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Math 222 Fall 2022, Lecture 19: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.7. The principle of inclusion and exclusion (aka Sylvester’s
sieve formula)

The principle of inclusion and exclusion is probably the last of the major count-
ing principles. We will state it in four equivalent forms and prove it soon after.
Then, in the next lecture, we will see some of its applications.

2.7.1. The principles

Playing around with finite sets, one may spot a few patterns. For instance, the
size of the union of a few finite sets can be computed using the sizes of their
intersections:

• For any two finite sets A and B, we have

|A ∪ B| = |A|+ |B| − |A ∩ B| . (1)

• For any three finite sets A, B and C, we have

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C| .
(2)

• For any four finite sets A, B, C and D, we have

|A ∪ B ∪ C ∪ D|
= |A|+ |B|+ |C|+ |D|

− |A ∩ B| − |A ∩ C| − |A ∩ D| − |B ∩ C| − |B ∩ D| − |C ∩ D|
+ |A ∩ B ∩ C|+ |A ∩ B ∩ D|+ |A ∩ C ∩ D|+ |B ∩ C ∩ D|
− |A ∩ B ∩ C ∩ D| . (3)

These three equalities all follow the same pattern: On the left is the size of a
union of some finite sets; on the right are the sizes of their intersections (not just
the intersection of all the sets, but also the intersections of some of them, such
as A ∩ B ∩ D or B ∩ C or even B). This pattern remains valid for any (finite)
number of finite sets:

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Theorem 2.7.1. Let n ∈ N. Let A1, A2, . . . , An be n finite sets. Then,

|A1 ∪ A2 ∪ · · · ∪ An|

=
n

∑
m=1

(−1)m−1 ∑
(i1,i2,...,im)∈[n]m;

i1<i2<···<im

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aim
∣∣ . (4)

The nested sum on the right hand side of (4) looks scary, so let us write it
out: It is

|A1|+ |A2|+ · · ·+ |An|︸ ︷︷ ︸
the sizes of all Ai

(summed with + signs)

− |A1 ∩ A2| − |A1 ∩ A3| − · · · − |An−1 ∩ An|︸ ︷︷ ︸
the sizes of all intersections Ai∩Aj (with i<j)

(summed with − signs)

+ |A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩ A4|+ · · ·+ |An−2 ∩ An−1 ∩ An|︸ ︷︷ ︸
the sizes of all intersections Ai∩Aj∩Ak (with i<j<k)

(summed with + signs)

± · · ·
+ (−1)n−1 |A1 ∩ A2 ∩ · · · ∩ An|︸ ︷︷ ︸

the size of the intersection A1∩A2∩···∩An
(summed with a + or − sign depending on the parity of n)

.

Thus, it is a sum that contains the sizes of all possible intersections of some of
the sets A1, A2, . . . , An, each with a + or − sign depending on how many sets
are being intersected. Clearly, the right hand sides of (1), (2) and (3) are the
particular cases of this sum obtained for n = 2, n = 3 and n = 4, respectively
(and with A1, A2, A3, . . . renamed as A, B, C, . . .).

Theorem 2.7.1 is known as the Principle of Inclusion and Exclusion (short:
PIE) or as Sylvester’s sieve formula. We will not prove it right away, but rather
rewrite it in several other forms, some of which are easier to prove and more
useful.

For our first restatement, we need a notation from set theory:

Definition 2.7.2. Let I be a nonempty set. For each i ∈ I, let Ai be any set.
Then, we set ⋂

i∈I

Ai := {x | x ∈ Ai for each i ∈ I} .

This set
⋂
i∈I

Ai is called the intersection of the sets Ai for i ∈ I.

For example:
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• If I = {i1, i2, . . . , im} is a finite set, then
⋂
i∈I

Ai = Ai1 ∩ Ai2 ∩ · · · ∩ Aim .

• If I is a bunch of people, and if Ai = {friends of i} for each i ∈ I, then⋂
i∈I

Ai = {x | x is friends with everyone in I}.

Note the similarity between this notation
⋂
i∈I

Ai and the well-known notations

for finite sums ( ∑
i∈I

ai) and finite products (∏
i∈I

ai). There is also an analogous

notation
⋃
i∈I

Ai for the union of some sets.

Now, we can rewrite the RHS of Theorem 2.7.1 as follows:

Proposition 2.7.3. Let n ∈ N. Let A1, A2, . . . , An be n finite sets. Then,

n

∑
m=1

(−1)m−1 ∑
(i1,i2,...,im)∈[n]m;

i1<i2<···<im

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aim
∣∣ = ∑

I⊆[n];
I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Example 2.7.4. If n = 3, then the claim of Proposition 2.7.3 takes the form

(−1)1−1 (|A1|+ |A2|+ |A3|)
+ (−1)2−1 (|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|)
+ (−1)3−1 |A1 ∩ A2 ∩ A3|

= (−1)|{1}|−1

∣∣∣∣∣∣ ⋂i∈{1}
Ai

∣∣∣∣∣∣+ (−1)|{2}|−1

∣∣∣∣∣∣ ⋂i∈{2}
Ai

∣∣∣∣∣∣+ (−1)|{3}|−1

∣∣∣∣∣∣ ⋂i∈{3}
Ai

∣∣∣∣∣∣
+ (−1)|{1,2}|−1

∣∣∣∣∣∣ ⋂
i∈{1,2}

Ai

∣∣∣∣∣∣+ (−1)|{1,3}|−1

∣∣∣∣∣∣ ⋂
i∈{1,3}

Ai

∣∣∣∣∣∣
+ (−1)|{2,3}|−1

∣∣∣∣∣∣ ⋂
i∈{2,3}

Ai

∣∣∣∣∣∣+ (−1)|{1,2,3}|−1

∣∣∣∣∣∣ ⋂
i∈{1,2,3}

Ai

∣∣∣∣∣∣
(since the subsets I of [n] that satisfy I ̸= ∅ are
{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}). You can easily confirm
this by checking that the addends on the left hand side (after the parentheses
are expanded) are precisely the addends on the right hand side.

Proof of Proposition 2.7.3. Essentially, the reason is the following: Both the LHS
and the RHS are the sum of the sizes of all possible intersections of some of our
n sets A1, A2, . . . , An, with appropriate signs (namely, a “+” sign whenever we
are intersecting an odd # of sets, and a “−” sign whenever we are intersecting
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an even # of sets). They differ only in their organization (the RHS is taking
this sum directly, whereas the LHS splits it up according to the # of sets being
intersected, and labels the possible intersections by their indices in increasing
order).

For the details of this proof, see the 2019 notes (Proposition 2.9.4).

We can now restate the Principle of Inclusion and Exclusion as follows:

Theorem 2.7.5 (Principle of Inclusion and Exclusion, union form). Let n ∈ N.
Let A1, A2, . . . , An be n finite sets. Then,

|A1 ∪ A2 ∪ · · · ∪ An| = ∑
I⊆[n];
I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ . (5)

We will soon prove this theorem (and the previous one). But first, we shall
restate it further, by focussing not on the union A1 ∪ A2 ∪ · · · ∪ An of our n sets,
but rather on the complement of this union (i.e., on everything that is not in this
union). To make sense of this complement, we need to introduce a “universe”
set U that contains all of our n sets A1, A2, . . . , An as subsets:

Theorem 2.7.6 (Principle of Inclusion and Exclusion, complement form). Let
n ∈ N. Let U be a finite set. Let A1, A2, . . . , An be n subsets of U. Then,

|U \ (A1 ∪ A2 ∪ · · · ∪ An)| = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ . (6)

Here, the “empty” intersection
⋂

i∈∅
Ai is understood to mean the set U.

Example 2.7.7. Let U be a finite set, and let A1 and A2 be two subsets of U.
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Then, Theorem 2.7.6 (applied to n = 2) says that

|U \ (A1 ∪ A2)| = ∑
I⊆[2]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣

= (−1)|∅|︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣∣∣∣∣∣
⋂
i∈∅

Ai︸ ︷︷ ︸
=U

(by definition)

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)|{1}|︸ ︷︷ ︸

=−1

∣∣∣∣∣∣∣∣∣∣∣
⋂

i∈{1}
Ai︸ ︷︷ ︸

=A1

∣∣∣∣∣∣∣∣∣∣∣

+ (−1)|{2}|︸ ︷︷ ︸
=−1

∣∣∣∣∣∣∣∣∣∣∣
⋂

i∈{2}
Ai︸ ︷︷ ︸

=A2

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)|{1,2}|︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣∣∣∣
⋂

i∈{1,2}
Ai︸ ︷︷ ︸

=A1∩A2

∣∣∣∣∣∣∣∣∣∣∣
(since the subsets of [2] are ∅, {1} , {2} , {1, 2})

= |U| − |A1| − |A2|+ |A1 ∩ A2| .

Note that U \ (A1 ∪ A2 ∪ · · · ∪ An) is the set of all elements of U that belong
to none of A1, A2, . . . , An.

Finally, let us restate Theorem 2.7.6 in yet another form (which is both easiest
to prove and most convenient for applications):

Theorem 2.7.8. Let n ∈ N. Let U be a finite set. Let A1, A2, . . . , An be n
subsets of U. Then,1

(# of all s ∈ U such that s /∈ Ai for all i ∈ [n])

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U such that s ∈ Ai for all i ∈ I) .

2.7.2. The cancellation lemma

We have now stated the Principle of Inclusion and Exclusion in four different
forms. Soon we shall prove them. The proof will rely on the following crucial

1Note that the condition “s ∈ Ai for all i ∈ I” is vacuously true if the set I is empty. Thus, if I
is empty, then

(# of all s ∈ U such that s ∈ Ai for all i ∈ I) = (# of all s ∈ U) = |U| .
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lemma2:

Proposition 2.7.9 (simple cancellation lemma). Let S be a finite set. Then,

∑
I⊆S

(−1)|I| = [S = ∅] .

Example 2.7.10. The subsets of {1, 2} are ∅, {1}, {2} and {1, 2}. Thus, ap-
plying Proposition 2.7.9 to S = {1, 2}, we find

(−1)|∅|︸ ︷︷ ︸
=1

+ (−1)|{1}|︸ ︷︷ ︸
=−1

+ (−1)|{2}|︸ ︷︷ ︸
=−1

+ (−1)|{1,2}|︸ ︷︷ ︸
=1

= [{1, 2} = ∅] .

Indeed, both sides of this equality are 0 (the left hand side because the ad-
dends cancel; the right hand side because {1, 2} ̸= ∅).

Proof of Proposition 2.7.9. The case S = ∅ is clear (since 1 = 1). So we WLOG
assume that S ̸= ∅. Therefore, there exists some g ∈ S. Pick such a g.

A subset I of S will be called green if it satisfies g ∈ I, and will be called red
otherwise. Then, there is a bijection

{green subsets} → {red subsets} ,
J 7→ J \ {g} ,

whose inverse map is

{red subsets} → {green subsets} ,
J 7→ J ∪ {g} .

This bijection allows us to pair up each green subset of S with a red subset of S
(namely, each green subset J gets paired up with the red subset J \ {g}). In each
pair thus obtained, the sizes of the two subsets differ by 1, so the corresponding
(−1)|I| terms add up to 0. Thus, we have paired up all the addends in the sum
∑

I⊆S
(−1)|I| in such a way that each pair sums to 0 (since the two addends in the

pair cancel each other). Therefore, the whole sum is 0. But [S = ∅] is also 0,
since S ̸= ∅. So we obtain ∑

I⊆S
(−1)|I| = [S = ∅], as desired.

(See the 2019 notes (Proposition 2.9.10) for a formalized version of this proof,
as well as for another proof.)

The reason for the word “simple” in the name of Proposition 2.7.9 is the
existence of the following, slightly more general, cancellation lemma:

2We again use the Iverson bracket notation.
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Proposition 2.7.11 (cancellation lemma). Let S be a finite set. Let T be a
subset of S. Then,

∑
I⊆S;
T⊆I

(−1)|I| = (−1)|T| [S = T] .

Proof. See Exercise 2.9.1 in the 2019 notes.

For instance, if S = [4] and T = [2], then Proposition 2.7.11 is saying that

(−1)|{1,2}| + (−1)|{1,2,3}| + (−1)|{1,2,4}| + (−1)|{1,2,3,4}| = 0.

2.7.3. The proofs

We are now ready to prove the Principle of Inclusion and Exclusion in all its
forms. We begin with the last form:

Theorem 2.7.12 (Theorem 2.7.8, repeated for convenience). Let n ∈ N. Let U
be a finite set. Let A1, A2, . . . , An be n subsets of U. Then,

(# of all s ∈ U such that s /∈ Ai for all i ∈ [n])

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U such that s ∈ Ai for all i ∈ I) .

Proof. This will involve some set juggling. To gain a bit of useful intuition, you
may want to anthropomorphize some of the sets and elements involved. For
instance, you can think

• of U as a university, defined (somewhat reductionistically) as a set of
students s ∈ U;

• of A1, A2, . . . , An as associations, each of which contains some students;

• of a subset I ⊆ [n] as a choice of associations (none if I is empty, or all of
them if I = [n]) to be intersected.

The claim of Theorem 2.7.8 then can be rewritten as follows:

(# of all students s that belong to no association)

= ∑
I⊆[n]

(−1)|I| (# of all s ∈ U that belong to all associations Ai with i ∈ I) .

We shall prove this by the following strategy: We fix a single student s ∈ U,
and we compare its contribution to the # on the LHS with its contribution to
the sum on the RHS.
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The rigorous way to do this is to recall the roll-call principle (Lecture 11,
Proposition 1.6.3 (b)). This principle yields

(# of all s ∈ U such that s /∈ Ai for all i ∈ [n]) = ∑
s∈U

[s /∈ Ai for all i ∈ [n]] .

(7)
For the same reason, if I ⊆ [n], then

(# of all s ∈ U such that s ∈ Ai for all i ∈ I) = ∑
s∈U

[s ∈ Ai for all i ∈ I] .

Thus,

∑
I⊆[n]

(−1)|I| (# of all s ∈ U such that s ∈ Ai for all i ∈ I)︸ ︷︷ ︸
= ∑

s∈U
[s∈Ai for all i∈I]

= ∑
I⊆[n]

(−1)|I| ∑
s∈U

[s ∈ Ai for all i ∈ I]

= ∑
I⊆[n]

∑
s∈U

(−1)|I| [s ∈ Ai for all i ∈ I]

= ∑
s∈U

∑
I⊆[n]

(−1)|I| [s ∈ Ai for all i ∈ I] (8)

(here, we have interchanged the two summation signs). Let us now simplify
the inner sum here.

We fix a student s ∈ U, and we let

Ps := {i ∈ [n] | s ∈ Ai} .

We shall refer to Ps as the “passport of s”, as it records which of our n associ-
ations A1, A2, . . . , An the student s belongs to. Hence, a subset I of [n] satisfies
“s ∈ Ai for all i ∈ I” if and only if it satisfies I ⊆ Ps. Therefore, for any subset
I of [n], we have

[s ∈ Ai for all i ∈ I] = [I ⊆ Ps]
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(since equivalent statements have the same truth value). Therefore,

∑
I⊆[n]

(−1)|I| [s ∈ Ai for all i ∈ I]︸ ︷︷ ︸
=[I⊆Ps]

= ∑
I⊆[n]

(−1)|I| [I ⊆ Ps]

= ∑
I⊆[n];
I⊆Ps

(−1)|I| [I ⊆ Ps]︸ ︷︷ ︸
=1

+ ∑
I⊆[n];
I ̸⊆Ps

(−1)|I| [I ⊆ Ps]︸ ︷︷ ︸
=0 here, we have split our sum into two parts:

one containing the addends for which I ⊆ Ps,
and one containing all the other addends


= ∑

I⊆[n];
I⊆Ps

(−1)|I| + ∑
I⊆[n];
I ̸⊆Ps

(−1)|I| 0

︸ ︷︷ ︸
=0

= ∑
I⊆[n];
I⊆Ps

(−1)|I|

= ∑
I⊆Ps

(−1)|I|
(

since the subsets I of [n] satisfying I ⊆ Ps
are precisely the subsets of Ps (because Ps ⊆ [n] )

)
= [Ps = ∅] (by Proposition 2.7.9, applied to S = Ps)

= [s /∈ Ai for each i ∈ [n]] (9)

(because the passport Ps of s is empty if and only if s belongs to no association,
i.e., if and only if we have s /∈ Ai for each i ∈ [n]).

Forget that we fixed s. We have thus proved (9) for each s ∈ U. Now, (8)
becomes

∑
I⊆[n]

(−1)|I| (# of all s ∈ U such that s ∈ Ai for all i ∈ I)

= ∑
s∈U

∑
I⊆[n]

(−1)|I| [s ∈ Ai for all i ∈ I]︸ ︷︷ ︸
=[s/∈Ai for each i∈[n]]

(by (9))

= ∑
s∈U

[s /∈ Ai for each i ∈ [n]]

= (# of all s ∈ U such that s /∈ Ai for each i ∈ [n]) (by (7)) .

This proves Theorem 2.7.8.

As we said, the four versions of the Principle of Inclusion and Exclusion are
restatements of one another, so that, having proved one of them, we can easily
derive the other three:
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Proof of Theorem 2.7.6. Theorem 2.7.6 is equivalent to Theorem 2.7.8, since we
have

(# of all s ∈ U such that s /∈ Ai for all i ∈ [n])
= (# of all s ∈ U such that s /∈ A1 ∪ A2 ∪ · · · ∪ An)

= (# of all s ∈ U \ (A1 ∪ A2 ∪ · · · ∪ An))

= |U \ (A1 ∪ A2 ∪ · · · ∪ An)|

and since each I ⊆ [n] satisfies3

(# of all s ∈ U such that s ∈ Ai for all i ∈ I)

=

(
# of all s ∈ U such that s ∈

⋂
i∈I

Ai

)

=

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
(

since
⋂
i∈I

Ai ⊆ U

)
.

Proof of Theorem 2.7.5. Let U := A1 ∪ A2 ∪ · · · ∪ An. Then, U is a finite set, and
A1, A2, . . . , An are n subsets of U. Hence, Theorem 2.7.6 yields

|U \ (A1 ∪ A2 ∪ · · · ∪ An)| = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

However, the left hand side of this equality is 0 (since U \ (A1 ∪ A2 ∪ · · · ∪ An) =
∅). Thus, this equality rewrites as

0 = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (−1)|∅|︸ ︷︷ ︸
=(−1)0=1

∣∣∣∣∣∣∣∣∣∣∣∣∣
⋂
i∈∅

Ai︸ ︷︷ ︸
=U

(by definition)

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ ∑

I⊆[n];
I ̸=∅

(−1)|I|︸ ︷︷ ︸
=−(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
(here, we have split off the addend for I = ∅ from the sum)

= |U|+ ∑
I⊆[n];
I ̸=∅

(
− (−1)|I|−1

) ∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = |U| − ∑
I⊆[n];
I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

In other words,

|U| = ∑
I⊆[n];
I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

3To be fully precise, this argument works only for nonempty I. If I is empty, a separate (even
more trivial) argument is needed here.
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In view of U = A1 ∪ A2 ∪ · · · ∪ An, this is precisely the claim of Theorem
2.7.5.

Proof of Theorem 2.7.1. Proposition 2.7.3 shows that the right hand sides of (4)
and (5) are identical. Hence, (4) follows from (5). Thus, Theorem 2.7.1 is proven.
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