Math 222 Fall 2022, Lecture 9: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont'd)

1.4. Counting subsets (cont'd)

1.4.2. Lacunar subsets (cont'd)

Last time, we defined lacunar subsets. Recall their definition:

Definition 1.4.2. A set *S* of integers is said to be **lacunar** if it contains no two consecutive integers (i.e., there is no integer *i* such that both *i* and i + 1 belong to *S*).

We also answered part (c) of the following question:

Question 1.4.3. For given $n, k \in \mathbb{N}$:

(a) How many lacunar subsets does [*n*] have?

(b) How many *k*-element lacunar subsets does [*n*] have?

(c) What is the largest size of a lacunar subset of [n]?

We found (and proved) that the largest size of a lacunar subset of [n] is $\lceil n/2 \rceil$. Let us now attack parts (a) and (b) of this question.

1.4.3. Intermezzo: SageMath

[At this point, I made a little tech demo, showing the use of SageMath via the SageMathCell server (https://sagecell.sagemath.org/). See §1.4.3 of the 2019 notes for the details.]

1.4.4. Counting all lacunar subsets

Some experimentation with SageMath suggests the following answer to question (a):¹

Proposition 1.4.7. Let $n \in \{-1, 0, 1, ...\}$. Then,

(# of lacunar subsets of [n]) = f_{n+2} .

Here, we agree that $[-1] := \emptyset$. More generally, we agree that $[k] := \emptyset$ for any $k \le 0$.

¹We extend the range of *n* from \mathbb{N} to the slightly larger set $\{-1, 0, 1, ...\}$ in order to include a border case that will later appear quite often in applications.

Proof. Forget that we fixed *n*. For each $n \in \{-1, 0, 1, ...\}$, we set

 $\ell_n := (\# \text{ of lacunar subsets of } [n]).$

Our goal is thus to prove that $\ell_n = f_{n+2}$ for each $n \ge -1$.

We have $\ell_0 = 1$ and $\ell_{-1} = 1$ (since the empty set has only one lacunar subset). We shall now prove the following claaim:

Claim 1: We have $\ell_n = \ell_{n-1} + \ell_{n-2}$ for each $n \ge 1$.

Once this claim is proved, a straightforward strong induction will yield our goal (that $\ell_n = f_{n+2}$ for all $n \ge -1$). So we focus on proving Claim 1.

Proof of Claim 1: Let $n \ge 1$ be an integer. We shall call a subset of [n]

- **red** if it contains *n*, and
- green if it does not contain *n*.

Thus, each subset of [n] is either red or green (but not both). Hence, by the sum rule,

(# of lacunar subsets of [n])

= (# of red lacunar subsets of [n]) + (# of green lacunar subsets of [n]).

How can we compute the right hand side?

Start with the green lacunar subsets of [n]. They are just the lacunar subsets of [n-1]. So their number is ℓ_{n-1} . In other words,

(# of green lacunar subsets of [n]) = ℓ_{n-1} .

Now to the red lacunar subsets of [n]. Inspired by what we did previously, we could try to set up a bijection between {red lacunar subsets of [n]} and {lacunar subsets of [n-1]}, by removing *n* from the set (or inserting *n* into the set). But this does not work, since inserting *n* into a lacunar subset of [n-1] will not always yield a lacunar set.

However, we can fix this. If we remove *n* from a red lacunar subset of [n], then the result is not just a lacunar subset of [n-1], but actually a lacunar subset of [n-2] (since the presence of *n* in the red subset rules out the presence of n-1by lacunarity). Conversely, inserting *n* into a lacunar subset of [n-2] always results in a red lacunar subset of [n] (since the subset does not contain n-1, and thus the insertion of *n* will not break its lacunarity). Thus, we obtain a bijection

> {red lacunar subsets of [n]} \rightarrow {lacunar subsets of [n-2]}, $S \mapsto S \setminus \{n\}$

{lacunar subsets of
$$[n-2]$$
} \rightarrow {red lacunar subsets of $[n]$ },
 $S \mapsto S \cup \{n\}$.

The bijection principle therefore yields

(# of red lacunar subsets of [n]) = (# of lacunar subsets of [n-2]) = ℓ_{n-2} .

Altogether,

$$\ell_n = (\text{\# of lacunar subsets of } [n])$$

$$= \underbrace{(\text{\# of red lacunar subsets of } [n])}_{=\ell_{n-2}} + \underbrace{(\text{\# of green lacunar subsets of } [n])}_{=\ell_{n-1}}$$

$$= \ell_{n-2} + \ell_{n-1} = \ell_{n-1} + \ell_{n-2}.$$

This proves Claim 1.

As explained above, Proposition 1.4.7 now follows by strong induction. \Box

There is also a second proof of Proposition 1.4.7, which avoids induction but instead sets up a bijection between the lacunar subsets of [n] and the domino tilings of $R_{n+1,2}$. Thus, by the bijection principle, the # of the lacunar subsets equals the # of domino tilings, which we have already computed (it is f_{n+2}). Details of this argument are found in the 2019 notes (Proposition 1.4.9, second proof).

Either way, part (a) of the question is answered.

1.4.5. Counting *k*-element lacunar subsets

Now to part (b):

Proposition 1.4.8. Let $n \in \mathbb{Z}$ and $k \in \mathbb{N}$ be such that $k \leq n + 1$. Then,

(# of *k*-element lacunar subsets of
$$[n]$$
) = $\binom{n+1-k}{k}$.

One way to prove this proposition is by imitating the above inductive proof of Proposition 1.4.7 (or the similar inductive proof of the fact that the # of *k*-element subsets of [n] is $\binom{n}{k}$): Again, a subset of [n] is called red or green if it contains or doesn't contain *n*. Having already done such arguments twice, we won't delve into the details here. Pascal's recurrence saves the day.

However, it is also nice to have a more "inspired" proof. After all, the binomial coefficient $\binom{n+1-k}{k}$ shouldn't come out for no reason! It counts the *k*-element subsets of [n+1-k]. So it would be reasonable to expect a bijection

from {*k*-element lacunar subsets of [n]} to {*k*-element subsets of [n + 1 - k]}.

Such a bijection can indeed be found. Its construction requires a basic fact that I will not prove:

Proposition 1.4.9. Let $m \in \mathbb{N}$. Let *S* be an *m*-element set of integers. Then, there exists a unique *m*-tuple (s_1, s_2, \ldots, s_m) of integers satisfying $\{s_1, s_2, \ldots, s_m\} = S$ and $s_1 < s_2 < \cdots < s_m$.

This is just saying that if you have an *m*-element set of integers, then there is a unique way to list the elements of this set in (strictly) increasing order. Formally speaking, this needs proof, but this is so basic I will not prove it here (a reference can be found in §1.4.5 of the 2019 notes).

As a consequence of Proposition 1.4.9, any *m*-element set of integers can be uniquely written in the form $\{s_1 < s_2 < \cdots < s_m\}$, where the *<*-signs mean that the elements are listed in strictly increasing order (for example, the set $\{2,4,5\}$ can be written as $\{2 < 4 < 5\}$, not as $\{4 < 2 < 5\}$).

Proof of Proposition 1.4.8. If $\{s_1 < s_2 < s_3 < \cdots < s_k\}$ is a *k*-element lacunar subset of [n], then we can move its elements closer to each other (letting s_1 stay put, while s_2 moves one step left, while s_3 moves two steps left, and so on), and the resulting *k* numbers s_1 , $s_2 - 1$, $s_3 - 2$, ..., $s_k - (k - 1)$ will still be distinct and listed in increasing order (because the lacunarity of $\{s_1 < s_2 < s_3 < \cdots < s_k\}$ ensures that any two of the numbers s_1, s_2, \ldots, s_k have a distance of at least 2 between them). Thus, if $\{s_1 < s_2 < s_3 < \cdots < s_k\}$ is a *k*-element lacunar subset of [n], then $\{s_1 < s_2 - 1 < s_3 - 2 < \cdots < s_k - (k - 1)\}$ is a well-defined *k*-element set, and in fact a subset of [n + 1 - k] (since $s_k \le n$ entails $s_k - (k - 1) \le n - (k - 1) = n + 1 - k$).

Hence, we can define a map

{*k*-element lacunar subsets of [n]} \rightarrow {*k*-element subsets of [n+1-k]}, { $s_1 < s_2 < s_3 < \dots < s_k$ } \mapsto { $s_1 < s_2 - 1 < s_3 - 2 < \dots < s_k - (k-1)$ }.

Conversely, we define a map

$$\{k \text{-element subsets of } [n+1-k] \} \to \{k \text{-element lacunar subsets of } [n] \}, \\ \{s_1 < s_2 < s_3 < \dots < s_k\} \mapsto \{s_1 < s_2 + 1 < s_3 + 2 < \dots < s_k + (k-1) \}$$

(this produces a lacunar subset, since we added buffer space between every two consecutive elements, and furthermore it will be a subset of [n] because

 $s_k \le n + 1 - k$ entails $s_k + (k - 1) \le (n + 1 - k) + (k - 1) = n$). These two maps are mutually inverse, and thus are bijections. Hence, by the bijection principle, we have

(# of *k*-element lacunar subsets of [n])

= (# of *k*-element subsets of
$$[n+1-k]$$
) = $\binom{n+1-k}{k}$

(by the combinatorial interpretation of BCs, since $n + 1 - k \ge 0$). Proposition 1.4.8 is proved.

Keep the above bijection in mind - it is useful in many other places!

Now we have solved all three parts of our counting question. As a consequence, we can easily prove a binomial identity we left unproved in Lecture 7:

Proposition 1.4.10. Let $n \in \mathbb{N}$. Then, the Fibonacci number f_{n+1} is

$$f_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k} = \binom{n-0}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots + \binom{n-n}{n}.$$

Proof. Let $m := n - 1 \in \{-1, 0, 1, ...\}$. Then,

(# of lacunar subsets of [m]) = f_{m+2} (by Proposition 1.4.7) = f_{n+1} (since m = n - 1 entails m + 2 = n + 1).

Thus,

$$f_{n+1} = (\# \text{ of lacunar subsets of } [m])$$

$$= \sum_{k=0}^{n} \underbrace{(\# \text{ of } k\text{-element lacunar subsets of } [m])}_{= \binom{m+1-k}{k}}$$

$$(\text{by Proposition 1.4.8)}$$

$$\begin{pmatrix} \text{by the sum rule, since it is easy to see that each lacunar subset of } [m] \text{ has size between 0 and } n \text{ (actually between 0 and } m, \text{ but it is convenient for us to extend this summation to } m+1=n) \end{pmatrix}$$

$$= \sum_{k=0}^{n} \binom{m+1-k}{k} = \sum_{k=0}^{n} \binom{n-k}{k} \text{ (since } m+1=n)$$

$$= \binom{n-0}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots + \binom{n-n}{n}.$$

So Proposition 1.4.10 is proved.

1.4.6. Counting subsets with a odd and b even elements

Here is another instance of counting subsets with a given property:

Proposition 1.4.11. Let $n \in \mathbb{N}$ be even. Let $a, b \in \mathbb{N}$. Then,

(# of subsets of [n] that contain *a* even elements and *b* odd elements)

$$= \binom{n/2}{a} \binom{n/2}{b}.$$

(Here, "*a* even elements" means "exactly *a* even elements", and "*b* odd elements" means "exactly *b* odd elements".)

Next time, we'll prove this. Meanwhile, think about why this is true!