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Math 222 Fall 2022, Lecture 5: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont’d)

1.2. Sums of powers

1.2.3. Some rules for sums (cont’d)

The last summation rule we saw last time says the following:

• Splitting a sum by a value of a function: Let S and W be two finite sets.
Let f : S → W be a map. Let as be a number for each s ∈ S. Then,

∑
s∈S

as = ∑
w∈W

∑
s∈S;

f (s)=w

as (1)

(the right hand side is a sum of sums, which is why you are seeing two ∑
signs side by side).

This splitting rule can be used to derive a slightly more general sum rule for
combinatorics:

Theorem 1.2.4 (the sum rule, in summation-sign form). Let S and W be two
finite sets. Let f : S → W be a map. Then,

|S| = ∑
w∈W

(# of s ∈ S satisfying f (s) = w) .

For example, if you have a finite set of socks, each of which is either red or
green or blue, then

(# of socks) = (# of red socks) + (# of green socks) + (# of blue socks) .

(This follows by applying Theorem 1.2.4 to S = {socks}, W = {colors} and
f (s) = (color of the sock s).)

Proof of Theorem 1.2.4. Applying (1) to as = 1, we find

∑
s∈S

1 = ∑
w∈W

∑
s∈S;

f (s)=w

1.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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However, in view of the equalities

∑
s∈S

1 = |S| · 1 = |S| and

∑
s∈S;

f (s)=w

1 = (# of s ∈ S satisfying f (s) = w) · 1

= (# of s ∈ S satisfying f (s) = w) ,

this can be rewritten as

|S| = ∑
w∈W

(# of s ∈ S satisfying f (s) = w) ,

and this is precisely the claim of Theorem 1.2.4.

1.2.4. A few words about finite products

Finite products are defined in the same way as finite sums, but using the oper-
ation · instead of +.

The product of a family of numbers as is denoted by ∏
s∈S

as.

Almost all rules for finite sums have analogues for finite products.1

The analogue of an empty sum ∑
s∈∅

as is an empty product ∏
s∈∅

as. This empty

product is defined to be 1. In particular, this entails that x0 = 1 for any number
x, because the m-th power xm (for m ∈ N) is defined to be the finite product

xx · · · x︸ ︷︷ ︸
m many x’s

=
m
∏
i=1

x.

1.2.5. The sums 1k + 2k + ... + nk

So we know that the sum of the first n positive integers is 1 + 2 + · · · + n =
n (n + 1)

2
for any n ∈ N. What about summing higher powers (e.g., squares or

cubes) of the first n positive integers?

1Why “almost”? Only because of one trivial exception: Finite sums satisfy the “generalized
distributivity law” ∑

s∈S
λas = λ ∑

s∈S
as (for any number λ and any numbers as). The analogue

of this law for products takes this form

∏
s∈S

aλ
s =

(
∏
s∈S

as

)λ

,

but holds only for λ ∈ N (or for λ ∈ Z if we assume that all as are nonzero). If we try to
apply it (say) to λ = 1/2, we get wrong results such as (−1)1/2 (−1)1/2 = 11/2.
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Theorem 1.2.5. Let n ∈ N. Then,

12 + 22 + · · ·+ n2 =
n (n + 1) (2n + 1)

6
.

Theorem 1.2.6. Let n ∈ N. Then,

13 + 23 + · · ·+ n3 =
n2 (n + 1)2

4
.

These theorems can again be proved by induction or in various other ways
(see §1.2.5 in the 2019 notes for references).

There are similar formulas for sums of 4th and 5th powers. Using the sum-
mation sign:

n

∑
i=1

i0 = n;

n

∑
i=1

i1 =
n (n + 1)

2
;

n

∑
i=1

i2 =
n (n + 1) (2n + 1)

6
;

n

∑
i=1

i3 =
n2 (n + 1)2

4
;

n

∑
i=1

i4 =
n (2n + 1) (n + 1)

(
3n + 3n2 − 1

)
30

;

n

∑
i=1

i5 =
n2 (n + 1)2 (2n + 2n2 − 1

)
12

.

How does this continue (if it does)? It looks like for any given (constant) k ∈ N,

the sum
n
∑

i=1
ik can be written as a degree-(k + 1) polynomial in n (as long as

n ∈ N). Why, and how do we find this polynomial?
Here is an answer, which we will prove in the next chapter:

Theorem 1.2.7. Let n ∈ N, and let k be a positive integer. Then,

n

∑
i=1

ik =
k

∑
i=0

sur (k, i) ·
(

n + 1
i + 1

)
,

where
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• sur (k, i) denotes the # of surjective (= onto) maps from [k] to [i];

•
(

n + 1
i + 1

)
is an instance of a binomial coefficient. The binomial coeffi-

cient
(

m
k

)
is defined by

(
m
k

)
=

m (m − 1) (m − 2) · · · (m − k + 1)
k (k − 1) (k − 2) · · · 1

for any number m and any k ∈ N (we will soon extend this definition
to all k); for fixed k, this is a degree-k polynomial in m.

This theorem is actually useful in computing
n
∑

i=1
ik: Even if the right hand

side is given as a finite sum, this sum has only k + 1 addends, so it does not get
more complicated with increasing n.

For example, we can rederive our above formula for
n
∑

i=1
i2 from Theorem

1.2.7: Namely, plugging k = 2 into Theorem 1.2.7, we get

n

∑
i=1

i2

=
2

∑
i=0

sur (2, i) ·
(

n + 1
i + 1

)
= sur (2, 0)︸ ︷︷ ︸

=0
(since there are no

surjective maps [2]→[0],
or any maps [2]→[0]

for that matter)

·
(

n + 1
0 + 1

)
+ sur (2, 1)︸ ︷︷ ︸

=1
(since there is exactly

one surjective
map [2]→[1])

·
(

n + 1
1 + 1

)
+ sur (2, 2)︸ ︷︷ ︸

=2
(since there are
two surjective
maps [2]→[2])

·
(

n + 1
2 + 1

)

= 0 ·
(

n + 1
0 + 1

)
+ 1 ·

(
n + 1
1 + 1

)
+ 2 ·

(
n + 1
2 + 1

)
=

(
n + 1
1 + 1

)
+ 2 ·

(
n + 1
2 + 1

)
=

(
n + 1

2

)
+ 2 ·

(
n + 1

3

)
=

(n + 1) n
2 · 1

+ 2 · (n + 1) n (n − 1)
3 · 2 · 1

=
n (n + 1) (2n + 1)

6
.

So we recover our formula for the sum of the first n squares (Theorem 1.2.5).
We won’t prove Theorem 1.2.7 right now, but we will take a closer look at the

expressions that appear in it: first, the factorials and the binomial coefficients.
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1.3. Factorials and binomial coefficients

1.3.1. Factorials

Definition 1.3.1. For any n ∈ N, we define a positive integer n! by

n! = 1 · 2 · 3 · · · · · n = n · (n − 1) · (n − 2) · · · · · 1 =
n

∏
i=1

i.

This integer n! is called “n factorial”.

So we have

0! = 1 · 2 · · · · · 0 =
0

∏
i=1

i = (empty product) = 1;

1! = 1 = 1;
2! = 1 · 2 = 2;
3! = 1 · 2 · 3 = 6;
4! = 1 · 2 · 3 · 4 = 24;
5! = 1 · 2 · 3 · 4 · 5 = 120;
6! = 720;
7! = 5 040;
8! = 40 320.

(Yes, these numbers grow fast! See Stirling’s approximation for about how fast
they grow.)

Factorials can be computed recursively:

Proposition 1.3.2. If n is a positive integer, then n! = (n − 1)! · n.

Proof. Just split off the factor n from n! = 1 · 2 · · · · · n. The remaining factors
form a product that equals (n − 1)!.

Factorials can be used to describe quite a few other things; the following fun
exercise (Exercise 1.3.1 in the 2019 notes) is a simple example:

Exercise 1. Let n ∈ N. Prove that the product of the first n odd positive
integers is

1 · 3 · 5 · · · · · (2n − 1) =
(2n)!
2nn!

.

https://en.wikipedia.org/wiki/Stirlings_approximation
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1.3.2. Definition of the binomial coefficients

We can now define binomial coefficients in the generality I want to define them
in:

Definition 1.3.3. Let n and k be any two numbers (i.e., real or complex num-

bers). We define a number
(

n
k

)
as follows:

• If k ∈ N (recall that 0 ∈ N), then(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

.

• If k /∈ N, then (
n
k

)
= 0.

This number
(

n
k

)
is pronounced “n choose k” and is called a binomial

coefficient.

This definition is standard across much of the literature, but some authors
nevertheless disagree with it, mostly in situations when n is negative or k is a
non-integer. So be careful with some texts and papers.

Some authors use the notations Cn
k or nCk or nCk for

(
n
k

)
.

Do not mistake the binomial coefficient
(

n
k

)
for the size-2 vector

(
n
k

)
.

They look very similar (the only real difference is the spacing); fortunately they
rarely appear in the same context.

The above definition of
(

n
k

)
is worth memorizing. The product

n (n − 1) (n − 2) · · · (n − k + 1)

in the numerator is a product of k factors, the first of which is n while each
following factor equals the previous factor minus 1. Let’s apply the definition
to compute some examples:

Example 1.3.4. (a) For any number n, we have(
n
0

)
=

(empty product)
0!

=
1
1
= 1.

(b) For any number n, we have(
n
1

)
=

n
1!

=
n
1
= n.
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(c) For any number n, we have(
n
2

)
=

n (n − 1)
2!

=
n (n − 1)

2
.

(d) For any number n, we likewise have(
n
3

)
=

n (n − 1) (n − 2)
6

.

(e) For any k ∈ N, we have(
−1
k

)
=

(−1) (−1 − 1) (−1 − 2) · · · (−1 − k + 1)
k!

=
(−1) (−2) (−3) · · · (−k)

k!
=

(−1)k · 1 · 2 · · · · · k
k!

=
(−1)k · k!

k!
= (−1)k .

(f) We have (
2√
2

)
= 0

(
since

√
2 /∈ N

)
but (√

2
2

)
=

√
2
(√

2 − 1
)

2
̸= 0.

It would be nice to have the binomial coefficients all nicely tabulated; alas,
there are infinitely many of them, so the table would take a bit too much space.

Here is a table of the binomial coefficients
(

n
k

)
for all n ∈ {−3,−2,−1, . . . , 6}

and some of the k ∈ {0, 1, 2, 3, 4, 5} (this is a somewhat unusual table, since the
values of n correspond to the rows, but the values of k correspond to diagonals,
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not columns):

k=0
↙

k=1
↙

k=2
↙

k=3
↙

n = −3 → 1 −3 6 −10
n = −2 → 1 −2 3 −4
n = −1 → 1 −1 1 −1 1
n = 0 → 1 0 0 0 0
n = 1 → 1 1 0 0 0 0
n = 2 → 1 2 1 0 0 0
n = 3 → 1 3 3 1 0 0 0
n = 4 → 1 4 6 4 1 0 0
n = 5 → 1 5 10 10 5 1 0 0
n = 6 → 1 6 15 20 15 6 1 0

1.3.3. Fundamental properties of the binomial coefficients

By looking closely at this table, we can spot several important properties of
binomial coefficients. Here, for one, is the explanation for the many 0’s in the
right half of the table:

Proposition 1.3.5. If n ∈ N and k ∈ R satisfy k > n, then
(

n
k

)
= 0.

Proof. Let n ∈ N and k ∈ R satisfy k > n. If k /∈ N, then
(

n
k

)
= 0 by definition.

So assume WLOG that k ∈ N. Then, the definition of
(

n
k

)
yields

(
n
k

)
=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

.

However, k > n and k ∈ N entail that one of the factors n, n − 1, n − 2, . . . , n −
k + 1 in the numerator is 0. So the whole product is 0, and with it

(
n
k

)
.

Warning: Proposition 1.3.5 does not hold if we drop the n ∈ N requirement.

For instance,
(
−1
2

)
̸= 0 even though 2 > −1.
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