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Math 222 Fall 2022, Lecture 6: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont’d)

1.3. Factorials and binomial coefficients (cont’d)

1.3.3. Fundamental properties of the binomial coefficients (cont’d)

Last time, we proved a first observation about BCs (= binomial coefficients):

Proposition 1.3.5. If n ∈ N and k ∈ R satisfy k > n, then
(

n
k

)
= 0.

Here are some others:1

Proposition 1.3.6 (Upper negation formula). Let n ∈ R and k ∈ Z. Then,(
−n
k

)
= (−1)k

(
n + k − 1

k

)
.

Proof. If k /∈ N, then this boils down to 0 = (−1)k · 0, which is clear.
So WLOG assume that k ∈ N. Then, the definition of binomial coefficients

yields (
−n
k

)
=

(−n) (−n − 1) (−n − 2) · · · (−n − k + 1)
k!

and(
n + k − 1

k

)
=

(n + k − 1) (n + k − 2) (n + k − 3) · · · n
k!

.

These two fractions are equal up to a (−1)k factor, because

• their denominators are the same, and

• their numerators are the same product, except with its factors reversed
and with each factor negated (which is how we get the (−1)k).

Thus, the upper negation formula (Proposition 1.3.6) is proved.

1In the following, I will only sketch the proofs. Detailed proofs can always be found in the
2019 notes (§1.3 to be specific).

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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The upper negation formula can be used to reduce questions about binomial

coefficients
(

n
k

)
with n ∈ {−1,−2,−3, . . .} to questions about those with n ∈

N. Thus, most tables of binomial coefficients that appear in the literature omit
the part with n < 0 and focus on the part with n ≥ 0. This latter part is known
as Pascal’s triangle. The zeroes to the right of the k = n line (these are the
zeroes guaranteed by Proposition 1.3.5) are also omitted. Here is a table of
Pascal’s triangle with a few more rows than we saw last time:

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 2 1
k=3
↙

n = 3 → 1 3 3 1
k=4
↙

n = 4 → 1 4 6 4 1
k=5
↙

n = 5 → 1 5 10 10 5 1
k=6
↙

n = 6 → 1 6 15 20 15 6 1
k=7
↙

n = 7 → 1 7 21 35 35 21 7 1

n = 8 → 1 8 28 56 70 56 28 8 1

Now here are some more properties of Pascal’s triangle. The following the-
orem (known as Pascal’s recurrence, or as the recurrence of the binomial co-
efficients) shows that each entry of this triangle is the sum of its two neighbor
entries above it:

Theorem 1.3.7 (Pascal’s recurrence). For any n ∈ R and k ∈ R, we have(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

Proof. Three cases are possible:
Case 1: We have k /∈ N.
Case 2: We have k = 0.
Case 3: We have k ∈ {1, 2, 3, . . .}.
In Case 1, the claim boils down to 0 = 0 + 0.
In Case 2, the claim boils down to 1 = 0 + 1.
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In Case 3, both k and k − 1 belong to N. Thus, the definition of BCs (=
binomial coefficients) yields(

n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

;(
n − 1
k − 1

)
=

(n − 1) (n − 2) (n − 3) · · · (n − k + 1)
(k − 1)!

;(
n − 1

k

)
=

(n − 1) (n − 2) (n − 3) · · · (n − k)
k!

.

Bringing these fractions to a common denominator, we obtain(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

;(
n − 1
k − 1

)
=

k · (n − 1) (n − 2) (n − 3) · · · (n − k + 1)
k!

;(
n − 1

k

)
=

(n − 1) (n − 2) (n − 3) · · · (n − k)
k!

(since k! = (k − 1)! · k, as we saw last time). So it remains to prove that

n (n − 1) (n − 2) · · · (n − k + 1)
= k · (n − 1) (n − 2) (n − 3) · · · (n − k + 1) + (n − 1) (n − 2) (n − 3) · · · (n − k) .

After cancelling common factors, this boils down to

n = k + (n − k) ,

which is true. So the recurrence formula (Theorem 1.3.7) is proved.

Next comes a very short formula for binomial coefficients, which however
works only under specific conditions:

Theorem 1.3.8 (factorial formula for BCs). Let n ∈ N and k ∈ N be such that
k ≤ n. Then, (

n
k

)
=

n!
k! · (n − k)!

.

Proof. The definition of BCs yields

k! · (n − k)! ·
(

n
k

)
= k! · (n − k)! · n (n − 1) (n − 2) · · · (n − k + 1)

k!
= ((n − k)!) · (n (n − 1) (n − 2) · · · (n − k + 1))
= (1 · 2 · · · · · (n − k)) · (n (n − 1) (n − 2) · · · (n − k + 1))
= 1 · 2 · · · · · n (by reordering the factors of the product)
= n!,
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qed.

Warning: The factorial formula
(

n
k

)
=

n!
k! · (n − k)!

only works when n ∈ N

and k ∈ N and k ≤ n. It does not help you compute
(
−1
1

)
or

(√
2

2

)
or

(
2
3

)
.

It is nice when it works, but it has its limits!

Here is another property of BCs, which manifests itself on Pascal’s triangle
as a vertical symmetry (across the vertical axis in the middle of the triangle):

Theorem 1.3.9 (symmetry of binomial coefficients). For any n ∈ N and k ∈
R, we have (

n
k

)
=

(
n

n − k

)
.

Proof. Let n ∈ N and k ∈ R. We are in one of the following cases:
Case 1: We have k /∈ N.
Case 2: We have k ∈ N but k > n.
Case 3: We have k ∈ N and k ≤ n.
In Case 1, the claim boils down to 0 = 0 (why?).
In Case 2, the claim boils down to 0 = 0 (why?).
In Case 3, we can apply the factorial formula and obtain(

n
k

)
=

n!
k! · (n − k)!

and(
n

n − k

)
=

n!
(n − k)! · (n − (n − k))!

=
n!

(n − k)! · k!
=

n!
k! · (n − k)!

,

which is of course the same number.

Again, a warning: The symmetry
(

n
k

)
=

(
n

n − k

)
does not hold for negative

n or for non-integer n. For example, check that it fails for n = −1 and k = 0.

1.3.4. Binomial coefficients count subsets

The combinatorial meaning of BCs (binomial coefficients) is provided by the
following theorem:

Theorem 1.3.10 (combinatorial interpretation of BCs). Let n ∈ N and k ∈ R.
Let S be an n-element set. Then,(

n
k

)
= (# of k-element subsets of S) .
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Example 1.3.11. (a) Let n = 4 and k = 2 and S = {1, 2, 3, 4}. Then, Theorem
1.3.10 says that (

4
2

)
= (# of 2-element subsets of S) .

Let’s check this: We have
(

4
2

)
= 6, and the 2-element subsets of S are

{1, 2} , {3, 4} , {1, 4} , {1, 3} , {2, 3} , {2, 4} .

(b) Let n and S be as before, and let k = 5. Then, Theorem 1.3.10 says that(
4
5

)
= (# of 5-element subsets of S) .

Let’s check this: We have
(

4
5

)
= 0, and S has no 5-element subsets.

Warning: Theorem 1.3.10 could be used as an alternative definition of BCs, if

we only cared about the case of
(

n
k

)
for n ∈ N exclusively. But it says nothing

about
(
−1
1

)
or

(√
2

2

)
.

We shall prove Theorem 1.3.10 by induction on n. The base case (n = 0) relies

on computing
(

0
k

)
:

Lemma 1.3.12. Let k ∈ R. Then,
(

0
k

)
= [k = 0].

Here we are using the so-called Iverson bracket notation:

Definition 1.3.13. If A is any logical statement, then the integer [A] is defined
to be {

1, if A is true;
0, if A is false.

This integer [A] is called the truth value of A. For example, [1 + 1 = 2] = 1
but [1 + 1 = 1] = 0.

Proof of Lemma 1.3.12. Straightforward and LTTR (see Lemma 1.3.14 in the 2019
notes).

Proof of Theorem 1.3.10. Induct on n:
Base case: We need to prove Theorem 1.3.10 for n = 0. So let n = 0, and let S

be a 0-element set (i.e., the empty set). Then, we must show that(
0
k

)
= (# of k-element subsets of S) .
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But this is clear by computing both sides: The LHS (= left-hand side) is [k = 0]
(by Lemma 1.3.12); the RHS (= right-hand side) is also [k = 0], since the empty
set S has only one subset, namely itself (which is a 0-element subset). So Theo-
rem 1.3.10 is proved for n = 0.

Step: Let m ∈ N. Assume as the IH (= induction hypothesis) that Theorem
1.3.10 holds for n = m. We must prove it for n = m + 1.

So let k ∈ R, and let S be an (m + 1)-element set. We must prove that(
m + 1

k

)
?
= (# of k-element subsets of S) .

(The question mark above the equality sign here just signals that this equality
has not been proved yet.)

Since S is nonempty (because |S| = m + 1 > m ≥ 0), we can pick an element
t ∈ S and consider the m-element set S \ {t}. Let us do this. The IH can then
be applied to S \ {t} instead of S, and we obtain(

m
k

)
= (# of k-element subsets of S \ {t}) and(

m
k − 1

)
= (# of (k − 1) -element subsets of S \ {t}) .

(Note that the IH is a “for all k ∈ R” statement, so we can indeed apply it to
k − 1 instead of k, which is precisely what we have done here to get the second
of these two equalities.)

By Pascal’s recurrence (Theorem 1.3.7), we have(
m + 1

k

)
=

(
m

k − 1

)
+

(
m
k

)
= (# of (k − 1) -element subsets of S \ {t})

+ (# of k-element subsets of S \ {t}) . (1)

So we only need to show that this sum equals (# of k-element subsets of S). At
last, we’re getting to do some combinatorics!

Here is how to show this: We call a subset of S

• red if it contains t, and

• green if it does not contain t.

Thus, each subset of S is either red or green, but not both. So by the sum
rule, we have

(# of k-element subsets of S)
= (# of red k-element subsets of S) + (# of green k-element subsets of S) .
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Now we need to compute the two addends on the RHS.
The green subsets of S are precisely the subsets of S \ {t}. So

(# of green k-element subsets of S)
= (# of k-element subsets of S \ {t}) .

What about the red ones? They are not subsets of S \ {t}, since they do
contain t. However, they are “essentially” (k − 1)-element subsets of S \ {t},
because if you remove the element t from them, you’re left with (k − 1)-element
subsets of S \ {t}. Let us make this rigorous: There is a bijection (= one-to-one-
correspondence)

{red k-element subsets of S} → {(k − 1) -element subsets of S \ {t}} ,
R 7→ R \ {t}

(its inverse map sends each Q to Q ∪ {t}). Informally, this is just saying that
picking a red k-element subset of S is the same as picking a (k − 1)-element
subset of S \ {t} and inserting t into it. By the bijection principle, this bijection
entails that

(# of red k-element subsets of S)
= (# of (k − 1) -element subsets of S \ {t}) .

Combining what we have proved, we get

(# of k-element subsets of S)
= (# of red k-element subsets of S) + (# of green k-element subsets of S)
= (# of (k − 1) -element subsets of S \ {t}) + (# of k-element subsets of S \ {t})

=

(
m + 1

k

)
(by (1)) .

This is precisely what we wanted to show in order to complete the induction
step. Thus, Theorem 1.3.10 is proved by induction.

We take a moment to mention some terminology that we will not use: When S is a set
and k is an integer, the k-element subsets of S are sometimes called the k-combinations
of S (or, more precisely, the k-combinations of S without repetition2). This notation
was widespread until the 1950s, when it fell out of use because “k-element subsets” (or
“k-subsets” for short) is clearer and more consistent with other parts of mathematics.
Nevertheless, be prepared to occasionally see the old “k-combinations” terminology in
the literature.

2The “k-combinations with repetition” are the size-k multisubsets of S, which we will define
and study in §2.9.
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1.3.5. Integrality and arithmetic properties

Here is something that looks completely natural when you look at Pascal’s
triangle, but actually is not obvious:

Theorem 1.3.14 (integrality of binomial coefficients). For any n ∈ Z and

k ∈ R, the number
(

n
k

)
is an integer.

Proof. If n ≥ 0, then this number
(

n
k

)
counts the k-element subsets of [n] (by

Theorem 1.3.10), and thus is obviously an integer. The case n < 0 can easily be
reduced to the case n ≥ 0 using upper negation. (See the 2019 notes for details,
as well as for an alternative proof.)

Proposition 1.3.15. Let p be a prime number, and let k ∈ {1, 2, . . . , p − 1}.

Then, p |
(

p
k

)
.

Proof. We need to know one basic fact about prime numbers: If the prime num-
ber p divides a product a1a2 · · · am of m integers a1, a2, . . . , am, then it must
divide (at least) one of these m integers a1, a2, . . . , am. We shall call this fact
“Euclid’s lemma”, although this name is more commonly used for the partic-
ular case m = 2 (but that doesn’t make a big difference, since the general case
can easily be derived by induction from the m = 2 case).

Now, p divides none of the k integers 1, 2, . . . , k (since all these k integers
are > 0 but < p). Hence, p cannot divide their product 1 · 2 · · · · · k either (as
otherwise, Euclid’s lemma would yield that p divides one of these k integers).
In other words, p cannot divide k!.

However, the definition of BCs yields(
p
k

)
=

p (p − 1) (p − 2) · · · (p − k + 1)
k!

,

so that k! ·
(

p
k

)
= p (p − 1) (p − 2) · · · (p − k + 1). This entails that p divides

the product k! ·
(

p
k

)
(since there is a p factor on the RHS of this equality).

Hence, by Euclid’s lemma, p must divide at least one of the two factors k! and(
p
k

)
. Since we already know that p cannot divide k!, we thus conclude that p

divides
(

p
k

)
. This proves Proposition 1.3.15.

https://en.wikipedia.org/wiki/Euclids_lemma
https://en.wikipedia.org/wiki/Euclids_lemma
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