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Math 222 Fall 2022, Lecture 15: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.3. The Chu–Vandermonde identity

2.3.1. Statement and first proof

Now we shall prove an identity already stated back in the Introduction:

Theorem 2.3.1 (The Chu–Vandermonde identity, aka the Vandermonde con-
volution). Let n ∈ N and x, y ∈ R. Then,(

x + y
n

)
=

n

∑
k=0

(
x
k

)(
y

n − k

)
(1)

= ∑
k

(
x
k

)(
y

n − k

)
. (2)

Here, the summation sign “∑
k

” on the right hand side means a sum over

all k ∈ Z. (We are thus implicitly claiming that this sum over all k ∈ Z is
well-defined, i.e., that it has only finitely many nonzero addends.)

Remark 2.3.2. Before we prove this theorem, let us explain why the right
hand sides of (1) and (2) are equal, i.e., why we have

n

∑
k=0

(
x
k

)(
y

n − k

)
= ∑

k

(
x
k

)(
y

n − k

)
. (3)

Indeed, these two sums agree in their addends for k ∈ {0, 1, . . . , n}, but all
the remaining addends are 0 because:

• if k < 0, then
(

x
k

)
= 0 and thus

(
x
k

)(
y

n − k

)
= 0;

• if k > n, then
(

y
n − k

)
= 0 and thus

(
x
k

)(
y

n − k

)
= 0.

I will occasionally use the symbol “ 0
=” to mean “equal because the two

sides differ only in addends that are 0”. An example of such an equality is
(3). Thus, we can write

n

∑
k=0

(
x
k

)(
y

n − k

)
0
= ∑

k

(
x
k

)(
y

n − k

)
.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Another example is
n

∑
k=1

k 0
=

n

∑
k=0

k.

Yet another example is

n

∑
k=0

(
n
k

)
0
= ∑

k∈N

(
n
k

)
(for n ∈ N) .

So it remains to prove that(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n − k

)
.

There are many ways to prove Theorem 2.3.1, including a fully algebraic
proof by induction on n (see [Grinbe15, §3.3.2]). There is also a combinatorial
proof we will soon see. But the simplest proof might be the following:

Proof of Theorem 2.3.1. Forget that we fixed x and y. First, consider any u ∈ R

and v ∈ N. Then,(
u
n

)
=

(
u − 1
n − 1

)
+

(
u − 1

n

)
(by Pascal’s recurrence)

=

((
u − 2
n − 2

)
+

(
u − 2
n − 1

))
+

((
u − 2
n − 1

)
+

(
u − 2

n

))
(again by Pascal’s recurrence)

=

(
u − 2
n − 2

)
+ 2

(
u − 2
n − 1

)
+

(
u − 2

n

)
=

((
u − 3
n − 3

)
+

(
u − 3
n − 2

))
+ 2

((
u − 3
n − 2

)
+

(
u − 3
n − 1

))
+

((
u − 3
n − 1

)
+

(
u − 3

n

))
(again by Pascal’s recurrence)

=

(
u − 3
n − 3

)
+ 3

(
u − 3
n − 2

)
+ 3

(
u − 3
n − 1

)
+

(
u − 3

n

)
=

(
u − 4
n − 4

)
+ 4

(
u − 4
n − 3

)
+ 6

(
u − 4
n − 2

)
+ 4

(
u − 4
n − 1

)
+

(
u − 4

n

)
(again by Pascal’s recurrence and subsequent simplification)

= · · · .

We can keep applying Pascal’s recurrence over and over like this. After v
steps, we obtain an equality of the form(

u
n

)
= av,v

(
u − v
n − v

)
+ av,v−1

(
u − v

n − (v − 1)

)
+ · · ·+ av,1

(
u − v
n − 1

)
+ av,0

(
u − v

n

)
,
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where av,0, av,1, . . . , av,v are certain numbers. Because of the way the terms are
being combined, these numbers satisfy

av,0 = 1, av,v = 1, and
av,i = av−1,i + av−1,i−1 for each i ∈ [v − 1]

(since both terms
(

u − (v − 1)
n − i

)
and

(
u − (v − 1)
n − (i − 1)

)
spawn an

(
u − v
n − i

)
term

when we rewrite them using Pascal’s recurrence).
This is a recurrence that determines the av,i for all v ∈ N and i ∈ {0, 1, . . . , v}.

More importantly, it is the same recurrence that the binomial coefficients
(

v
i

)
satisfy: (

v
0

)
= 1,

(
v
v

)
= 1, and(

v
i

)
=

(
v − 1

i

)
+

(
v − 1
i − 1

)
for each i ∈ [v − 1]

(by Pascal’s recurrence).
Hence, a straightforward induction (on v) shows that1

av,i =

(
v
i

)
for each i ∈ {0, 1, . . . , v} .

Thus, the equation(
u
n

)
= av,v

(
u − v
n − v

)
+ av,v−1

(
u − v

n − (v − 1)

)
+ · · ·+ av,1

(
u − v
n − 1

)
+ av,0

(
u − v

n

)
rewrites as(

u
n

)
=

(
v
v

)(
u − v
n − v

)
+

(
v

v − 1

)(
u − v

n − (v − 1)

)
+ · · ·+

(
v
1

)(
u − v
n − 1

)
+

(
v
0

)(
u − v

n

)
=

v

∑
k=0

(
v
k

)(
u − v
n − k

)
.

Now, forget that we fixed u and v. We thus have shown that(
u
n

)
=

v

∑
k=0

(
v
k

)(
u − v
n − k

)
for any u ∈ R and v ∈ N. (4)

1See the 2019 notes (specifically, the solution to Exercise 2.6.1 therein) for the details of this
proof.
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Now, for any x ∈ N and y ∈ R, we have(
x + y

n

)
=

x

∑
k=0

(
x
k

)(
(x + y)− x

n − k

)
(by (4), applied to u = x + y and v = x)

=
x

∑
k=0

(
x
k

)(
y

n − k

)
(since (x + y)− x = y)

0
= ∑

k∈N

(
x
k

)(
y

n − k

) (
since

(
x
k

)
= 0 for all k > x

)
0
=

n

∑
k=0

(
x
k

)(
y

n − k

) (
since

(
y

n − k

)
= 0 for all k > n

)
.

Thus, we have proved the equality (1) for all x ∈ N and y ∈ R.
Now, let us generalize it to all x ∈ R. Here, the “polynomial identity trick”

(Lecture 14, Corollary 2.2.5) comes useful: We fix y ∈ R (and n ∈ N, of course).
We then define two polynomials P and Q by

P =

(
X + y

n

)
and Q =

n

∑
k=0

(
X
k

)(
y

n − k

)
(in the indeterminate X, with rational coefficients)2. Since we already have
proved the equality (1) for all x ∈ N, we thus know that

P (x) = Q (x) for all x ∈ N.

Thus, by the “polynomial identity trick”, we obtain P = Q. Therefore,

P (x) = Q (x) for all x ∈ R.

In other words, the equality (1) holds for all x ∈ R. This completes the proof
of (1). Combining it with Remark 2.3.2, we obtain the equality (2) as well.
Theorem 2.3.1 is thus proven.

2.3.2. A bunch of corollaries of Chu–Vandermonde

The Chu–Vandermonde identity is famous for having many consequences. Here
are the simplest ones:

2The upper-case “X” and the lower-case “y” are intentional! The X is an indeterminate,

whereas the y is a fixed real number. And yes, both P and Q are polynomials, since
(

X + y
n

)
and

(
X
k

)
are polynomials (whereas

(
y

n − k

)
are constants).
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Corollary 2.3.3. Let x ∈ R and y ∈ N. Then,

y

∑
k=0

(
x
k

)(
y
k

)
=

(
x + y

y

)
.

Proof. By (1) (applied to n = y), we obtain(
x + y

y

)
=

y

∑
k=0

(
x
k

) (
y

y − k

)
︸ ︷︷ ︸
=

(
y
k

)
(by the symmetry of

Pascal’s triangle
(Lecture 6, Theorem 1.3.9),

since y∈N)

=
y

∑
k=0

(
x
k

)(
y
k

)
.

Note that Corollary 2.3.3 would not make sense for y =
√

2, because a sum-

mation of the form

√
2

∑
k=0

makes no sense.

Corollary 2.3.4. Let n ∈ N. Then,

n

∑
k=0

(
n
k

)2

=

(
2n
n

)
.

Proof. Apply Corollary 2.3.3 to x = n and y = n.

Remark 2.3.5. We thus know closed forms for

n

∑
k=0

(
n
k

)
,

n

∑
k=0

(−1)k
(

n
k

)
,

n

∑
k=0

(
n
k

)2

.

There is a closed form for
n
∑

k=0
(−1)k

(
n
k

)2

as well; we will see it in Corollary

6.3.2 (Lecture 30).

What about
n
∑

k=0

(
n
k

)3

? Unfortunately, there is no longer a closed form for

this. The “best” one can do is the following: If we set

an =
n

∑
k=0

(
n
k

)3

,
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then the sequence (a0, a1, a2, . . .) (known as the Franel sequence; it is Se-
quence A000172 in the OEIS) satisfies the recurrent equation

(n + 1)2 an+1 =
(

7n2 + 7n + 2
)

an + 8n2an−1 for each n ≥ 1.

However, the “analogous” alternating sum
n
∑

k=0
(−1)k

(
n
k

)3

(Sequence

A245086 in the OEIS) does have a closed form, which we will prove in Corol-
lary 6.4.8 (Lecture 30).

For higher powers than cubes, I think not even the alternating sum can

be computed. For example, the numbers
n
∑

k=0
(−1)k

(
n
k

)4

(Sequence A228304

in the OEIS) have no explicit formula known (and only a conjectural and
extremely ugly recurrence).

2.3.3. Mutating the CV identity

The above corollaries followed quite easily from Theorem 2.3.1. There are many
other binomial identities that can be deduced from it in less obvious ways.
The trick is that binomial coefficients can often be rewritten in various ways.
Specifically, we will be using the following tools for rewriting them:

• The symmetry of binomial coefficients (aka symmetry of Pascal’s trian-
gle, or for short just symmetry) is the fact that(

n
k

)
=

(
n

n − k

)
for any n ∈ N and k ∈ R

(this was Theorem 1.3.9 in Lecture 6). This allows us to rewrite a binomial
coefficient by subtracting the top entry from the bottom entry, provided
that the top entry is a nonnegative integer. When using this, don’t forget
to check that the top entry is indeed a nonnegative integer!

• The upper negation formula is the fact that(
−n
k

)
= (−1)k

(
n + k − 1

k

)
for any n ∈ R and k ∈ Z (this was Proposition 1.3.6 in Lecture 6). By
substituting −n for n, we can rewrite this as(

n
k

)
= (−1)k

(
−n + k − 1

k

)
.

This allows us to rewrite a binomial coefficient by replacing the top entry
n by −n + k − 1 (where k is the bottom entry), and multiplying the result

https://oeis.org/A000172
https://oeis.org/A000172
https://oeis.org/A245086
https://oeis.org/A245086
https://oeis.org/A228304
https://oeis.org/A228304
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by (−1)k. This formula is notoriously hard to memorize, but its usefulness
more than justifies its complexity.

• Combining these two results, we obtain a third formula, which I will call
the turnover identity. It says that(

n
k

)
= (−1)n−k

(
−k − 1
n − k

)
(5)

for any n ∈ N and k ∈ Z. To prove this, we observe that(
n
k

)
=

(
n

n − k

)
(by symmetry)

= (−1)n−k
(
−n + (n − k)− 1

n − k

)
(by upper negation)

= (−1)n−k
(
−k − 1
n − k

)
(since − n + (n − k)− 1 = −k − 1) .

The name “turnover identity” refers to the fact that the number n, which
is initially on the top of the binomial coefficient on the left hand side of
(5), ends up on the bottom on the right hand side.

Rewriting binomial coefficients using these and similar techniques, we can
“mutate” the Chu–Vandermonde identity (and various other binomial identi-
ties as well), obtaining new identities. For a particularly striking example of
this, let us prove the “upside-down Chu–Vandermonde identity”:

Proposition 2.3.6 (upside-down Chu–Vandermonde identity). Let n, x, y ∈
N. Then, (

n + 1
x + y + 1

)
=

n

∑
k=0

(
k
x

)(
n − k

y

)
.

Note that this proposition really requires x, y ∈ N. For instance, if we had
x = −1 and y = 2 and n = 3, then it would be false. This does not contradict

the “polynomial identity trick”, because the expression
(

n + 1
x + y + 1

)
is neither

a polynomial in x nor a polynomial in y ! We could not replace any of x and y
with an indeterminate, since x and y appear in the bottom entry of the binomial

coefficient
(

n + 1
x + y + 1

)
. (As for n, we could replace n by an indeterminate on

the left hand side of Proposition 2.3.6, but not on the right hand side, since n
appears as a bound of a finite sum.)

Proof of Proposition 2.3.6. We are in one of the following two cases:
Case 1: We have n < x + y.
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Case 2: We have n ≥ x + y.
Let us consider Case 1 first. In this case, we have n < x + y. In other words,

y > n − x. Thus, for each k ∈ {0, 1, . . . , n}, we have
(

k
x

)(
n − k

y

)
= 0, because

• either we have x > k and therefore
(

k
x

)
= 0 and thus

(
k
x

)
︸︷︷︸
=0

(
n − k

y

)
= 0,

• or we have x ≤ k and therefore y > n − x︸︷︷︸
≤k

≥ n − k and consequently3

(
n − k

y

)
= 0 and thus

(
k
x

)(
n − k

y

)
︸ ︷︷ ︸

=0

= 0.

Hence,
n

∑
k=0

(
k
x

)(
n − k

y

)
︸ ︷︷ ︸

=0

=
n

∑
k=0

0 = 0.

Comparing this with

(
n + 1

x + y + 1

)
= 0

since n + 1 ∈ N and x + y︸ ︷︷ ︸
>n

+1 > n + 1

 ,

we obtain
(

n + 1
x + y + 1

)
=

n
∑

k=0

(
k
x

)(
n − k

y

)
. Hence, Proposition 2.3.6 is proved

in Case 1.
Let us now consider Case 2. In this case, we have n ≥ x+ y. Thus, n− x− y ∈

N and x ≤ n − y. Now,

n

∑
k=0

(
k
x

)(
n − k

y

)
0
=

n−y

∑
k=x

(
k
x

)(
n − k

y

)

(since
(

k
x

)
= 0 for all k ∈ {0, 1, . . . , n} satisfying k < x, and since

(
n − k

y

)
= 0

3Here we are also using the fact that n − k ∈ N (which follows from k ∈ {0, 1, . . . , n}).



Lecture 15, version December 10, 2022 page 9

for all k ∈ {0, 1, . . . , n} satisfying k > n − y). Hence,

n

∑
k=0

(
k
x

)(
n − k

y

)
=

n−y

∑
k=x

(
k
x

)
︸︷︷︸

=(−1)k−x

(
−x − 1
k − x

)
(by the turnover identity)

(
n − k

y

)
︸ ︷︷ ︸

=(−1)n−k−y

(
−y − 1

n − k − y

)
(by the turnover identity)

=
n−y

∑
k=x

(−1)k−x
(
−x − 1
k − x

)
(−1)n−k−y

(
−y − 1

n − k − y

)

=
n−y

∑
k=x

(−1)k−x (−1)n−k−y︸ ︷︷ ︸
=(−1)n−x−y

(
−x − 1
k − x

)(
−y − 1

n − k − y

)

= (−1)n−x−y
n−y

∑
k=x

(
−x − 1
k − x

)(
−y − 1

n − k − y

)

= (−1)n−x−y
n−x−y

∑
k=0

(
−x − 1

k

)(
−y − 1

n − (k + x)− y

)
(here, we substituted k + x for k in the sum)

= (−1)n−x−y
n−x−y

∑
k=0

(
−x − 1

k

)(
−y − 1

n − x − y − k

)
︸ ︷︷ ︸

=

(
(−x − 1) + (−y − 1)

n − x − y

)
(by (1), applied to −x−1, −y−1 and n−x−y

instead of x, y and n)

= (−1)n−x−y
(
(−x − 1) + (−y − 1)

n − x − y

)
.

Comparing this with(
n + 1

x + y + 1

)
= (−1)(n+1)−(x+y+1)

(
− (x + y + 1)− 1

(n + 1)− (x + y + 1)

)
(by the turnover identity)

= (−1)n−x−y
(
(−x − 1) + (−y − 1)

n − x − y

)
(

since (n + 1)− (x + y + 1) = n − x − y
and − (x + y + 1)− 1 = (−x − 1) + (−y − 1)

)
,

we obtain
(

n + 1
x + y + 1

)
=

n
∑

k=0

(
k
x

)(
n − k

y

)
. Hence, Proposition 2.3.6 is proved

in Case 2. The proof of Proposition 2.3.6 is thus complete.
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