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Math 222 Fall 2022, Lecture 13: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont’d)

1.7. Counting permutations: an introduction

1.7.4. The one-line notation

If σ is a permutation of the set [n] (for some n ∈ N), then we can write σ in
two-line notation as follows:

σ =

(
1 2 · · · n

σ (1) σ (2) · · · σ (n)

)
.

But the top row here carries no useful information: We already know that the
elements of [n] are 1, 2, . . . , n, and it is not exactly unreasonable to list them in
increasing order. Thus, we can omit it, and write only the bottom row, i.e., the
n-tuple

(σ (1) , σ (2) , . . . , σ (n)) ∈ [n]n .

This is the so-called one-line notation of σ:

Definition 1.7.8. Let n ∈ N. Let σ be a permutation of [n]. Then, the one-line
notation of σ means the n-tuple (σ (1) , σ (2) , . . . , σ (n)).

For instance, the six permutations of [3] have one-line notations

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) , (2, 3, 1) , (3, 1, 2) , (3, 2, 1) .

These are precisely all possible triples (i.e., 3-tuples) of distinct elements of [3]
that contain each element of [3]. This pattern persists for “higher values of 3”:

Proposition 1.7.9. Let n ∈ N. Then:
(a) If σ is any permutation of [n], then the one-line notation of σ is an

n-tuple of distinct elements of [n] that contains each element of [n].
(b) If (i1, i2, . . . , in) is an n-tuple of distinct elements of [n] that contains

each element of [n], then there exists a unique permutation σ of [n] such that
(i1, i2, . . . , in) is the one-line notation of σ.

(c) Let

Tn = {n-tuples of distinct elements of [n] that contain each element of [n]} .

Then, the map

{permutations of [n]} → Tn,
σ 7→ (one-line notation of σ) = (σ (1) , σ (2) , . . . , σ (n))

is well-defined and a bijection.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Proof. This is an easy exercise in understanding the definitions (and basic set
theory). Most importantly, a map σ : [n] → [n] is uniquely determined by its
list of values (σ (1) , σ (2) , . . . , σ (n)), and furthermore this map σ is

• injective if and only if the list (σ (1) , σ (2) , . . . , σ (n)) is a list of distinct
elements;

• surjective if and only if the list (σ (1) , σ (2) , . . . , σ (n)) contains each
element of [n].

See the 2019 notes (Proposition 1.7.12) for details.

The main use of the one-line notation (besides being short) is that it allows us
to manipulate permutations as tuples. We will eventually see some instances
of that (e.g., in Lecture 28, proof of Proposition 4.4.5).

1.7.5. Short-legged permutations

Now let us count a few more classes of permutations.

Definition 1.7.10. Let n ∈ N. A permutation σ of [n] will be called short-
legged if each i ∈ [n] satisfies |σ (i)− i| ≤ 1.

How many such permutations does [n] have?
For example, the short-legged permutations of [3] are (in one-line notation)

(1, 2, 3) , (1, 3, 2) , (2, 1, 3) .

So there are 3 of them. Based on experiments, we suspect:

Proposition 1.7.11. Let n ∈ N. Then,

(# of short-legged permutations of [n]) = fn+1.

(Again, the Fibonacci numbers.)

Proof. See the 2019 notes (§1.7.5) or (more fun!) figure it out yourself (what is
the relation between short-legged permutations of [n] and other combinatorial
objects that are counted by Fibonacci numbers?).

Exercise 1. How many short-legged derangements does [n] have?

1.7.6. Long-legged permutations
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Definition 1.7.12. Let n ∈ N. A permutation σ of [n] will be called long-
legged if each i ∈ [n] satisfies |σ (i)− i| > 1.

Again, we can ask: How many are there? Here is a table:

n 0 1 2 3 4 5 6 7 8 9

ℓn 1 0 0 0 1 4 29 206 1708 15702
,

where ℓn denotes the # of long-legged permutations of [n].
On the OEIS, the sequence (ℓ0, ℓ1, ℓ2, . . .) is Sequence A001883, and you can

find two recurrent equations for it, one of which is

ℓn = nℓn−1 + 4ℓn−2 − 3 (n − 3) ℓn−3 + (n − 4) ℓn−4

+ 2 (n − 5) ℓn−5 − (n − 7) ℓn−6 − ℓn−7 for all n ≥ 7

(not the nicest formula, but beats checking all the n! permutations of [n] for
sure!). This seems to be the most direct expression we have for ℓn. No closed-
form formula is known (or expected to exist). Not every counting problem has
a good answer!

2. Binomial coefficients

Let us continue our exploration of BCs (binomial coefficients) and get a little
bit more systematic about proving identities. In particular, we shall (later in
this chapter) prove the Chu–Vandermonde identity1, and derive various conse-
quences from it. We will also learn some methods for proving identities.

2.1. Revisiting the alternating sum of a row in Pascal’s
triangle

Recall the following fact (Proposition 1.3.23 in Lecture 7):

Proposition 2.1.1. We have

n

∑
k=0

(−1)k
(

n
k

)
= [n = 0] for each n ∈ N.

We already proved this (by applying the binomial formula to 1 and −1). We
shall now give two more proofs of this proposition. Each proof will exemplify
an important technique.

1Note: you are already free to use it on homeworks and midterms.

https://oeis.org/A001883
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2.1.1. Telescoping sums

The first new proof of Proposition 2.1.1 relies on the telescoping sum principle
(or, for short, the telescope principle):

Theorem 2.1.2 (telescoping sum principle). Let u and v be two integers with
u ≤ v + 1. Let au, au+1, . . . , av, av+1 be any numbers. Then,

v

∑
j=u

(
aj+1 − aj

)
= av+1 − au.

Proof. First of all, the claim is obvious when u = v + 1, because both sides are
0 in this case. Thus, WLOG assume that u < v + 1, so the sum on the left is
nonempty. Then,2

v

∑
j=u

(
aj+1 − aj

)
= (au+1 − au) + (au+2 − au+1) + (au+3 − au+2) + · · ·+ (av+1 − av)

= (av+1 − av) + (av − av−1) + (av−1 − av−2) + (av−2 − av−3) + · · ·+ (au+1 − au)

(here, we have flipped the order of the summands)
= av+1 + (−av + av)︸ ︷︷ ︸

=0

+ (−av−1 + av−1)︸ ︷︷ ︸
=0

+ (−av−2 + av−2)︸ ︷︷ ︸
=0

+ · · ·+ (−au+1 − au+1)︸ ︷︷ ︸
=0

−au

= av+1 − au.

This computation (with the many cancellations involved in it) is reminiscent of
a telescope being contracted; thus the name of the theorem.

Note that the telescoping sum principle appears in many equivalent forms in
the literature, e.g., in the forms

v

∑
j=u

(
aj − aj−1

)
= av − au−1 and

v

∑
j=u

(
aj − aj+1

)
= au − av+1.

All such forms can be easily derived from Theorem 2.1.2 (e.g., by substituting
aj−1 for aj, or by substituting −aj for aj); alternatively, they can all be proved in
similar ways.

Note also the similarity between Theorem 2.1.2 and the Fundamental Theo-
rem of Calculus: ∫ v

u
F′ (x) dx = F (v)− F (u) .

2This is slightly informal. See the 2019 notes (§2.1.1) for a formalization of this argument, as
well as for a different proof.
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In a way, Theorem 2.1.2 is a discrete form of the Fundamental Theorem of
Calculus.

Now, we can reprove Proposition 2.1.1:

Proof of Proposition 2.1.1. The claim of Proposition 2.1.1 is clear if n = 0 (since
both sides are equal to 1 in this case). Thus, we WLOG assume that n ̸= 0.
Then,

n

∑
k=0

(−1)k
(

n
k

)
︸︷︷︸

=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(by Pascal’s recurrence)

=
n

∑
k=0

(−1)k
((

n − 1
k − 1

)
+

(
n − 1

k

))

=
n

∑
k=0

 (−1)k︸ ︷︷ ︸
=−(−1)k−1

(
n − 1
k − 1

)
+ (−1)k

(
n − 1

k

)
=

n

∑
k=0

(
− (−1)k−1

(
n − 1
k − 1

)
+ (−1)k

(
n − 1

k

))

=
n

∑
k=0

(−1)k
(

n − 1
k

)
︸ ︷︷ ︸

let’s call this ak

− (−1)k−1
(

n − 1
k − 1

)
︸ ︷︷ ︸

then this is ak−1


=

n

∑
k=0

(ak − ak−1)

= an − a−1 (by the telescoping sum principle)

=

(
n − 1

n

)
︸ ︷︷ ︸

=0
(since n−1∈N
and n−1<n)

−
(

n − 1
−1

)
︸ ︷︷ ︸

=0
(by definition)

= 0 − 0

= 0 = [n = 0] (since n ̸= 0) .

Thus, Proposition 2.1.1 is proved again.

Using this second proof, we can show a generalization of Proposition 2.1.1:

Exercise 2 (“reverse hockey-stick identity”). Let n ∈ R. Let m ∈ N. Prove
that

m

∑
k=0

(−1)k
(

n
k

)
= (−1)m

(
n − 1

m

)
.

(This is Exercise 2.1.1 in the 2019 notes.)
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2.1.2. A war between the odd and the even (aka sign-reversing involutions)

Now comes the perhaps nicest proof of Proposition 2.1.1.

Third proof of Proposition 2.1.1. As before, we can easily dispatch the case when
n = 0. Thus, we assume that n ̸= 0. Hence, the claim that we must prove
simplifies to3

n

∑
k=0

(−1)k
(

n
k

)
?
= 0. (1)

Can we prove this combinatorially? Not directly, because the LHS4 includes
negative numbers, and negative numbers don’t count anything. However, we
can resolve this issue in the simplest possible way: We can bring the nega-
tive numbers to the RHS. So, the equality (1) (which we intend to prove) gets
rewritten as follows:

∑
k even

(
n
k

)
?
= ∑

k odd

(
n
k

)
(2)

(where the summation signs “ ∑
k even

” and “ ∑
k odd

” are shorthand for “ ∑
k∈N;

k is even

” and

“ ∑
k∈N;

k is odd

”, respectively). Equivalently, it gets rewritten as5

(# of even-size subsets of [n]) ?
= (# of odd-size subsets of [n])

(since ∑
k even

(
n
k

)
is the # of even-size subsets of [n] 6, whereas ∑

k odd

(
n
k

)
is the

# of odd-size subsets of [n]).
Now, how can we prove such an equality? One way would be to find a bijec-

tion between {even-size subsets of [n]} and {odd-size subsets of [n]}. Such a
bijection can indeed be found: The map

{even-size subsets of [n]} → {odd-size subsets of [n]} ,

A 7→
{

A \ {1} , if 1 ∈ A;
A ∪ {1} , if 1 /∈ A

(that is, the map that removes the element 1 from any subset that contains 1,

3The question mark about the equality sign signifies that this equality has yet to be proved.
4“LHS” = “left hand side”.
5An “even-size” set means a finite set of even size. An “odd-size” set means a finite set of

odd size.
6Here, we are using the combinatorial interpretation of BCs.
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and inserts 1 into any subset that does not)7 is well-defined8 and bijective9.
Thus, this map is a bijection. Hence, the bijection principle yields that

(# of even-size subsets of [n]) = (# of odd-size subsets of [n]) .

As explained above, this equality is just a rewritten form of (2), which in turn is
equivalent to (1). Thus, (1) holds, and Proposition 2.1.1 is proved (for the third
time).

The bijection that we used in the above proof is worth saying a few words
about. Let me drop the “even-size” and “odd-size” conditions in its definition,
and thus extend it to a map

t : {subsets of [n]} → {subsets of [n]} ,

A 7→
{

A \ {1} , if 1 ∈ A;
A ∪ {1} , if 1 /∈ A.

This map t is called “toggling the element 1”, since the element 1 is moved
either into or out of the subset. It is not just some bijective map, but actually a
map that is inverse to itself (i.e., it satisfies t ◦ t = id); such maps are known as
involutions. It furthermore has the property that it flips the sign (−1)|A| (that
is, it satisfies (−1)|t(A)| = − (−1)|A| for every subset A of [n]). This makes it a
“sign-reversing involution”. This sign-reversing property makes it suited for
canceling addends in alternating sums (i.e., sums in which different addends
can have different signs); many alternating-sum identities in combinatorics can
be proved using sign-reversing involutions. So the presence of powers of −1
should not scare you away from using combinatorial arguments!

One last remark about the toggling involution t: It is a particular case of a
set-theoretical operation called symmetric difference. Here its definition:

7For example, this map sends {1, 4, 5, 7} to {4, 5, 7}, and sends {2, 4, 5} to {1, 2, 4, 5}.
8Indeed, it changes the size of any subset by 1 upwards or downwards, so an even-size subset

will always turn into an odd-size subset.
9Indeed, its inverse is the map

{odd-size subsets of [n]} → {even-size subsets of [n]} ,

A 7→
{

A \ {1} , if 1 ∈ A;
A ∪ {1} , if 1 /∈ A

(given by the exact same formula!), because:

• If a subset A of [n] contains 1, then (A \ {1}) ∪ {1} = A.

• If a subset A of [n] does not contain 1, then (A ∪ {1}) \ {1} = A.
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Definition 2.1.3. Let X and Y be two sets. Then, their symmetric difference
X △ Y is defined by

X △ Y := {all elements that belong to X or Y but not to both}
= (X ∪ Y) \ (X ∩ Y) = (X \ Y) ∪ (Y \ X) .

In terms of Venn diagrams, X △ Y is the grey zone in the following Venn
diagram (where the two circles are X and Y):

Thus, the definition of our map t can be rewritten as follows:

t : {subsets of [n]} → {subsets of [n]} ,
A 7→ A △ {1} .

See the 2019 notes (§2.1.2) for some properties of the symmetric difference,
particularly its associative law

(A △ B)△ C = A △ (B △ C) .
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