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Math 222 Fall 2022, Lecture 3: Introduction

website: https://www.cip.ifi.lmu.de/ grinberg/t/22fco

1. Introduction (cont’d)

1.1. Domino tilings (cont’d)
1.1.5. The m = 2 case and the Fibonacci sequence (cont'd)

Recall how we defined the Fibonacci sequence last time:

Definition 1.1.9. The Fibonacci sequence is the sequence (fo, f1, f,...) of
nonnegative integers defined recursively by

fo=0, fi=1, and fu=fu-1+ fnforalln > 2.

Here are the first few Fibonacci numbers (= entries of the Fibonacci se-
quence):

n(|0/1]2|3/4(5|6|7 |89
fullO|1]112]3]5]8|13|21 |34

Last time we proved the following;:
| Proposition 1.1.10. We have d,,» = f, 41 for each n € IN.

Is this an answer to the counting question for R, » ? How easy is it to compute
a given Fibonacci number f,, ?

The recursive definition is good but maybe something better exists? Yes, as
it turns out:

Theorem 1.1.11 (Binet’s formula). For each n € IN, we have

_ 1 n n
where
1 —
¢:1+2\@z1.618... and = 2\/5%—0.618....

A few remarks are in order:
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e The numbers ¢ and 1 are the two roots of the quadratic polynomial x> —
x — 1. In other words, they are the solutions of the equation x*> = x + 1.

* Binet’s formula can be used to compute f,, but you have to be careful.
Numerically computing ¢" — " will often (for n > 100 or so) be marred
by progressively worse approximation errors, and you will get a wrong
result for f, even if you round to the nearest integer. The correct way to
use Binet’s formula is to work algebraically — i.e., perform exact compu-
tations with numbers of the form a + bv/5 where a,b € Q. See the 2019
notes for a bit more detail on how this works.

* Yes, it’s a strange thing: f, is a nonnegative integer, but the explicit for-
mula involves irrationalities. But it’s not the only time that something like
this happens in mathematics.

Proof of Theorem|1.1.11} There is a straightforward proof by strong induction
(same idea as in the last proof we gave): We must show that the two sequences

1o oy 1/ ooy 1o oo
(f01f1’f2/"') and (\/5(4) l[)), \/5<(P 4)>' \/g(q) 4])/
are identical. To do so, it suffices to check that

¢ the first two entries of both sequences are the same;

* both sequences satisfy the same recursive rule, viz., that each entry (start-
ing with the third entry) equals the sum of the preceding two entries.

This is just a matter of computation. The second part boils down to showing

that
1

1 1
- no__ gy — _~ n—-1_ n—1 - n—2 __ . n—2
N \/g(q) ¥ )+¢5(¢ ¥ )
for each n > 2; but this follows from
(Pn — (Pn—l + g011—2 and wn — l/)n_l + 1Pn—Z.
]

So Binet’s formula is proved. The question of how to find such a formula is
more interesting, but we won’t discuss it for now. The theory behind this is the
theory of linear recurrences.

With Binet’s formula, we have an explicit expression for d;, 5, so our counting
problem is solved for the n x 2-rectangle R, ».

1.1.6. Kasteleyn's formula (teaser)

What about larger rectangles? Here are two recursive formulas for domino
tilings of R, 3 and R, 4:
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Proposition 1.1.12. We have

dn,3 = 4dn_2,3 — dn,4/3 for each n >4,

Proposition 1.1.13. We have

Apa =dy_14+5dy_04+dy_34—dy_44 for each n > 4.

These are harder to prove (and also messier) than our d,, ; recurrence; we will
not show the proofs here. As you may have guessed, there is a pattern here: For
any fixed m € IN, the sequence (dgum, d1m, d2,m, - ..) follows a linear recursion
(i.e., for any n sufficiently high, d, ,; can be written as a constant-term linear
combination of d ,,'s with k < n), but the recursion gets more complicated the
larger m is. As it comes to computing d,, », in general, this is likely a dead end.

This does not mean, however, that the domino tiling counting problem is
hopeless! In 1961, P. W. Kasteleyn (a physicist) found an explicit (in an appro-
priate sense) formula for d, ;,, that holds in full generality:

Theorem 1.1.14 (Kasteleyn’s formula). Assume that m is even and n > 1.
Then,

m/2 n . 2 2
T km
dy = 2mn/2 (cos J ) + (COS ) )
(Here, we are using the product sign [[: That is, if a4, 4y, ..., 4, are any num-

p
bers, then [] a; means the product aja; - - - a,. The presence of two product

i=1
signs directly following one another means that we are taking a product of
products.)

A few questions suggest themselves here:
¢ Why do cosines and 7t appear in a formula for a nonnegative integer?
* Why was a physicist studying domino tilings of a rectangle?
* How could one prove such a formula?

I will only spend a few words on either question, as this is graduate course
material (perhaps even best left to a topics course):

* Why was a physicist studying domino tilings: A domino tiling is a
(rather idealized) model for a liquid consisting of “dimers” (polymers
that take up two adjacent sites in a rectangular lattice; these are exactly
our dominos). Kasteleyn was studying the adsorption of molecules on a
surface, so the lattice is indeed 2-dimensional and can be modeled by our
rectangle Ry, ;.
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* How is Theorem [1.1.14] proved: Using some advanced linear algebra,
specifically the notion of the Pfaffian of a skew-symmetric matrix (a variant
of the determinant).

e Why do cosines and 7t appear in the formula: Because the matrix in
question is a Kronecker product of two tridiagonal matrices, and the latter

- 2
. . 7T .
matrices are known to have eigenvalues (cos k]—|— 1) . The determinant

of a matrix can be computed as the product of its eigenvalues, and the
Pfaffian of a skew-symmetric matrix can be computed as the square root
of its determinant (at least if it is > 0).

We won’t even get close to the actual proof of Theorem but it is out-
lined or even exposed in full in some texts. Two references are given in my
2019 notes (Subsection 1.1.6).

Theorem might appear like a pie-in-the-sky, but it can actually be used
to compute d,, ;. For instance, it yields

dgg = 12 988 816.

This is the answer to the question “how many ways are there to tile a chess-
board with dominos?”. Good luck finding all these tilings!

1.1.7. Axisymmetric domino tilings

Here is a variant of the problem of counting the domino tilings of R, »:

Exercise 1. Let n € IN. Say that a domino tiling T of R, > is axisymmetric if
reflecting it across the vertical axis of symmetry of R, » leaves it unchanged.
For example, the tilings

and

are not axisymmetric (indeed, reflecting them across the vertical line trans-
forms them into one another, and they are not the same), but the tilings

and

are axisymmetric.
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For instance, let us list the axisymmetric domino tilings for R, » when 7 is
small:
) . . - their
n | axisymmetric domino tilings
number

0 1
1 1
2 , 2
3 1
4 , , 3

How many axisymmetric domino tilings T of R, > are there?

Answer:
fu/242, if nis even;
f(n+1)/2, if n is odd.

See the 2019 notes (Subsection 1.1.7) for how to prove this. The main idea is
to distinguish the cases n even and n odd, and consider the “left half” of the
rectangle.

1.1.8. Tiling rectangles with k-bricks

An obvious generalization of dominos are k-bricks:
Fix a positive integer k for the rest of this section. Define a k-brick to be a set
of k squares stacked upon each other either vertically or horizontally. In other
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words, it is a set of the form

(G,j), (i+17), ..., (i+k—1,j)} = or

-

horizontal k-brick

{@7), Gj+1), ..., (Lj+k=1)} =

S
vertical k-brick

Which rectangles R, ;,; can be tiled with k-bricks? Here is an answer:

Proposition 1.1.15. Let n,m € IN and let k be a positive integer. Then, the
rectangle R, », has a k-brick tiling if and only if we have k | m or k | n.

Proof. See the 2019 notes (Subsection 1.1.8). O
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