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Math 222 Fall 2022, Lecture 1: Introduction

website: https://www.cip.ifi.lmu.de/ grinberg/t/22fco

0.1. Plan

My name is Darij Grinberg.

This is a course on enumerative combinatorics: the mathematics of finite sets
and their sizes and the maps between them. It also includes the study of finite
sums and binomial coefficients.

I will be using the lecture notes from the 2019 iteration of this course (“Enu-
merative Combinatorics: class notes”, available at https://www.cip.ifi.lmu.de/
“grinberg/t/19fco/n/n.pdf ). 1 will refer to them as the “2019 notes”, al-
though they will be updated on occasion. I won't slavishly follow them; instead
I will omit some details and sections while adding some new sections.

Everything I'm typing in class will also go on the course website (but it won't
be as polished and fleshed-out as the 2019 notes). The website also serves as a
syllabus, containing homework sets, grading policies, links to relevant systems
(Gradescope, Piazza and Blackboard), and literature suggestions for further
study. Read the website!

The course will be split into 5 chapters, whose content I shall briefly survey
now:

1. Introduction. Here we will meet some counting problems and even solve
a few of them. We’'ll introduce factorial and binomial coefficients and

prove some basic identities about them. We'll also learn about tools such
as the OEIS and SageMath.

2. Binomial coefficients. In this chapter, we will take a closer and deeper
look at binomial coefficients and systematically study their properties as
well as some counting problems to which they apply.

3. The twelvefold way. This is the problem of counting the ways to dis-
tribute (a given number of) balls into (a given number of) boxes. The
meaning of this problem depends on

e whether the balls are labeled or not,
¢ whether the boxes are labeled or not,

* whether we insist that each box gets at least one ball, or at most one
ball, or we don’t care.

Thus, this is not 1 problem but 12 different problems. The answers are
different, so this will be an opportunity for us to see various objects in
combinatorics, such as set partitions or integer partitions.
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1.

4. Permutations. We will have counted them in Chapter 2 already, but now

we will take a closer look at them and study their “inner life”.

5. Lattice paths. We will count lattice paths satisfying various conditions.

This is where will meet the infamous Catalan numbers.

The three main threads of this course are:

¢ Counting - i.e., finding formulas for the sizes of certain finite sets. For

example, we will count the permutations of the set {1,2,...,n}, or the k-
element subsets of {1,2,...,n} that contain no two consecutive elements.
“Count” means finding a formula that expresses the number of such per-
mutations or k-element subsets in terms of n and k.

Proving polynomial identities (such as the binomial formula (x +y)" =
n n .

Y r xky”_k or various deeper ones).

k=0

Finding and studying interesting maps between sets. A basic example

of such a map is the “bit-set encoding”: the bijective map (= one-to-one

correspondence) from

{all subsets of {1,2,...,n}}

to
{all n-tuples (iy,ip,...,in) € {0,1}"}

(these n-tuples are also known as “length-n bitstrings”) that sends each
subset S of {1,2,...,n} to the bitstring (iy,1ip,...,1,), whose entry iy is 1
ifkeSand 0 otherwiseﬂ (Don’t worry — we will be more detailed in the
actual lectures.)

Introduction

Let me begin with some counting questions in no particular order.

1.1. Domino tilings

1.1.1. The problem

Let n,m € IN. Here and in the following, IN means the set {0,1,2,...}.

1Here,

{0,1}" ={0,1} x {0,1} x --- x {0,1} = {(i1,i2,...,in) | each i, belongs to {0,1}}.

n times
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Let R;;,;» denote the n x m-rectangle —i.e., a rectangle with width n and height
m. (We imagine a specific such rectangle drawn somewhere in the plane.)

A domino shall mean a 1 x 2-rectangle or a 2 x 1-rectangle. More specifically,
a vertical domino shall mean a 1 x 2-rectangle, while a horizontal domino shall
mean a 2 X 1-rectangle.

A domino tiling of R, ;; is a way to cover the rectangle R, ,;, with non-
overlapping dominos.

For instance, here are three domino tilings of Rj 4:

There are several more; can you find a few?
We can now state our first counting problem:

Domino tiling counting problem: How many domino tilings does
Ry,m have?

For instance, the number of domino tilings of Rz is 3. Here are all of them:

How can we address larger cases (i.e., larger n or m)?

First, we need to clarify our definition of “domino tiling” by explaining what
“a way to cover the rectangle R, with non-overlapping dominos” means.
What does “cover” mean, and what does “non-overlapping” mean? There are
two ways to define these notions:

* The geometric way: We really define R, ;; as a rectangle of width n and
height m in the Euclidean planeﬂ We say that a set of dominos covers
Ry, 1 if their union (as sets of points) is Ry, ;. It is trickier to define what it
means for a set of dominos to be non-overlapping. For instance, we can
say that it means that their pairwise intersections are 0- or 1-dimensional
(o1, equivalently, they are just single points or line segments).

With these definitions, the problem becomes unambiguous and clear. Un-
fortunately, it is still hard to reason about such tilings, since a lot of visu-
ally obvious geometric facts are non-obvious to prove.

2For instance, let’s say it’s the rectangle with corners (0,0), (1,0), (0,m) and (n, m).
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e The combinatorial way: We redefine R, as the set [n] x [m], where we
set
k] :={1,2,...,k} for each k € IN.

Its elements are the pairs (i,j) where i € [n] and j € [m]. We refer to these
pairs as squares, and we draw them as 1 x 1-squares in the plane (placing
the center of each square (i,j) at the point with Cartesian coordinates
(i,1)).

For instance, here is how Rj3 4 looks like with each square labeled:

(1,4) | (2,4) | (3,4)

(1,3) | (2,3) | (3,3)

(1,2) | (2,2) | (3,2)

(1,1) | (2,1) | (3,1)

Thus, R, is a finite set of size |R,,| = nm. (The size of a finite set
means the number of its elements, i.e., its cardinality.)

A vertical domino means a set of the form

{G,7), (,7+1)} for some i,j € Z.

A horizontal domino means a set of the form

{(G,7), (i+1,))} for some i,j € Z.

A domino means a vertical domino or a horizontal domino.

If S is a set of squares (e.g., the rectangle R;, ;;), then a domino tiling of
S shall mean a set {51, Sy, ...,S;} of disjoint dominos whose union is S
(thatis, S{US U---US; =5).

Of course, we still draw our rectangles and dominos as geometric rectan-
gles on a grid, but we are now implementing them as finite sets of pairs of
numbers rather than as geometric shapes. For instance, the domino tiling

is now the set

{11, @0}, {(12), 22}, {G1),E2)}}
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This kind of interpretation is known as a discrete model — because we're
modeling our objects (domino tilings) as finite sets of integers. Note that
it is much simpler to reason about than the geometric model above: For
example, non-overlappingness of dominos means disjointness of sets in
the discrete model, whereas in the geometric model the dominos could
meet along an edge.

From now on, we shall always be using the discrete model for our domino
tilings — i.e., we define R, and domino tilings as in the combinatorial way
above.

Now, for any n,m € IN, we define

dym = (# of domino tilings of Ry, ) .

Here and in the following, the symbol “#” means “number” (or “the number”).

Our counting problem thus asks to compute d;, ;. For instance, we saw that
d3,2 = 3.

In theory, each single d,,,; can be computed by brute force: just check all
possible sets of dominos for being domino tilings of Ry ;. This is slow and
stupid, but shows that we are dealing with a finite problem.

Let us, however, see how to solve this problem more efficiently and (ideally)
in greater generality.
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