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Math 222 Fall 2022, Lecture 2: Introduction

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

1. Introduction (cont’d)

1.1. Domino tilings (cont’d)

1.1.2. The odd-by-odd case and the sum rule

Let us first handle a particularly simple case of our counting problem:

Proposition 1.1.1. Assume that n and m are both odd. Then, dn,m = 0.

Proof. The total number of squares in Rn,m is nm, which is odd (since n and
m are odd). However, each domino has an even number of squares (namely,
2). So any shape that can be tiled by dominos must also have an even number
of squares (since a sum of even numbers is even). But Rn,m does not. So Rn,m
cannot be tiled by dominos. In other words, the # of ways to tile it is 0. But this
is saying precisely that dn,m = 0.

This proof rests upon two fundamental principles, which are worth stating
at least once.

The first one is the sum rule:

Theorem 1.1.2 (sum rule). If a finite set S is the union of k disjoint sets
S1, S2, . . . , Sk, then

|S| = |S1|+ |S2|+ · · ·+ |Sk| .

In other words, for any k disjoint finite sets S1, S2, . . . , Sk, we have

|S1 ∪ S2 ∪ · · · ∪ Sk| = |S1|+ |S2|+ · · ·+ |Sk| .

The other principle we used is the following:

Theorem 1.1.3 (product rule for 2 sets). If X and Y are two finite sets, then
X × Y is a finite set with size

|X × Y| = |X| · |Y| .

So here is our above proof of Proposition 1.1.1, formalized:

Proof of Proposition 1.1.1 (formal version). Let S be a domino tiling of Rn,m, where
n and m are odd. Let S1, S2, . . . , Sk be the distinct dominos in S. Since the
dominos in a domino tiling are disjoint, we then have

|S1 ∪ S2 ∪ · · · ∪ Sk| = |S1|+ |S2|+ · · ·+ |Sk| (by the sum rule) .

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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However, since the dominos in a domino tiling of Rn,m cover all of Rn,m, we
have S1 ∪ S2 ∪ · · · ∪ Sk = Rn,m. So the previous equality can be rewritten as

|Rn,m| = |S1|︸︷︷︸
=2

+ |S2|︸︷︷︸
=2

+ · · ·+ |Sk|︸︷︷︸
=2

= 2k,

which is even. On the other hand, from1 Rn,m = [n]× [m], we obtain

|Rn,m| = |[n]× [m]| = |[n]|︸︷︷︸
=n

· |[m]|︸︷︷︸
=m

(by the product rule)

= nm,

which is odd (since n and m are both odd). Comparing these two equalities,
we see that |Rn,m| is both even and odd, which is impossible.

So we have found a contradiction for each domino tiling of Rn,m. This shows
that there are no domino tilings of Rn,m. In other words, dn,m = 0. Thus,
Proposition 1.1.1 is proved again.

Usually, we won’t formalize proofs like this, but I have deliberately done this
here, so you know which principles underlie the simple intuitive argument we
gave above. Any valid proof in combinatorics, no matter how colloquially it is
explained, can be formalized into a rigorous argument based on set-theoretical
foundations.

1.1.3. The symmetry and the bijection rule

Next, let us show a symmetry property of our tiling numbers dn,m:

Proposition 1.1.4. Let n, m ∈ N. Then, dn,m = dm,n.

Proof. The idea is very simple: The rectangle Rm,n is just the rectangle Rn,m,
flipped across the diagonal (i.e., the line with equation x = y). Thus, any
domino tiling of Rn,m can be likewise flipped, and this yields a domino tiling
of Rm,n; and vice versa. Here is an example:

flip−→ .

This shows that the domino tilings of Rn,m are in one-to-one correspondence
with the domino tilings of Rm,n. Hence, the # of the former equals the # of the
latter. In other words, dn,m = dm,n.

1Recall that [k] means the set {1, 2, . . . , k}.
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Again, let me spell out the formal details of this argument (at least some of
them) to exhibit another fundamental principle of combinatorics that underlies
it. The principle says that if there is a one-to-one correspondence between the
elements of some set and the elements of another set, then these two sets have
the same size. More formally:

Theorem 1.1.5 (bijection principle). If X and Y are two sets, and if f : X → Y
is a bijective map (i.e., a bijection, i.e., a one-to-one correspondence), then

|X| = |Y| .

Let me recall the definitions of in-/sur-/bijectivity, since these concepts are
commonly known under other names:

• A map f : X → Y is said to be injective if it sends distinct elements to
distinct elements (i.e., if it has the property that x1 ̸= x2 implies f (x1) ̸=
f (x2)). This is also known as a one-to-one map.

• A map f : X → Y is said to be surjective if each element of Y is a value
of f (i.e., if it has the property that for each y ∈ Y, there exists an x ∈ X
such that f (x) = y). This is also known as an onto map.

• A map f : X → Y is said to be bijective if it is both injective and surjective.
This is also known as a one-to-one correspondence. It is important to
keep in mind that a map is bijective if and only if it is invertible (i.e., has
an inverse map).

So let me sketch how the above proof of Proposition 1.1.4 can be made formal:

Proof of Proposition 1.1.4 (formal version). We want to apply the bijection princi-
ple to

X = {domino tilings of Rn,m} and
Y = {domino tilings of Rm,n} .

To do so, we need to construct a bijection from X to Y. The idea of this
bijection is, of course, flipping the domino tiling across the x = y diagonal.
What does this mean formally? Well, a domino tilings consists of dominos, and
a domino consists of squares, so let us first see how flipping works on squares.

To flip a square (i, j) across the diagonal simply means to replace it by (j, i).
Thus, what we mean by “flipping squares” is a bijective map

F : Rn,m → Rm,n,
(i, j) 7→ (j, i) .
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It is pretty clear that this map is bijective (its inverse map sends each (j, i) to
(i, j)).

Next, let us define what it means to flip a domino: This means flipping both
squares in the domino. That is, “flipping dominos” is a bijective map

Fdom : {dominos inside Rn,m} → {dominos inside Rm,n} ,
D 7→ {F (s) | s ∈ D} .

Finally, let us define flipping domino tilings: This is a bijective map

Ftil : {domino tilings of Rn,m} → {domino tilings of Rm,n} ,
T 7→ {Fdom (D) | D ∈ T} .

Hence, the bijection principle yields

|{domino tilings of Rn,m}| = |{domino tilings of Rm,n}| .

In other words,

(# of domino tilings of Rn,m) = (# of domino tilings of Rm,n) .

In other words, dn,m = dm,n. Thus, Proposition 1.1.4 is proved rigorously.

One further note about the bijection principle: It has a converse:

Theorem 1.1.6 (converse bijection principle). If X and Y are two sets of the
same size (that is, |X| = |Y|), then there exists a bijection from X to Y.

1.1.4. The m = 1 case

Next, let us solve a very simple particular case of our counting problem:

Proposition 1.1.7. Assume that m = 1 and n is even. Then, dn,m = 1.

Proof. There is only one domino tiling of Rn,m = Rn,1, and it looks like this:

· · · .

The proof of this is a straightforward induction (argue that the first two columns
must be covered by a horizontal domino, then argue that the next two columns
must be covered by a horizontal domino, and so on, until all columns are ac-
counted for). See the 2019 notes (proof of Proposition 1.1.8 in them, to be
specific) for details.
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1.1.5. The m = 2 case and the Fibonacci sequence

We have now fully covered the m = 1 case of our counting problem. But what
about m = 2 ?

Here is a table of the dn,2 values for n ∈ {0, 1, . . . , 9}:

n 0 1 2 3 4 5 6 7 8 9

dn,2 1 1 2 3 5 8 13 21 34 55
.

As an illustration, here are all domino tilings of Rn,2 for n ∈ {0, 1, 2, 3, 4} (note
that R0,2 is the empty set and thus can be tiled by the empty set, which is a
perfectly valid domino tiling):

n dn,m domino tilings

0 d0,2 = 1

1 d1,2 = 1

2 d2,2 = 2 ,

3 d3,2 = 3 , ,

4 d4,2 = 5 , , ,

,

.

Is there any quick way of computing these numbers dn,2, without having to
find all domino tilings?

There is a recursion (i.e., a formula for dn,2 in terms of previous dk,2 values):

Proposition 1.1.8. For each integer n ≥ 2, we have dn,2 = dn−1,2 + dn−2,2.

Proof. Let n ≥ 2 be an integer. Consider the last (i.e., rightmost) column of Rn,2
(formally speaking, this is the set {(n, 1) , (n, 2)}).
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In any domino tiling T of Rn,2, this last column is covered either by a vertical
domino or by (parts of) two horizontal dominos. We call T a type-1 tiling in
the former case and a type-2 tiling in the latter case. Visually, these look as
follows:

???????????????

???????????????︸ ︷︷ ︸
type-1 tiling

,
???????????????

???????????????︸ ︷︷ ︸
type-2 tiling

(where the question marks mean an unknown arrangement of dominos).
Note that any domino tiling of Rn,2 is either type-1 or type-2, but not both at

the same time. Thus, by the sum rule, we have

(# of domino tilings of Rn,2) = (# of type-1 tilings) + (# of type-2 tilings) .

So let us compute the two addends on the RHS (= right-hand side).
A type-1 tiling consists of a vertical domino that covers the last column, and

of a bunch of other dominos that cover the rest of the rectangle. But this rest is
just the rectangle Rn−1,2. So a type-1 tiling is simply a domino tiling of Rn−1,2
with an extra vertical domino added at the rightmost end (visually, this looks

as follows:
some domino

tiling of Rn−1,2
). Thus,

(# of type-1 tilings) = (# of domino tilings of Rn−1,2) (by the bijection principle)
= dn−1,2

(since dn−1,2 was defined to be the # of domino tilings of Rn−1,2).
A type-2 tiling consists of two horizontal dominos that cover the last two

columns, and of a bunch of other dominos that cover the rest of the rectangle.
But this rest is just the rectangle Rn−2,2. So a type-2 tiling is simply a domino
tiling of Rn−2,2 with two extra horizontal dominos added at the rightmost end

(visually, this looks as follows:
some domino

tiling of Rn−2,2
). Thus,

(# of type-2 tilings) = (# of domino tilings of Rn−2,2) (by the bijection principle)
= dn−2,2.

Now, by the definition of dn,2, we have

dn,2 = (# of domino tilings of Rn,2) = (# of type-1 tilings)︸ ︷︷ ︸
=dn−1,2

+ (# of type-2 tilings)︸ ︷︷ ︸
=dn−2,2

= dn−1,2 + dn−2,2, qed.

(See the 2019 notes – specifically, the proof of Proposition 1.1.9 therein – for
a more detailed version of this proof.)
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Proposition 1.1.8 provides a fairly efficient way to compute dn,2 when n is not
too large. But there are even better ways. First, let us recall a rather famous
number sequence:

Definition 1.1.9. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of
nonnegative integers defined recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

This is a recursive definition – i.e., it tells us how to compute fn given the
previous entries of the sequence. For instance, in order to compute f5, you first
need to compute f0, f1, f2, f3, f4 in this order.

When an object in mathematics is defined recursively, you can always wonder
if there is also a direct way to compute it, without computing all the previous
values. In particular, we can ask this question about the Fibonacci sequence. In
the next lecture, we will see an answer!

Here is a table of the first few entries of the Fibonacci sequence:

n 0 1 2 3 4 5 6 7 8 9 · · ·
fn 0 1 1 2 3 5 8 13 21 34 · · ·

.

The entries fn of this sequence are known as the Fibonacci numbers, and
are one of the most popular concepts in elementary mathematics (see their
Wikipedia page for some of their claims to fame). There are books, conferences
and at least one journal devoted to them.

The recursive definition of the Fibonacci sequence (with its fn = fn−1 + fn−2
equation) is very similar to the recursive formula dn,2 = dn−1,2 + dn−2,2 for our
tiling numbers (Proposition 1.1.8). This shows that the sequence (d0,2, d1,2, d2,2, d3,2, . . .)
and the Fibonacci sequence ( f0, f1, f2, . . .) have a lot in common: In both se-
quences, every entry starting with the third one is the sum of the two entries
preceding it! However, the two sequences differ in their first entries (the former
sequence starts with d0,2 = 1, while the latter starts with f0 = 0). So the two
sequences are not literally identical.

In truth, they are almost the same: The sequence (d0,2, d1,2, d2,2, d3,2, . . .) is just
the Fibonacci sequence with its first entry removed! In other words:

Proposition 1.1.10. We have dn,2 = fn+1 for each n ∈ N.

Proof. We need to show that the sequences (d0,2, d1,2, d2,2, . . .) and ( f1, f2, f3, . . .)
are the same. To do, it suffices to notice that

• these sequences start with the same two values: d0,2 = 1 = f1 and d1,2 =
1 = f2.

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://doi.org/10.1007/978-3-0348-8107-4
https://www.mathstat.dal.ca/fibonacci
https://www.fq.math.ca/
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• each further entry of either sequence is given by the same rule (namely,
as the sum of the previous two entries). (This follows from Proposition
1.1.8.)

So the two sequences are equal.
(Formally speaking, this is an argument by strong induction; see the proof of

Proposition 1.1.11 in the 2019 notes for the details.)
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