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Math 222 Fall 2022, Lecture 16: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.4. Counting maps

We now return to the problem of counting maps. This time, we will focus on
maps with special properties.

2.4.1. All maps

In Theorem 1.5.6 (Lecture 11), we showed that (# of maps from A to B) = |B||A|

for any two finite sets A and B. In other words:

Theorem 2.4.1. Let m, n ∈ N. Let A be an m-element set. Let B be an n-
element set. Then,

(# of maps from A to B) = nm.

2.4.2. Injective maps

Recall that a map is injective if and only if it sends distinct elements to distinct
values.

How many injective maps are there from a set A to a set B ? To state the
answer, we introduce a new notation:

Definition 2.4.2. Let n ∈ R and k ∈ N. Then, the falling factorial nk is
defined by

nk = n (n − 1) (n − 2) · · · (n − k + 1) =
k−1

∏
i=0

(n − i) .

The falling factorial is also known as the lower factorial or the descending
factorial. Here are some simple properties:

Proposition 2.4.3. Let n ∈ R. Then:
(a) We have n0 = 1.
(b) We have n1 = n.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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(c) We have nk = k! ·
(

n
k

)
for any k ∈ N.

(d) If n ∈ N, then nn = n!.
(e) If n ∈ N, and if k ∈ N satisfies k > n, then nk = 0.
(f) We have nk · (n − k) = nk+1 for any k ∈ N.

Proof. All of these are easy. (See Proposition 2.4.3 in the 2019 notes for details.)

Now, we can count injective maps:

Theorem 2.4.4. Let m, n ∈ N. Let A be an m-element set. Let B be an n-
element set. Then,

(# of injective maps from A to B) = nm.

Informal proof of Theorem 2.4.4. Let a1, a2, . . . , am be the m elements of A (listed
without repetition). Then, a map f : A → B is uniquely determined by its val-
ues f (a1) , f (a2) , . . . , f (am), and can be constructed by choosing these values
arbitrarily, one by one. For this map f to be injective, these values have to be
distinct. Thus, when choosing its values, we need to ensure that

f (a1) ∈ B;
f (a2) ∈ B \ { f (a1)} ;
f (a3) ∈ B \ { f (a1) , f (a2)} ;
f (a4) ∈ B \ { f (a1) , f (a2) , f (a3)} ;

. . . .

This means that we can construct an injective map f : A → B by choosing its m
values f (a1) , f (a2) , . . . , f (am) one by one. How many options do we have in
this m-step procedure?

• For f (a1), we have n options, since all n elements of B qualify.

• For f (a2), we have n − 1 options, since all n elements of B except for the
already-chosen value f (a1) qualify.

• For f (a3), we have n − 2 options, since all n elements of B except for the
two already-chosen values f (a1) and f (a2) qualify (and since these two
values f (a1) and f (a2) are distinct).

• For f (a4), we have n − 3 options, since all n elements of B except for the
three already-chosen values f (a1), f (a2) and f (a3) qualify (and again
since these three values are distinct).
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• · · · .

In total, we thus have n (n − 1) (n − 2) · · · (n − m + 1) many possibilities.
Thus, by the dependent product rule, we get

(# of injective maps f : A → B) = n (n − 1) (n − 2) · · · (n − m + 1) = nm.

This proves Theorem 2.4.4.

How can we make this proof rigorous? We could formalize the dependent
product rule and the above m-step procedure for constructing an injective map
f : A → B, but it is easier to proceed differently, using induction to “pack” the
first m − 1 steps of the m-step procedure into a single big step. This leads to the
following more formal proof:

Formal proof of Theorem 2.4.4 (sketched). Forget that we fixed m, n, A and B. If A
and B are any two sets, then we let Inj (A, B) denote the set of all injective maps
from A to B. Thus, we must prove that

|Inj (A, B)| ?
= nm (1)

for any m, n ∈ N and any m-element set A and any n-element set B.
We shall prove (1) by induction on m:
Base case: The equality (1) holds for m = 0. (Indeed, there is only one map

from ∅ to B, and this map is injective; thus, |Inj (∅, B)| = 1 = n0.)
Induction step: Let m be a positive integer. Let us assume that (1) holds for

m − 1 instead of m. Let us now prove (1) for m.
Thus, let A be an m-element set, and let B be an n-element set. We want to

prove that

|Inj (A, B)| ?
= nm.

The set A is nonempty, since its size is |A| = m > 0. So we can pick an
element a ∈ A. Let us pick one and keep it fixed from now on.

Then, A \ {a} is an (m − 1)-element set. Hence, by the induction hypothesis,
we have

|Inj (A \ {a} , B)| = nm−1.

It remains to connect Inj (A, B) with Inj (A \ {a} , B).
The easiest way to do so is by restriction: For any map f : A → B, we can

consider its restriction f0 to the subset A \ {a}. This restriction is simply the
map that sends each x ∈ A \ {a} to f (x). In other words, the restriction f0 is
obtained from f by “forgetting” the value f (a).
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For example,

if f =

a

b

c

A

1

2

3

4

B

f

,

then f0 =

b

c

A \ {a}

1

2

3

4

B

f0

.

Clearly, if a map f : A → B is injective, then so is its restriction f0. In other
words, for every f ∈ Inj (A, B), we have f0 ∈ Inj (A \ {a} , B).

This allows us to “classify” maps f ∈ Inj (A, B) according to their restriction.
In particular, by the sum rule,

(# of all f ∈ Inj (A, B))

= ∑
g∈Inj(A\{a}, B)

(# of all f ∈ Inj (A, B) such that f0 = g) . (2)

We shall now try to compute the addends of the sum on the RHS.
Indeed, fix an injective map g ∈ Inj (A \ {a} , B). How many injective maps

f ∈ Inj (A, B) have restriction f0 = g ?
We let Im g be the set of all values of g. This is also known as the image

(or range) of the map g, and can also be denoted g (A \ {a}). Since the map g
is injective, all its values are distinct, so that it has exactly m − 1 many values
(since |A \ {a}| = m − 1). In other words, |Im g| = m − 1. Since Im g is a subset
of B, we have |B \ Im g| = |B|︸︷︷︸

=n

− |Im g|︸ ︷︷ ︸
=m−1

= n − (m − 1) = n − m + 1.

Clearly, a map f ∈ Inj (A, B) has restriction f0 = g if and only if its values on
all elements of A \ {a} coincide with the corresponding values of g. Thus, the
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only freedom we have when we choose such a map is the freedom of choosing
its remaining value f (a). In order for f to be injective, this value f (a) must
be distinct from all the existing values, i.e., distinct from all the values of g. In
other words, this value f (a) must come from the set B \ Im g. This leaves us
n − m + 1 options, since |B \ Im g| = n − m + 1.

Thus, we have convinced ourselves that an injective map f ∈ Inj (A, B) that
has restriction f0 = g can be chosen in n − m + 1 many ways. Hence,

(# of all f ∈ Inj (A, B) such that f0 = g) = n − m + 1. (3)

(If you want this argument formalized further, you can rephrase it as an appli-
cation of the bijection principle1.)

We have proved (3) for every g ∈ Inj (A \ {a} , B). Therefore, (2) becomes

(# of all f ∈ Inj (A, B))

= ∑
g∈Inj(A\{a}, B)

(# of all f ∈ Inj (A, B) such that f0 = g)︸ ︷︷ ︸
=n−m+1

(by (3))

= ∑
g∈Inj(A\{a}, B)

(n − m + 1) = |Inj (A \ {a} , B)|︸ ︷︷ ︸
=nm−1

=n(n−1)(n−2)···(n−m+2)

· (n − m + 1)

= n (n − 1) (n − 2) · · · (n − m + 2) · (n − m + 1)
= n (n − 1) (n − 2) · · · (n − m + 1) = nm.

In other words, |Inj (A, B)| = nm. This completes the induction step, and thus
(1) is proved. As we explained above, this proves Theorem 2.4.4.

2.4.3. The pigeonhole principles

The pigeonhole principles are two fundamental facts about maps between fi-
nite sets. We shall state them without proof here, since they are common-sense.
(A skeptical reader can find proofs in §2.4.3 of the 2019 notes.) We begin with
the pigeonhole principle for injections:

1Namely: We argue that the map

{ f ∈ Inj (A, B) | f0 = g} → B \ Im g,
f 7→ f (a)

(that is, the map that assigns to each injective map f ∈ Inj (A, B) satisfying f0 = g its value
f (a)) is a bijection. (The proof of this is elementary set-theoretical reasoning and can be
found in §2.4.2 of the 2019 notes.) Thus, the bijection principle yields

|{ f ∈ Inj (A, B) | f0 = g}| = |B \ Im g| = n − m + 1.

In other words, (# of all f ∈ Inj (A, B) such that f0 = g) = n − m + 1. This proves (3).
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Theorem 2.4.5 (Pigeonhole Principle for Injections). Let A and B be two finite
sets. Let f : A → B be an injective map. Then:

(a) We have |A| ≤ |B|.
(b) If |A| = |B|, then f is bijective.

Somewhat informally, this can be restated as follows:

(a) If m pigeons are distributed in n pigeonholes, and no two pigeons
share a hole2, then m ≤ n.

(b) If n pigeons are distributed in n pigeonholes, and no two pigeons
share a hole, then each hole has a pigeon in it3.

Next comes a “dual” variant of Theorem 2.4.5 – the pigeonhole principle for
surjections:

Theorem 2.4.6 (Pigeonhole Principle for Surjections). Let A and B be two
finite sets. Let f : A → B be a surjective map. Then:

(a) We have |A| ≥ |B|.
(b) If |A| = |B|, then f is bijective.

Somewhat informally, this can be restated as follows:

(a) If m pigeons are distributed in n pigeonholes, and no hole is
empty, then m ≥ n.

(b) If n pigeons are distributed in n pigeonholes, and no hole is
empty, then no two pigeons share a hole.

Remark 2.4.7. If we allow the sets A and B to be infinite, then parts (a) of
both pigeonhole principles (Theorem 2.4.5 and Theorem 2.4.6) remain valid
(as long as we understand |A| and |B| to be cardinalities), but parts (b) both
become false. (See Remark 2.4.8 in the 2019 notes for counterexamples.)

The pigeonhole principles might look like the most trivial results in mathe-
matics, but they have a number of surprising applications. See [20f, Chapter
6], [21f-2], [Bona17, Chapter 1], [Engel98, Chapter 4], [AndDos10, Chapter 20]
or [GelAnd17, §1.3] for some applications (or search for “Pigeonhole Principle”
anywhere on the internet).

2i.e., the map that sends each pigeon to its hole is injective
3i.e., the map that sends each pigeon to its hole is surjective
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2.4.4. Permutations

Theorem 1.7.2 in Lecture 12 says that if X is an n-element set (for n ∈ N), then

(# of permutations of X) = n!.

We can now formally prove this:

Proof of Theorem 1.7.2. The set X is finite. Thus, by the Pigeonhole Principle for
Injections, every injective map f : X → X is bijective, thus is a permutation of
X. Conversely, every permutation of X is bijective, thus injective. Therefore,

{permutations of X} = {injective maps from X to X} .

Hence,

(# of permutations of X) = (# of injective maps from X to X)

= nn (by Theorem 2.4.4)
= n! (by Proposition 2.4.3 (d)) ,

qed.

2.4.5. Surjective maps

So much for counting injective maps. Counting surjective maps is harder. The
numbers will not have an explicit formula as nice as nm or nm, so let us give
them a name:

Definition 2.4.8. Let m ∈ N and n ∈ N. Then, sur (m, n) shall mean the # of
surjective maps from [m] to [n].

For instance, sur (3, 2) = 6, because the surjective maps from [3] to [2] (writ-
ten in one-line notation) are

(1, 1, 2) , (1, 2, 1) , (1, 2, 2) , (2, 1, 1) , (2, 1, 2) , (2, 2, 1) .

(We have previously defined one-line notation only for permutations of [n], but
we can similarly define it for maps from [m] to [n].)

We begin our study of surjective maps with a quasi-obvious fact:

Proposition 2.4.9. Let m, n ∈ N. Let A be an m-element set. Let B be an
n-element set. Then,

(# of surjective maps from A to B) = sur (m, n) .
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Proof. Apply the isomorphism principle. (That is, we relabel the elements of A
as 1, 2, . . . , m, and we relabel the elements of B as 1, 2, . . . , n. The # of surjective
maps from A to B clearly does not change when we do this. Hence, the # of
surjective maps from A to B equals the # of surjective maps from [m] to [n]; but
the latter # is sur (m, n).)

The problem of computing sur (m, n) is not that easy, so we approach it by
first finding some particular values (again using the Iverson bracket notation):

Proposition 2.4.10. (a) We have sur (m, 0) = [m = 0] for all m ∈ N.
(b) We have sur (m, 1) = [m ̸= 0] = 1 − [m = 0] for all m ∈ N.
(c) We have sur (m, 2) = 2m − 2 + [m = 0] for all m ∈ N.
(d) We have sur (0, n) = [n = 0] for all n ∈ N.
(e) We have sur (1, n) = [n = 1] for all n ∈ N.
(f) We have sur (m, n) = 0 whenever m < n.

Proof. Try it yourself (and make sure your reasoning accounts for the empty
set!). For a detailed proof, see Proposition 2.4.12 in the 2019 notes.
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