Math 222 Fall 2022, Lecture 10: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont'd)

1.4. Counting subsets (cont'd)

1.4.6. Counting subsets with *a* odd and *b* even elements (cont'd)

Last time, I stated the following proposition:

Proposition 1.4.11. Let $n \in \mathbb{N}$ be even. Let $a, b \in \mathbb{N}$. Then,

(# of subsets of [n] that contain *a* even elements and *b* odd elements)

$$= \binom{n/2}{a} \binom{n/2}{b}.$$

(Here, "*a* even elements" means "exactly *a* even elements", and "*b* odd elements" means "exactly *b* odd elements".)

Let us now prove it:

Proof. (See the proof of Proposition 1.4.14 in the 2019 notes for details.)

We will give an informal proof and a formal one. More precisely, we will give one proof in an informal writeup and in a formal one. (You don't need to spell out your proofs formally on the homework, but you should know how this can be done if so desired.)

Informal proof: To construct a subset of [n] that contains *a* even elements and *b* odd elements, we just need to choose *a* elements from the set $E := \{2, 4, 6, ..., n\}$ and to choose *b* elements from the set $O := \{1, 3, 5, ..., n-1\}$. We have $\binom{n/2}{a}$ options for our first choice (by the combinatorial interpretation of BCs, since |E| = n/2) and $\binom{n/2}{b}$ options for our second choice (similarly). Since the two choices are independent, we thus have $\binom{n/2}{a}\binom{n/2}{b}$ possibilities in total.

Formal proof: This "independent choice" language we just used is just shorthand for applying the product rule. To state our above argument formally, we introduce the notation $\mathcal{P}_k(S)$ for the set of all *k*-element subsets of a given set *S*. We also let \mathcal{N} denote the set of all subsets of [n] that contain *a* even elements and *b* odd elements. We must then prove that $|\mathcal{N}| = \binom{n/2}{a} \binom{n/2}{b}$.

We set $E := \{2, 4, 6, ..., n\}$ and $O := \{1, 3, 5, ..., n - 1\}$. The map

$$\mathcal{N} \to \mathcal{P}_{a}(E) \times \mathcal{P}_{b}(O)$$
,
 $S \mapsto (S \cap E, S \cap O)$

is a bijection, since the map

$$\mathcal{P}_{a}\left(E
ight) imes\mathcal{P}_{b}\left(O
ight)
ightarrow\mathcal{N},\ \left(U,V
ight)\mapsto U\cup V$$

is inverse to it. So, by the bijection principle,

$$|\mathcal{N}| = |\mathcal{P}_{a}(E) \times \mathcal{P}_{b}(O)| = |\mathcal{P}_{a}(E)| \cdot |\mathcal{P}_{b}(O)| \qquad \text{(by the product rule)}$$
$$= \binom{|E|}{a} \cdot \binom{|O|}{b} \qquad \qquad \begin{pmatrix} \text{since the combinatorial interpretation of} \\ \text{BCs says that } |\mathcal{P}_{k}(S)| = \binom{|S|}{k} \text{ for all } S \text{ and } k \end{pmatrix}$$
$$= \binom{n/2}{a} \cdot \binom{n/2}{b} \qquad \qquad (\text{since } |E| = n/2 \text{ and } |O| = n/2).$$

This again proves Proposition 1.4.11.

A takeaway from the above argument: "Independent choices" correspond to an application of the product rule (and possibly of the bijection principle).

1.4.7. The addition formula for Fibonacci numbers

For another example of counting subsets, we shall prove combinatorially the following property of Fibonacci numbers:

Theorem 1.4.12 (addition formula for Fibonacci numbers). Let $m, n \in \mathbb{N}$. Then, the Fibonacci sequence satisfies

$$f_{m+n+1} = f_m f_n + f_{m+1} f_{n+1}.$$

There are various easy ways to prove this (e.g., by induction¹, or using Binet's formula). But let me show a **combinatorial** proof, to illustrate a strategy.

First, we begin with a simple piece of notation:

Definition 1.4.13. Let *a* and *b* be two integers. Then, the subset

$$\{a, a+1, \dots, b\} = \{i \in \mathbb{Z} \mid a \le i \le b\} \qquad \text{of } \mathbb{Z}$$

will be denoted by [a, b]. This subset is called the **integer interval** from *a* to *b*. It is empty if a > b.

¹For such a proof, see [20f, Exercise 2.2.3]. (See also [20f, Exercise 4.9.3 and Exercise 4.9.4] for generalizations.)

For example, $[2,5] = \{2,3,4,5\}$. Note that [k] = [1,k] for every $k \in \mathbb{Z}$. We can now generalize Proposition 1.4.7 from Lecture 9 as follows:

Proposition 1.4.14. Let $n \in \{-1, 0, 1, ...\}$ and $a \in \mathbb{Z}$. Then,

(# of lacunar subsets of $[a + 1, a + n]) = f_{n+2}$.

Proof. Proposition 1.4.7 from Lecture 9 says that

(# of lacunar subsets of [n]) = f_{n+2} .

However, there is a bijection

{lacunar subsets of
$$[n]$$
} \rightarrow {lacunar subsets of $[a + 1, a + n]$ },
 $S \mapsto \{s + a \mid s \in S\}$

(this is simply shifting a lacunar subset of [n] by a units on the number line, so that it becomes a lacunar subset of [a + 1, a + n]). Thus, by the bijection principle, we have

(# of lacunar subsets of [a + 1, a + n]) = (# of lacunar subsets of [n]) = f_{n+2} .

This proves Proposition 1.4.14.

Proof of Theorem 1.4.12 (sketched). This will be a very rough sketch; see the 2019 notes (§1.4.7) for details.

For m = 0, the claim is obvious (since $f_0 = 0$ and $f_1 = 1$). So we WLOG assume that $m \ge 1$. Similarly, we WLOG assume that $n \ge 1$. Now, let us count the lacunar subsets of [m + n - 1] in two ways:

First way: Proposition 1.4.14 (applied to 0 and m + n - 1 instead of *a* and *n*) yields

(# of lacunar subsets of [m + n - 1]) = $f_{(m+n-1)+2} = f_{m+n+1}$.

Second way: We shall call a subset of [m + n - 1]

- **red** if it contains *m*, and
- green if it does not contain *m*.

Thus, by the sum rule, we have

(# of lacunar subsets of
$$[m + n - 1]$$
)
= (# of lacunar red subsets of $[m + n - 1]$)
+ (# of lacunar green subsets of $[m + n - 1]$).

A lacunar red subset of [m + n - 1] must contain m, and thus cannot contain any of m - 1 and m + 1 (since it is lacunar). Hence, if we remove m from it, then we obtain a union of a lacunar subset of [m - 2] with a lacunar subset of [m + 2, m + n - 1]. Conversely, if we take a union of any lacunar subset of [m - 2] with any lacunar subset of [m + 2, m + n - 1], and if we insert m into this union, then we obtain a lacunar red subset of [m + n - 1]. Hence, we have a bijection

{lacunar red subsets of [m + n - 1]} \rightarrow {lacunar subsets of [m - 2]} \times {lacunar subsets of [m + 2, m + n - 1]}

(which sends each subset *S* to the pair $(S \cap [m-2], S \cap [m+2, m+n-1])$). Hence, by the bijection principle,

 $\begin{aligned} &|\{\text{lacunar red subsets of } [m+n-1]\}| \\ &= |\{\text{lacunar subsets of } [m-2]\} \times \{\text{lacunar subsets of } [m+2, m+n-1]\}| \\ &= \underbrace{|\{\text{lacunar subsets of } [m-2]\}|}_{=f_m} \cdot \underbrace{|\{\text{lacunar subsets of } [m+2, m+n-1]\}|}_{=f_n} \\ &\stackrel{(\text{by Proposition 1.4.14,} \\ \text{applied to 0 and } m-2 \\ \text{instead of } a \text{ and } n)}_{\text{instead of } a \text{ and } n} \end{aligned}$

$$= f_m f_n.$$

In other words,

(# of lacunar red subsets of [m + n - 1]) = $f_m f_n$.

A similar argument (see the 2019 notes for details) yields

$$\begin{aligned} &|\{\text{lacunar green subsets of } [m+n-1]\}| \\ &= |\{\text{lacunar subsets of } [m-1]\} \times \{\text{lacunar subsets of } [m+1, m+n-1]\}| \\ &= \underbrace{|\{\text{lacunar subsets of } [m-1]\}|}_{=f_{m+1}} \cdot \underbrace{|\{\text{lacunar subsets of } [m+1, m+n-1]\}|}_{=f_{n+1}} \\ &= f_{m+1}f_{n+1}. \end{aligned}$$

Altogether,

(# of lacunar subsets of
$$[m + n - 1]$$
)
= $(\# \text{ of lacunar red subsets of } [m + n - 1])$
= $f_m f_n$
+ $(\# \text{ of lacunar green subsets of } [m + n - 1])$
= $f_{m+1}f_{n+1}$
= $f_m f_n + f_{m+1}f_{n+1}$.

So we have solved our counting problem (counting the lacunar subsets of [m + n - 1]) in two different ways. One way gave us the answer f_{m+n+1} , while the other gave us the answer $f_m f_n + f_{m+1} f_{n+1}$. But these two answers must be equal, since they count the same objects. So we get $f_{m+n+1} = f_m f_n + f_{m+1} f_{n+1}$. This proves Theorem 1.4.12.

The proof we just gave is an example of a **proof by double counting**: We posed ourselves a counting problem; we solved it in two different ways; then we concluded that the two answers must be equal. This is a fairly potent method of proving equalities, even if the equalities do not originally come from combinatorics (as long as both sides of the relevant equality have combinatorial interpretations).

1.4.8. More subset counting

The following exercise is solved in the 2019 notes (§1.4.8):

Exercise 1. A set *S* of integers is said to be

- self-counting if $|S| \in S$. (For instance, $\{2,3,4\}$ is self-counting, because $3 \in \{2,3,4\}$. But $\{3,4\}$ is not self-counting, because $2 \notin \{3,4\}$).
- **self-starting** if $|S| = \min S$ (that is, the size of *S* is the smallest element of *S*).
- **self-ending** if $|S| = \max S$ (that is, the size of *S* is the largest element of *S*).

Let $n \in \mathbb{N}$.

(a) For each $k \in [n]$, find the # of self-counting (resp. self-starting, resp. self-ending) *k*-element subsets of [n].

(b) Find the # of all self-counting (resp. self-starting, resp. self-ending) subsets of [n].

See the notes for a solution, as well as some other exercises on this topic.

1.4.9. Counting subsets containing a given subset

For a given $k \in \mathbb{N}$, how many *k*-element subsets of a given set *N* contain a given subset *D* as a subset?

Proposition 1.4.15. Let $n \in \mathbb{N}$, $d \in \mathbb{N}$ and $k \in \mathbb{R}$. Let *N* be an *n*-element set. Let *D* be a *d*-element subset of *N*. Then,

(# of *k*-element subsets *A* of *N* satisfying
$$D \subseteq A$$
) = $\binom{n-d}{k-d}$.

Proof. (See §1.4.9 in the 2019 notes for details.)

Informal proof: To build a *k*-element subset *A* of *N* satisfying $D \subseteq A$, we start with the *d* elements of *D*, and we add k - d further elements from the (n - d)-element set $N \setminus D$ to them. The latter k - d elements can be chosen arbitrarily. The # of ways to do this is $\binom{n-d}{k-d}$, since it boils down to picking a (k - d)-element subset of the (n - d)-element set $N \setminus D$. *Formal proof:* There is a bijection²

{k-element subsets
$$A$$
 of N satisfying $D \subseteq A$ } $\rightarrow \mathcal{P}_{k-d}(N \setminus D)$,
 $A \mapsto A \setminus D$

with inverse map

$$\mathcal{P}_{k-d} \left(N \setminus D \right) \to \left\{ k \text{-element subsets } A \text{ of } N \text{ satisfying } D \subseteq A \right\},$$

$$A \mapsto A \cup D$$

(yes, it needs to be checked that both of these maps are well-defined and that they are actually inverse to each other; but this is all straightforward set theory). Hence, by the bijection principle,

$$|\{k\text{-element subsets } A \text{ of } N \text{ satisfying } D \subseteq A\}| = |\mathcal{P}_{k-d}(N \setminus D)| = \binom{n-d}{k-d}$$

(by the combinatorial interpretation of BCs, since $|N \setminus D| = n - d$). This proves the proposition.

1.5. Counting tuples and maps

Having counted various kinds of subsets, let us now move on to counting tuples.

1.5.1. Tuples

Let us recall the definition of the Cartesian product of sets:

Definition 1.5.1. Let $A_1, A_2, ..., A_n$ be *n* sets. Then, their **Cartesian product** $A_1 \times A_2 \times \cdots \times A_n$ is defined to be the set of all *n*-tuples $(a_1, a_2, ..., a_n)$, where $a_1 \in A_1$ and $a_2 \in A_2$ and \cdots and $a_n \in A_n$. In other words,

 $A_1 \times A_2 \times \cdots \times A_n$ = { $(a_1, a_2, \dots, a_n) \mid a_1 \in A_1 \text{ and } a_2 \in A_2 \text{ and } \cdots \text{ and } a_n \in A_n$ } = { $(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for all } i \in [n]$ }.

²Again, we let $\mathcal{P}_k(S)$ denote the set of all *k*-element subsets of a given set *S*.

Note that:

• A 2-tuple is the same as a pair (i.e., ordered pair). For example, the Cartesian product {1,2} × {5,6,7} contains the pairs (= 2-tuples)

$$(1,5)$$
, $(1,6)$, $(1,7)$,
 $(2,5)$, $(2,6)$, $(2,7)$.

- A 3-tuple is the same as a triple.
- A 1-tuple consists of a single element (but, to be pedantic, it is not the same as this element). For example, (7) is a 1-tuple of integers. Thus, a Cartesian product of a single set *A*₁ can be viewed as a copy of *A*₁, except that each element is "enclosed in parentheses".
- A 0-tuple has no entries; thus, it looks like this: (). So there is only one 0-tuple.

How do we count these tuples?

Theorem 1.5.2 (the product rule for *n* sets). Let $A_1, A_2, ..., A_n$ be *n* finite sets. Then, their Cartesian product $A_1 \times A_2 \times \cdots \times A_n$ is again finite and has size

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$

A particularly important example of Cartesian products is when all the factors are the same:

Definition 1.5.3. Let *A* be a set, and let $n \in \mathbb{N}$. Then, the *n*-th (Cartesian) power of *A* is the set

$$A^n := \underbrace{A \times A \times \cdots \times A}_{n \text{ times}}.$$

Corollary 1.5.4. Let *A* be a finite set, and let $n \in \mathbb{N}$. Then, A^n is finite and has size

$$|A^n| = |A|^n.$$

References

[20f] Darij Grinberg, Math 235: Mathematical Problem Solving, 25 December 2021. http://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf