022, Lecture 20: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.7. The principle of inclusion and exclusion (aka Sylvester’s
sieve formula) (cont’d)

2.7.1. Applications

Last time, we proved the Principle of Inclusion and Exclusion, which (in one of
its forms) says the following:

Theorem 2.7.8 (Theorem, repeated for convenience). Let n ∈ N. Let U be a
finite set. Let A1, A2, . . . , An be n subsets of U. Then,

(# of all s ∈ U such that s /∈ Ai for all i ∈ [n])

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U such that s ∈ Ai for all i ∈ I) .

Here is yet another way to restate this theorem, which I find easier to mem-
orize (and thus also more convenient to apply):

“Rule-breaking interpretation” of the Principle of Inclusion and
Exclusion.

Assume that we are given a finite set U, and we are given n rules
(numbered 1, 2, . . . , n) that each element of U may or may not satisfy.
(For instance, a rule can say “thou shalt be even” (if U is a set of
numbers) or “thou shalt be nonempty” (if U is a set of sets).)

Assume that, for each I ⊆ [n], we know how many elements s ∈ U
satisfy all rules in I (but may or may not satisfy the remaining rules).
For example, this means that we know how many elements s ∈ U
satisfy rules 2, 3 and 5 simultaneously.

Then, we can compute the # of elements s ∈ U that violate all n rules
1, 2, . . . , n by the following formula:

(# of all s ∈ U that violate all n rules 1, 2, . . . , n)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that satisfy all rules in I) .

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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(Indeed, this is just Theorem 2.7.8, applied to Ai = {s ∈ U | s satisfies rule i}.)

Now, let us use the Principle of Inclusion and Exclusion (in its “rule-breaking
interpretation”) to count several things that would otherwise be hard to count.

Example 1: Counting surjections. (See §2.9.4 in the 2019 notes for details.)
Let m, n ∈ N. Let us compute sur (m, n). As we recall, this is the # of

surjective maps (= surjections) from [m] to [n].
We set U = [n][m] = {all maps from [m] to [n]}. We want to impose n rules

1, 2, . . . , n on a map s ∈ U in such a way that the surjective maps will be
precisely those maps that violate all n rules 1, 2, . . . , n.

We set rule i to be “thou shalt not take i as a value”. Then, a map s : [m] → [n]
violates all rules 1, 2, . . . , n if and only if it takes each of 1, 2, . . . , n as a value,
i.e., if it is surjective. Hence,

sur (m, n)
= (# of surjective maps [m] → [n])
= (# of all s ∈ U that violate all n rules 1, 2, . . . , n)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that satisfy all rules in I) (1)

(by the “rule-breaking interpretation” of the Principle of Inclusion and Exclu-
sion).

Let us now compute the addends on the RHS of (1).
We fix a subset I of [n]. What is the # of all s ∈ U that satisfy all rules in I

? This is just the # of all maps s : [m] → [n] that take none of the i ∈ I as a
value. These maps are essentially just the maps from [m] to [n] \ I. Thus, their
# is |[n] \ I|[m] = (n − |I|)m. So we obtain

(# of all s ∈ U that satisfy all rules in I) = (n − |I|)m . (2)

Forget that we fixed I. We thus have proved the equality (2) for every I ⊆ [n].
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Thus, (1) becomes

sur (m, n) = ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that satisfy all rules in I)︸ ︷︷ ︸
=(n−|I|)m

(by (2))

= ∑
I⊆[n]

(−1)|I| (n − |I|)m

=
n

∑
k=0

(# of subsets I ⊆ [n] satisfying |I| = k)︸ ︷︷ ︸
=

(
n
k

) · (−1)k (n − k)m


here, we have split the sum according to

the value of |I| , and observed that all
subsets I of [n] satisfying |I| = k give identical

addends (−1)|I| (n − |I|)m = (−1)k (n − k)m


=

n

∑
k=0

(
n
k

)
· (−1)k (n − k)m =

n

∑
k=0

(−1)k
(

n
k

)
(n − k)m

=
n

∑
j=0

(−1)n−j
(

n
n − j

)
︸ ︷︷ ︸
=

(
n
j

)
n − (n − j)︸ ︷︷ ︸

=j


m (

here, we substituted n − j
for k in the sum

)

=
n

∑
j=0

(−1)n−j
(

n
j

)
jm.

Thus, we have proved the following:

Theorem 2.7.13. For any m, n ∈ N, we have

sur (m, n) =
n

∑
k=0

(−1)k
(

n
k

)
(n − k)m =

n

∑
j=0

(−1)n−j
(

n
j

)
jm.

This is the optimal answer to the question of computing sur (m, n); there is
no simpler formula. Note that a few corollaries spring out:

Corollary 2.7.14. Let n ∈ N. Then:

(a) We have
n
∑

k=0
(−1)k

(
n
k

)
(n − k)m = 0 for any m ∈ N such that m < n.

(b) We have
n
∑

k=0
(−1)k

(
n
k

)
(n − k)n = n!.
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(c) We have
n
∑

k=0
(−1)k

(
n
k

)
(n − k)m ≥ 0 for any m ∈ N.

(d) The number
n
∑

k=0
(−1)k

(
n
k

)
(n − k)m is divisible by n! for any m ∈ N.

Proof. Theorem 2.7.13 yields that
n
∑

k=0
(−1)k

(
n
k

)
(n − k)m = sur (m, n). Hence,

• Corollary 2.7.14 (a) follows from Proposition 2.4.10 (f) in Lecture 16.

• Corollary 2.7.14 (b) follows from Corollary 2.4.13 (a) in Lecture 17.

• Corollary 2.7.14 (c) follows from sur (m, n) ≥ 0, which is obvious.

• Corollary 2.7.14 (d) follows from Corollary 2.4.13 (b) in Lecture 17.

(Note that none of the four parts of Corollary 2.7.14 is obvious algebraically!)

Example 2. (See §2.9.5 in the 2019 notes for details.)
Recall that a derangement of a set X means a permutation of X that has no

fixed points (i.e., a permutation s of X such that s (x) ̸= x for any x ∈ X).
We let Dn denote the # of derangements of [n] for each n ∈ N. Let’s compute

Dn. (We discussed these numbers Dn in §1.7.3 in Lecture 12; let us now see if
we can derive some of the formulas for Dn.)

Fix n ∈ N. Let U be the set of all permutations of [n]. We want to impose n
rules 1, 2, . . . , n on a permutation s ∈ U in such a way that the derangements
will be precisely the permutations s that violate all n rules 1, 2, . . . , n.

Namely, rule i says “thou shalt send i to i”. Violating all these n rules (for a
permutation of [n]) means sending no i to i, which means being a derangement.
Thus,

Dn = (# of all derangements of [n])
= (# of all s ∈ U that violate all n rules 1, 2, . . . , n)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that satisfy all rules in I) (3)

(by the “rule-breaking interpretation” of the Principle of Inclusion and Exclu-
sion).

Again, we now need to compute the addends on the RHS.
So we fix a subset I of [n], and we try to find the # of all permutations s ∈ U

that satisfy all rules in I. For instance, if I = {2, 5}, then this is the # of all
permutations s of [n] that satisfy s (2) = 2 and s (5) = 5. How many such
permutations are there?
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If a permutation s of [n] satisfies s (2) = 2 and s (5) = 5, then it has to
permute the remaining elements of [n] (that is, the elements of [n] \ {2, 5})
among each other; i.e., its restriction to [n] \ {2, 5} has to be a permutation
of [n] \ {2, 5} (because the values 2 and 5 are already taken on the inputs 2
and 5, and a permutation cannot take the same value twice). Thus, the # of
all permutations s of [n] that satisfy s (2) = 2 and s (5) = 5 is the # of all
permutations of [n] \ {2, 5}. But the latter # is (n − 2)! (by Theorem 1.7.2 in
Lecture 12, since [n] \ {2, 5} is an (n − 2)-element set).

More generally, for any subset I of [n], a permutation s of [n] that satisfies
all rules in I is essentially just a permutation of the set [n] \ I (because it sends
each element of I to itself, and thus must permute the elements of [n] \ I among
each other). Hence, the # of the former permutations equals the # of the latter
permutations. In other words,

(# of all s ∈ U that satisfy all rules in I)
= (# of all permutations of [n] \ I)
= (n − |I|)! (4)

(by Theorem 1.7.2 in Lecture 12, since [n] \ I is an (n − |I|)-element set).
Now, forget that we fixed I. We thus have proved (4) for every subset I of
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[n]. Thus, (3) becomes

Dn = ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that satisfy all rules in I)︸ ︷︷ ︸
=(n−|I|)!

(by (4))

= ∑
I⊆[n]

(−1)|I| (n − |I|)!

=
n

∑
k=0

(# of subsets I ⊆ [n] satisfying |I| = k)︸ ︷︷ ︸
=

(
n
k

) · (−1)k (n − k)!


here, we have split the sum according to

the value of |I| , and observed that all
subsets I of [n] satisfying |I| = k give identical

addends (−1)|I| (n − |I|)! = (−1)k (n − k)!


=

n

∑
k=0

(
n
k

)
(−1)k (n − k)! =

n

∑
k=0

(−1)k
(

n
k

)
(n − k)!︸ ︷︷ ︸
=

n!
k!

(since

(
n
k

)
=

n!
k! · (n − k)!

)

=
n

∑
k=0

(−1)k n!
k!

= n! ·
n

∑
k=0

(−1)k

k!
.

So we have proved the following:

Theorem 2.7.15. Let n ∈ N. Then, the # of derangements of [n] is

Dn =
n

∑
k=0

(−1)k
(

n
k

)
(n − k)! = n! ·

n

∑
k=0

(−1)k

k!
. (5)

We can transform this expression even further, if we recall a few facts from
real analysis. Let e ≈ 2.718 . . . be Euler’s number (well, one of the many num-
bers that bear Euler’s name). It is well-known that

ex = exp x =
∞

∑
k=0

xk

k!
for any x ∈ R.

Applying this to x = −1, we obtain

e−1 =
∞

∑
k=0

(−1)k

k!
. (6)
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The infinite sum on the RHS here resembles the finite sum on the RHS of (5).
And indeed, the two sums are very close to one another. To wit, for any n ∈ N,
we have

∞

∑
k=0

(−1)k

k!
−

n

∑
k=0

(−1)k

k!
=

∞

∑
k=n+1

(−1)k

k!
. (7)

In view of (6) and (5), we can rewrite this as

e−1 − Dn

n!
=

∞

∑
k=n+1

(−1)k

k!
. (8)

The RHS of this equality looks like it is very small (after all, the factorials

k! grow very quickly, so their reciprocals
1
k!

quickly get microscopic). How
small exactly? There is a nice (and easily proved) theorem in analysis that if
a0, a1, a2, . . . are positive real numbers satisfying a0 > a1 > a2 > a3 > · · · , then∣∣∣∣ ∞

∑
k=m

(−1)k ak

∣∣∣∣ < am for any m ∈ N. Applying this to ak =
1
k!

and m = n + 1,

we obtain ∣∣∣∣∣ ∞

∑
k=n+1

(−1)k

k!

∣∣∣∣∣ < 1
(n + 1)!

=
1

n! · (n + 1)
.

If n ≥ 1, then this becomes∣∣∣∣∣ ∞

∑
k=n+1

(−1)k

k!

∣∣∣∣∣ < 1
n! · (n + 1)

≤ 1
n! · 2

(9)

(since n ≥ 1 entails n + 1 ≥ 2). In view of (8), this can be rewritten as∣∣∣∣e−1 − Dn

n!

∣∣∣∣ < 1
n! · 2

.

Multiplying this equality by the positive real n!, we obtain∣∣∣n! · e−1 − Dn

∣∣∣ < 1
2

.

In other words, the integer Dn is less than
1
2

away from the real number n! · e−1

(provided that n ≥ 1). Hence, Dn is the nearest integer to the real number

n! · e−1 =
n!
e

. We can rewrite this as follows:

Dn = round
n!
e

,

where round x denotes the nearest integer to a given real number x. Thus, we
have proved the following:



Lecture 20, version December 12, 2022 page 8

Theorem 2.7.16. For any integer n ≥ 1, we have

Dn = round
n!
e

.

This strange formula for the # of derangements is suddenly not mysterious
any more!

Back in Lecture 12, we have also stated two recursive formulas for Dn:

Dn = nDn−1 + (−1)n for all n ≥ 1;
Dn = (n − 1) (Dn−1 + Dn−2) for all n ≥ 2.

These formulas can be derived purely algebraically from Theorem 2.7.15. (This
is a fun exercise; for the solution, see Exercise 2.9.4 in the 2019 notes.)

Remark 2.7.17. From Theorem 2.7.16, we can easily derive the famous result that
the number e is irrational.

Indeed, assume the contrary. Thus, e = n/q for some positive integers n and q.

Consider these n and q. Then,
n!
e
=

n!
n/q

= q · n!
n

= q · (n − 1)! is an integer. Hence,

round
n!
e
=

n!
e

, so that Theorem 2.7.16 yields Dn = round
n!
e
=

n!
e

.

Also, from (n + 1)! = (n + 1) · n!, we obtain
(n + 1)!

e
= (n + 1) · n!

e︸︷︷︸
=q·(n−1)!

=

(n + 1) · q · (n − 1)!, which is an integer as well. Thus, round
(n + 1)!

e
=

(n + 1)!
e

.
Hence, Theorem 2.7.16 (applied to n + 1 instead of n) yields

Dn+1 = round
(n + 1)!

e
=

(n + 1)!
e

= (n + 1) · n!
e︸︷︷︸

=Dn

= (n + 1) · Dn

= (n + 1) · n!︸ ︷︷ ︸
=(n+1)!

·
n

∑
k=0

(−1)k

k!
(by (5))

= (n + 1)! ·
n

∑
k=0

(−1)k

k!
.

Comparing this with

Dn+1 = (n + 1)! ·
n+1

∑
k=0

(−1)k

k!
(by (5), applied to n + 1 instead of n) ,

we obtain
n+1
∑

k=0

(−1)k

k!
=

n
∑

k=0

(−1)k

k!
. This entails

(−1)n+1

(n + 1)!
= 0, which is absurd. This

contradiction shows that our assumption was false, so that e is indeed irrational.
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Example 3. (See §2.9.6 in the 2019 notes for details.)
The following number-theoretical result is also due to Euler:1

Theorem 2.7.18. Let c be a positive integer with prime factorization

c = pa1
1 pa2

2 · · · pan
n ,

where p1, p2, . . . , pn are distinct primes, and where a1, a2, . . . , an are positive
integers. Then,

(# of all s ∈ [c] that are coprime to c)

= c ·
n

∏
i=1

(
1 − 1

pi

)
=

n

∏
i=1

(
pai

i − pai−1
i

)
.

Note that the # of all s ∈ [c] that are coprime to c is usually denoted by ϕ (c),
and the map ϕ : {1, 2, 3, . . .} → N that sends each c to ϕ (c) is known as Euler’s
totient function.

Example 2.7.19. Let c = 18. Then, the prime factorization of c is c = 21 · 32.
Thus, Theorem 2.7.18 claims that

(# of all s ∈ [18] that are coprime to 18)

= 18 ·
(

1 − 1
2

)
·
(

1 − 1
3

)
=
(

21 − 20
)
·
(

32 − 31
)

.

And indeed, both sides of this equality are 6. The six numbers s ∈ [18] that
are coprime to 18 are 1, 5, 7, 11, 13, 17.

Theorem 2.7.18 is proved in most textbooks on number theory. Let us, how-
ever, outline a proof using the PIE. This proof will heavily use Euclid’s lemma,
which (in one of its forms) says that if a prime p divides a product b1b2 · · · bk
of some integers b1, b2, . . . , bk, then p must divide (at least) one of the fac-
tors b1, b2, . . . , bk. This yields, in particular, that if a prime p divides an inte-
ger c whose prime factorization is c = pa1

1 pa2
2 · · · pan

n , then p must be one of
p1, p2, . . . , pn. We will also use the product divisibility lemma, which says that
if several distinct prime numbers q1, q2, . . . , qk all divide a given integer s, then
their product q1q2 · · · qk also divides s. (More generally, this still holds if we
replace “distinct prime” by “pairwise coprime”.)

Proof of Theorem 2.7.18 (sketched). Let U = [c]. A number s ∈ U is coprime to c
if and only if it is not divisible by any of the primes p1, p2, . . . , pn (this follows
from Euclid’s lemma stated in the preceding paragraph). This means that s

1Recall that two integers a and b are said to be coprime (to one another) if gcd (a, b) = 1.
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violates all n rules 1, 2, . . . , n, where rule i says “thou shalt be divisible by pi”.
Hence,

(# of all s ∈ [c] that are coprime to c)
= (# of all s ∈ [c] that violate all n rules 1, 2, . . . , n)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ [c] that satisfy all rules in I) (10)

(by the “rule-breaking interpretation” of the Principle of Inclusion and Exclu-
sion).

Now, let I be a subset of [n]. Then, an integer s ∈ [c] satisfies all rules in I
if and only if it is divisible by all primes pi with i ∈ I; but this is equivalent
to s being divisible by ∏

i∈I
pi (here we are using the product divisibility lemma).

Therefore,

(# of all s ∈ [c] that satisfy all rules in I)

=

(
# of all s ∈ [c] that are divisible by ∏

i∈I
pi

)
. (11)

However, ∏
i∈I

pi is a divisor of c. Therefore, the numbers s ∈ [c] that are divisible

by ∏
i∈I

pi are the numbers

∏
i∈I

pi, 2 ∏
i∈I

pi, 3 ∏
i∈I

pi, . . . , c.

These are
c

∏
i∈I

pi
many numbers. Therefore,

(
# of all s ∈ [c] that are divisible by ∏

i∈I
pi

)
=

c
∏
i∈I

pi
.

Hence, (11) can be rewritten as

(# of all s ∈ [c] that satisfy all rules in I)

=
c

∏
i∈I

pi
. (12)

Forget that we have fixed I. We thus have proved (12) for each subset I of [n].
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Now, (10) becomes

(# of all s ∈ [c] that are coprime to c)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ [c] that satisfy all rules in I)︸ ︷︷ ︸
=

c
∏
i∈I

pi

(by (12))

= ∑
I⊆[n]

(−1)|I|
c

∏
i∈I

pi
= c · ∑

I⊆[n]
(−1)|I|

1
∏
i∈I

pi

= c · ∑
I⊆[n]

(−1)|I| ∏
i∈I

1
pi

. (13)

The RHS of this equality turns out to be simplifiable. Indeed, for any n
numbers a1, a2, . . . , an, we have

∑
I⊆[n]

(−1)|I| ∏
i∈I

ai = (1 − a1) (1 − a2) · · · (1 − an)

(this is not hard to see by expanding the product on the RHS2). Applying this

to ai =
1
pi

, we obtain

∑
I⊆[n]

(−1)|I| ∏
i∈I

1
pi

=

(
1 − 1

p1

)(
1 − 1

p2

)
· · ·
(

1 − 1
pn

)
=

n

∏
i=1

(
1 − 1

pi

)
.

Hence, we can rewrite (13) as

(# of all s ∈ [c] that are coprime to c) = c ·
n

∏
i=1

(
1 − 1

pi

)
.

We can rewrite this further:

(# of all s ∈ [c] that are coprime to c)

= c︸︷︷︸
=p

a1
1 pa2

2 ···pan
n

=
n
∏
i=1

p
ai
i

·
n

∏
i=1

(
1 − 1

pi

)
=

(
n

∏
i=1

pai
i

)
·

n

∏
i=1

(
1 − 1

pi

)
=

n

∏
i=1

(
pai

i

(
1 − 1

pi

))
︸ ︷︷ ︸

=p
ai
i −p

ai−1
i

=
n

∏
i=1

(
pai

i − pai−1
i

)
.

This completes the proof of Theorem 2.7.18.

2For example, for n = 3, we have (1 − a1) (1 − a2) (1 − a3) = 1 − a1 − a2 − a3 + a1a2 + a1a3 +

a2a3 − a1a2a3, which is precisely ∑
I⊆[3]

(−1)|I| ∏
i∈I

ai. For a formal proof, see Lemma 2.9.21 (b)

in the 2019 notes.
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