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Math 222 Fall 2022, Lecture 17: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.4. Counting maps (cont’d)

2.4.5. Surjective maps (cont’d)

Last time, we introduced the notation sur (m, n) for the # of surjections1 from
[m] to [n]. We noticed that this is also the # of surjective maps from any given
m-element set to any given n-element set.

Let us now compute this number. We shall do this in two different ways,
obtaining two different recursive formulas.

1st approach: Fix m ∈ N and a positive integer n > 0. Thus, n ∈ [n].
Given a surjective map f : [m] → [n], we let J f be the set of all i ∈ [m] such

that f (i) = n. This J f is a nonempty subset of [m] (nonempty because f is
surjective). Thus, by the sum rule, we have

(# of all surjective maps f : [m] → [n])

= ∑
J⊆[m];
J ̸=∅

(
# of all surjective maps f : [m] → [n] such that J f = J

)
.

Let us now compute the addends in the sum on the RHS.
Fix a nonempty subset J of [m]. What is the # of all surjective maps f : [m] →

[n] such that J f = J ? Imagine trying to construct such a map f . Its values f (j)
on all elements j ∈ J are already pre-determined, since each j ∈ J has to satisfy
f (j) = n (since j ∈ J = J f ). Its remaining values (i.e., its values f (j) with j /∈ J)
must belong to [n − 1] (indeed, they cannot be n, since j /∈ J = J f ). Thus, f has
to send each element of [m] \ J to some element of [n − 1].

Hence, picking a map f : [m] → [n] such that J f = J is tantamount to picking
a map from [m] \ J to [n − 1]. Moreover, if we want f to be surjective, we need to
ensure that the latter map from [m] \ J to [n − 1] is surjective (since any element
of [n − 1] that it does not take as a value will not be a value of f either).

Therefore, in order to construct a surjective map f : [m] → [n] such that
J f = J, all we need to do is to pick a surjective map from [m] \ J to [n − 1] (and
then to set f (j) = n for all j ∈ J). The # of ways to do this is sur (m − |J| , n − 1),
since [m] \ J is an (m − |J|)-element set.

1“Surjection” means “surjective map”.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Thus, we obtain(
# of all surjective maps f : [m] → [n] such that J f = J

)
= sur (m − |J| , n − 1) . (1)

Forget that we fixed J. We have proved this equality (1) for every nonempty
subset J of [m]. Now let’s pick up the above computation again:

(# of all surjective maps f : [m] → [n])

= ∑
J⊆[m];
J ̸=∅

(
# of all surjective maps f : [m] → [n] such that J f = J

)︸ ︷︷ ︸
=sur(m−|J|, n−1)

(by (1))

= ∑
J⊆[m];
J ̸=∅

sur (m − |J| , n − 1)

=
m

∑
k=1

∑
J⊆[m];
J ̸=∅;
|J|=k

sur

m − |J|︸︷︷︸
=k

, n − 1




here, we have split up our sum
by the value |J| , which is

always ∈ {1, 2, . . . , m}
because J is nonempty


=

m

∑
k=1

∑
J⊆[m];
J ̸=∅;
|J|=k

sur (m − k, n − 1)

︸ ︷︷ ︸
=(# of all nonempty J⊆[m] satisfying |J|=k)·sur(m−k, n−1)

=
m

∑
k=1

(# of all nonempty J ⊆ [m] satisfying |J| = k)︸ ︷︷ ︸
=(# of all J⊆[m] satisfying |J|=k)

(since k>0 ensures that any k-element set
is automatically nonempty)

· sur (m − k, n − 1)

=
m

∑
k=1

(# of all J ⊆ [m] satisfying |J| = k)︸ ︷︷ ︸
=(# of all k-element subsets of [m])=

(
m
k

)
(by the combinatorial interpretation of BCs)

· sur (m − k, n − 1)

=
m

∑
k=1

(
m
k

)
sur (m − k, n − 1) .
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Since the LHS of this equality is sur (m, n), we can rewrite this as

sur (m, n) =
m

∑
k=1

(
m
k

)
sur (m − k, n − 1)

=
m−1

∑
j=0

(
m

m − j

)
︸ ︷︷ ︸
=

(
m
j

)
(by the symmetry

of Pascal’s triangle)

sur (j, n − 1)
(

here, we substituted m − j
for k in the sum

)

=
m−1

∑
j=0

(
m
j

)
sur (j, n − 1) .

Let’s state this as a proposition:

Proposition 2.4.11. Let m ∈ N, and let n be a positive integer. Then,

sur (m, n) =
m

∑
k=1

(
m
k

)
sur (m − k, n − 1) =

m−1

∑
j=0

(
m
j

)
sur (j, n − 1) .

This already gives a reasonably fast recursive way for computing sur (m, n).
But we can do better, by taking a different approach.

2nd approach: Fix two positive integers m and n. Let us classify the surjections
(= surjective maps) f : [m] → [n] according to the value f (m).

A surjection f : [m] → [n] will be called

• red if f (m) = f (i) for some i ∈ [m − 1];

• green if it is not red (i.e., if f (m) ̸= f (i) for all i ∈ [m − 1]).

For instance, the surjection f : [4] → [3] whose one-line notation2 is (2, 1, 3, 2)
is red (since f (4) = 2 is also f (1)), but the surjection f : [4] → [3] whose
one-line notation is (2, 1, 2, 3) is not (since f (4) = 3 is neither f (1) nor f (2)
nor f (3)).

Here is another way to think of “red” and “green”: If we restrict a surjection
f : [m] → [n] to the subset [m − 1] (that is, if we remove the value f (m)), then
we obtain a map from [m − 1] to [n] which may or may not be surjective. If it is,
then f is red; if it is not, then f is green. In other words, f is green if and only if
the value f (m) is “load-bearing” for the surjectivity of f . Note that if the map

2Recall that the one-line notation of a map f : [4] → [3] is the 4-tuple
( f (1) , f (2) , f (3) , f (4)).
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f is green, then its restriction to [m − 1] will not be a surjection from [m − 1] to
[n], but it will be a surjection from [m] to [n] \ { f (m)} (since all elements of [n]
except for f (m) will still be taken as values).

Each surjection f : [m] → [n] is either red or green (but not both). Hence, by
the sum rule, we have

(# of surjections f : [m] → [n])
= (# of red surjections f : [m] → [n]) + (# of green surjections f : [m] → [n]) .

Time to compute the addends on the RHS.

Here is a way to construct a red surjection f : [m] → [n]:

• First, we choose the value f (m). There are n options for this, since f (m)
can be any element of [n].

• Then, we choose the remaining values f (1) , f (2) , . . . , f (m − 1). This is
tantamount to choosing a surjection from [m − 1] to [n] (since the map f
should be red, so that even with the value f (m) removed it should still
be surjective onto [n]). Thus, there are sur (m − 1, n) options for this.

By the dependent product rule3, the total # of possibilities to make these
choices is n · sur (m − 1, n). Thus,

(# of red surjections f : [m] → [n]) = n · sur (m − 1, n) .

Here is a way to construct a green surjection f : [m] → [n]:

• First, we choose the value f (m). There are n options for this.

• Then, we choose the remaining values f (1) , f (2) , . . . , f (m − 1). This is
tantamount to choosing a surjection from [m − 1] to [n] \ { f (m)} (since f
has to be green, so that its value f (m) cannot be taken by f on any input
other than m, but all the other elements of [n] still appear as values).
Thus, there are sur (m − 1, n − 1) options for this (since [n] \ { f (m)} is
an (n − 1)-element set).

Applying the dependent product rule again4, we see that

(# of green surjections f : [m] → [n]) = n · sur (m − 1, n − 1) .

3or by the usual product rule
4This time, we do need the dependent product rule. The usual product rule would not help,

since the options for the values f (1) , f (2) , . . . , f (m − 1) depend on the choice of f (m).
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Altogether, we now have

(# of surjections f : [m] → [n])
= (# of red surjections f : [m] → [n])︸ ︷︷ ︸

=n·sur(m−1, n)

+ (# of green surjections f : [m] → [n])︸ ︷︷ ︸
=n·sur(m−1, n−1)

= n · sur (m − 1, n) + n · sur (m − 1, n − 1)
= n · (sur (m − 1, n) + sur (m − 1, n − 1)) .

Since the LHS of this is sur (m, n), we can rewrite this as follows:

Proposition 2.4.12. Let m and n be positive integers. Then,

sur (m, n) = n · (sur (m − 1, n) + sur (m − 1, n − 1)) .

This recursive equation (which is very similar to Pascal’s recurrence for BCs,
except for the n factor) makes it easy to fill in a table of sur (m, n) numbers:

n=0
↙

n=1
↙

n=2
↙

n=3
↙

m = 0→ 1 0 0 0
m = 1→ 0 1 0 0 0
m = 2→ 0 1 2 0 0
m = 3→ 0 1 6 6 0 0
m = 4→ 0 1 14 36 24 0
m = 5→ 0 1 30 150 240 120 0
m = 6→ 0 1 62 540 1560 1800 720
m = 7→ 0 1 126 1806 8400 16800 15120 5040

We also observe the following:

Corollary 2.4.13. (a) We have sur (n, n) = n! for each n ∈ N.
(b) The integer sur (m, n) is divisible by n! for each m, n ∈ N.

Proof. Both parts follow easily by induction using Proposition 2.4.12. (See
Corollary 2.4.15 and Exercise 2.4.3 in the 2019 notes for details.)

Remark 2.4.14. Let m, n ∈ N. The number
sur (m, n)

n!
(which, by Corollary

2.4.13 (b), is an integer) is often denoted by
{

m
n

}
, and is called a Stirling

number of the 2nd kind. We will eventually learn more about these num-
bers.

So far we have seen recursive equations for sur (m, n). What about explicit
formulas? Here is the best one:
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Theorem 2.4.15. Let m, n ∈ N. Then,

sur (m, n) =
n

∑
j=0

(−1)n−j
(

n
j

)
jm.

We will prove this quite soon (Lecture 20, Example 1). (See the 2019 notes for
an elementary proof using the above recurrences.)

2.5. Sums of powers

Recall that I teased you with a formula for 1m + 2m + · · · + nm using these
sur (m, n) numbers a while ago (Lecture 5, Theorem 1.2.7). We shall now prove
it. First, a much more fundamental theorem:

Theorem 2.5.1. Let k ∈ N and m ∈ N. Then,

km =
m

∑
i=0

sur (m, i) ·
(

k
i

)
.

Proof. Double counting.
Specifically, let us double-count the maps f : [m] → [k].
On the one hand, the # of such maps is clearly km (by Theorem 2.4.1 in Lecture

16).
On the other hand, every map f : [m] → [k] has a well-defined range (i.e., set
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of values). This range is a subset of [k]. Thus, by the sum rule, we have

(# of maps f : [m] → [k])

= ∑
I⊆[k]

(# of maps f : [m] → [k] whose range is I)︸ ︷︷ ︸
=(# of surjections from [m] to I)

(since the maps from [m] to [k] whose range is I
are the same as the surjections from [m] to I)

= ∑
I⊆[k]

(# of surjections from [m] to I)︸ ︷︷ ︸
=sur(m,|I|)

= ∑
I⊆[k]

sur (m, |I|) =
k

∑
i=0

∑
I⊆[k];
|I|=i

sur

m, |I|︸︷︷︸
=i


(here, we have split our sum according to the value of |I|)

=
k

∑
i=0

∑
I⊆[k];
|I|=i

sur (m, i)

︸ ︷︷ ︸
=

(
k
i

)
sur(m,i)

(since the # of addends in this sum
is the # of i-element subsets of [k],

but this # is known to be

(
k
i

)
)

=
k

∑
i=0

(
k
i

)
sur (m, i) =

k

∑
i=0

sur (m, i) ·
(

k
i

)
.

Comparing the two results, we obtain

km =
k

∑
i=0

sur (m, i) ·
(

k
i

)
. (2)

This is almost precisely the claim of Theorem 2.5.1, except that the sum ranges
over all i ∈ {0, 1, . . . , k} instead of over all i ∈ {0, 1, . . . , m}. Fortunately, this

little difference is easy to bridge: We have
(

k
i

)
= 0 whenever i > k (since

k ∈ N). Thus, the sum
k
∑

i=0
sur (m, i) ·

(
k
i

)
does not change if we extend its

range from i ∈ {0, 1, . . . , k} to all i ∈ N. Hence,

k

∑
i=0

sur (m, i) ·
(

k
i

)
= ∑

i∈N

sur (m, i) ·
(

k
i

)
. (3)

However, we also recall (from Lecture 16, Proposition 2.4.10 (f)) that

sur (m, i) = 0 whenever m < i. (4)
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Thus, the sum
m
∑

i=0
sur (m, i) ·

(
k
i

)
does not change if we extend its range from

i ∈ {0, 1, . . . , m} to all i ∈ N. Hence,

m

∑
i=0

sur (m, i) ·
(

k
i

)
= ∑

i∈N

sur (m, i) ·
(

k
i

)
.

Comparing this with (3), we find

k

∑
i=0

sur (m, i) ·
(

k
i

)
=

m

∑
i=0

sur (m, i) ·
(

k
i

)
.

Thus, we can rewrite (2) as

km =
m

∑
i=0

sur (m, i) ·
(

k
i

)
.

This proves Theorem 2.5.1.

Using the polynomial identity trick, we can generalize Theorem 2.5.1, replac-
ing “k ∈ N” by “k ∈ R”:

Theorem 2.5.2. Let k ∈ R and m ∈ N. Then,

km =
m

∑
i=0

sur (m, i) ·
(

k
i

)
.

Proof. Forget that we fixed k. Define the following two polynomials (in one
indeterminate X, with real coefficients):

P := Xm and Q :=
m

∑
i=0

sur (m, i) ·
(

X
i

)
.

Then, Theorem 2.5.1 says that P (k) = Q (k) for all k ∈ N. In other words,
P (x) = Q (x) for all x ∈ N. Thus, by the polynomial identity trick (Lecture 14,
Corollary 2.2.5), we have P = Q, so that P (k) = Q (k) for all k ∈ R. But this is
precisely the claim of Theorem 2.5.2.

Note, however, that we cannot extend Theorem 2.5.2 to m ∈ R, already be-
cause km is not a polynomial in m for fixed k (but also because sur (m, i) is not
defined for m /∈ N, and because m appears as a summation bound on the right
hand side).

Now, we can prove our formula for sums of powers (Lecture 5, Theorem
1.2.7). Let us first derive a minor variation of it:
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Theorem 2.5.3. Let n ∈ N and m ∈ N. Then,

n

∑
k=0

km =
m

∑
i=0

sur (m, i) ·
(

n + 1
i + 1

)
.

Proof. We have

n

∑
k=0

km︸︷︷︸
=

m
∑

i=0
sur(m,i)·

(
k
i

)
(by Theorem 2.5.1)

=
n

∑
k=0

m

∑
i=0

sur (m, i) ·
(

k
i

)

=
m

∑
i=0

n

∑
k=0

sur (m, i) ·
(

k
i

) (
here, we interchanged
the summation signs

)
=

m

∑
i=0

sur (m, i) ·
n

∑
k=0

(
k
i

)
︸ ︷︷ ︸

=

(
0
i

)
+

(
1
i

)
+···+

(
n
i

)
=

(
n + 1
i + 1

)
(by the hockey-stick identity
(Lecture 7, Theorem 1.3.24))

=
m

∑
i=0

sur (m, i) ·
(

n + 1
i + 1

)
, qed.

When m > 0, the sum
n
∑

k=0
km can be rewritten as

n
∑

k=1
km = 1m + 2m + · · ·+ nm,

so the claim of Theorem 2.5.3 becomes

1m + 2m + · · ·+ nm =
m

∑
i=0

sur (m, i) ·
(

n + 1
i + 1

)
.

This is precisely the claim of Theorem 1.2.7 in Lecture 5, just with the variable
k renamed as m.
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