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Math 222 Fall 2022, Lecture 3: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont’d)

1.1. Domino tilings (cont’d)

1.1.5. The m = 2 case and the Fibonacci sequence (cont’d)

Recall how we defined the Fibonacci sequence last time:

Definition 1.1.9. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

Here are the first few Fibonacci numbers (= entries of the Fibonacci se-
quence):

n 0 1 2 3 4 5 6 7 8 9 · · ·
fn 0 1 1 2 3 5 8 13 21 34 · · ·

.

Last time we proved the following:

Proposition 1.1.10. We have dn,2 = fn+1 for each n ∈ N.

Is this an answer to the counting question for Rn,2 ? How easy is it to compute
a given Fibonacci number fn ?

The recursive definition is good but maybe something better exists? Yes, as
it turns out:

Theorem 1.1.11 (Binet’s formula). For each n ∈ N, we have

fn =
1√
5
(φn − ψn) ,

where

φ =
1 +

√
5

2
≈ 1.618 . . . and ψ =

1 −
√

5
2

≈ −0.618 . . . .

A few remarks are in order:

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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• The numbers φ and ψ are the two roots of the quadratic polynomial x2 −
x − 1. In other words, they are the solutions of the equation x2 = x + 1.

• Binet’s formula can be used to compute fn, but you have to be careful.
Numerically computing φn − ψn will often (for n > 100 or so) be marred
by progressively worse approximation errors, and you will get a wrong
result for fn even if you round to the nearest integer. The correct way to
use Binet’s formula is to work algebraically – i.e., perform exact compu-
tations with numbers of the form a + b

√
5 where a, b ∈ Q. See the 2019

notes for a bit more detail on how this works.

• Yes, it’s a strange thing: fn is a nonnegative integer, but the explicit for-
mula involves irrationalities. But it’s not the only time that something like
this happens in mathematics.

Proof of Theorem 1.1.11. There is a straightforward proof by strong induction
(same idea as in the last proof we gave): We must show that the two sequences

( f0, f1, f2, . . .) and
(

1√
5

(
φ0 − ψ0

)
,

1√
5

(
φ1 − ψ1

)
,

1√
5

(
φ2 − ψ2

)
, . . .

)
are identical. To do so, it suffices to check that

• the first two entries of both sequences are the same;

• both sequences satisfy the same recursive rule, viz., that each entry (start-
ing with the third entry) equals the sum of the preceding two entries.

This is just a matter of computation. The second part boils down to showing
that

1√
5
(φn − ψn) =

1√
5

(
φn−1 − ψn−1

)
+

1√
5

(
φn−2 − ψn−2

)
for each n ≥ 2; but this follows from

φn = φn−1 + φn−2 and ψn = ψn−1 + ψn−2.

So Binet’s formula is proved. The question of how to find such a formula is
more interesting, but we won’t discuss it for now. The theory behind this is the
theory of linear recurrences.

With Binet’s formula, we have an explicit expression for dn,2, so our counting
problem is solved for the n × 2-rectangle Rn,2.

1.1.6. Kasteleyn’s formula (teaser)

What about larger rectangles? Here are two recursive formulas for domino
tilings of Rn,3 and Rn,4:
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Proposition 1.1.12. We have

dn,3 = 4dn−2,3 − dn−4,3 for each n ≥ 4.

Proposition 1.1.13. We have

dn,4 = dn−1,4 + 5dn−2,4 + dn−3,4 − dn−4,4 for each n ≥ 4.

These are harder to prove (and also messier) than our dn,2 recurrence; we will
not show the proofs here. As you may have guessed, there is a pattern here: For
any fixed m ∈ N, the sequence (d0,m, d1,m, d2,m, . . .) follows a linear recursion
(i.e., for any n sufficiently high, dn,m can be written as a constant-term linear
combination of dk,m’s with k < n), but the recursion gets more complicated the
larger m is. As it comes to computing dn,m in general, this is likely a dead end.

This does not mean, however, that the domino tiling counting problem is
hopeless! In 1961, P. W. Kasteleyn (a physicist) found an explicit (in an appro-
priate sense) formula for dn,m that holds in full generality:

Theorem 1.1.14 (Kasteleyn’s formula). Assume that m is even and n ≥ 1.
Then,

dn,m = 2mn/2
m/2

∏
j=1

n

∏
k=1

√(
cos

jπ
m + 1

)2

+

(
cos

kπ

n + 1

)2

.

(Here, we are using the product sign ∏: That is, if a1, a2, . . . , ap are any num-

bers, then
p

∏
i=1

ai means the product a1a2 · · · ap. The presence of two product

signs directly following one another means that we are taking a product of
products.)

A few questions suggest themselves here:

• Why do cosines and π appear in a formula for a nonnegative integer?

• Why was a physicist studying domino tilings of a rectangle?

• How could one prove such a formula?

I will only spend a few words on either question, as this is graduate course
material (perhaps even best left to a topics course):

• Why was a physicist studying domino tilings: A domino tiling is a
(rather idealized) model for a liquid consisting of “dimers” (polymers
that take up two adjacent sites in a rectangular lattice; these are exactly
our dominos). Kasteleyn was studying the adsorption of molecules on a
surface, so the lattice is indeed 2-dimensional and can be modeled by our
rectangle Rn,m.
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• How is Theorem 1.1.14 proved: Using some advanced linear algebra,
specifically the notion of the Pfaffian of a skew-symmetric matrix (a variant
of the determinant).

• Why do cosines and π appear in the formula: Because the matrix in
question is a Kronecker product of two tridiagonal matrices, and the latter

matrices are known to have eigenvalues
(

cos
jπ

k + 1

)2

. The determinant

of a matrix can be computed as the product of its eigenvalues, and the
Pfaffian of a skew-symmetric matrix can be computed as the square root
of its determinant (at least if it is ≥ 0).

We won’t even get close to the actual proof of Theorem 1.1.14, but it is out-
lined or even exposed in full in some texts. Two references are given in my
2019 notes (Subsection 1.1.6).

Theorem 1.1.14 might appear like a pie-in-the-sky, but it can actually be used
to compute dn,m. For instance, it yields

d8,8 = 12 988 816.

This is the answer to the question “how many ways are there to tile a chess-
board with dominos?”. Good luck finding all these tilings!

1.1.7. Axisymmetric domino tilings

Here is a variant of the problem of counting the domino tilings of Rn,2:

Exercise 1. Let n ∈ N. Say that a domino tiling T of Rn,2 is axisymmetric if
reflecting it across the vertical axis of symmetry of Rn,2 leaves it unchanged.

For example, the tilings

and

are not axisymmetric (indeed, reflecting them across the vertical line trans-
forms them into one another, and they are not the same), but the tilings

and

are axisymmetric.
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For instance, let us list the axisymmetric domino tilings for Rn,2 when n is
small:

n axisymmetric domino tilings their
number

0 1

1 1

2 , 2

3 1

4 , , 3

.

How many axisymmetric domino tilings T of Rn,2 are there?

Answer: {
fn/2+2, if n is even;
f(n+1)/2, if n is odd.

See the 2019 notes (Subsection 1.1.7) for how to prove this. The main idea is
to distinguish the cases n even and n odd, and consider the “left half” of the
rectangle.

1.1.8. Tiling rectangles with k-bricks

An obvious generalization of dominos are k-bricks:
Fix a positive integer k for the rest of this section. Define a k-brick to be a set

of k squares stacked upon each other either vertically or horizontally. In other
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words, it is a set of the form

{(i, j) , (i + 1, j) , . . . , (i + k − 1, j)} = ︸ ︷︷ ︸
horizontal k-brick

or

{(i, j) , (i, j + 1) , . . . , (i, j + k − 1)} =

︸︷︷︸
vertical k-brick

.

Which rectangles Rn,m can be tiled with k-bricks? Here is an answer:

Proposition 1.1.15. Let n, m ∈ N and let k be a positive integer. Then, the
rectangle Rn,m has a k-brick tiling if and only if we have k | m or k | n.

Proof. See the 2019 notes (Subsection 1.1.8).
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