Math 222: Enumerative Combinatorics, Fall 2022: Homework 5

Darij Grinberg

November 25, 2022

due date: Monday, 2022-12-05 at 11:59 PM on gradescope. Please solve 3 of the 6 exercises!

1 EXERCISE 1

1.1 PROBLEM

Let $n \in \mathbb{Z}$ and $k \in \mathbb{N}$. Prove that

 $p_0(n) + p_1(n) + \dots + p_k(n) = p_k(n+k).$

(Recall that $p_i(m)$ denotes the # of partitions of m into i parts.)

1.2 SOLUTION

[...]

2 EXERCISE 2

2.1 Problem

Let n and k be two positive integers such that k > 1.

Let u be the # of compositions α of n such that each entry of α is congruent¹ to 1 modulo k.

Let w be the # of compositions γ of n-1 such that each entry of γ is either 1 or k. Prove that u = w.

2.2 Remark

For instance, if n = 5 and k = 3, then u counts the compositions

while w counts the compositions

$$(3,1),$$
 $(1,3),$ $(1,1,1,1).$

If k = 2, then both u and w equal the Fibonacci number f_n . (Indeed, $w = f_n$ follows from [Math222, Exercise 2.10.5 (a)].)

$$2.3$$
 Solution

[...]

3 EXERCISE 3

3.1 Problem

Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Prove that

$$\sum_{\substack{(a_1,a_2,\ldots,a_k) \text{ is a composition} \\ \text{of } n \text{ into } k \text{ parts}}} \frac{1}{a_1 a_2 \cdots a_k} = \frac{k!}{n!} \binom{n}{k}.$$

(Recall that $\begin{bmatrix} n \\ k \end{bmatrix}$ denotes the # of permutations $\sigma \in S_n$ with exactly k orbits; it is a Stirling number of the first kind.)

3.2 HINT

Define an *orbit-numbered permutation* to be a permutation $\sigma \in S_n$ whose orbits are numbered by $1, 2, \ldots, j$ in some order (where j is its # of orbits). How many orbit-numbered permutations have k orbits?

(This is not the only approach; there are also non-combinatorial solutions.)

¹We say that an integer a is congruent to an integer b modulo an integer k if the difference a - b is a multiple of k. For instance, the even integers are congruent to 0 modulo 2, whereas the odd integers are congruent to 1 modulo 2.

3.3 SOLUTION

[...]

4 EXERCISE 4

4.1 PROBLEM

Let X be a finite set. Let A and B be two subsets of X such that $A \cup B = X$ and $A \cap B = \emptyset$. Let σ be a permutation of X. Prove that

 $\left|\sigma\left(A\right)\cap B\right| = \left|\sigma\left(B\right)\cap A\right|.$

(Here, if C is any subset of X, then $\sigma(C)$ denotes the set $\{\sigma(c) \mid c \in C\}$.)

4.2 Solution

[...]

5 EXERCISE 5

5.1 Problem

Let $n \in \mathbb{N}$. Let X be an *n*-element set, and let *i* and *j* be two distinct elements of X. Prove that there are exactly n!/2 permutations $\sigma \in S_X$ that satisfy $i \stackrel{\sigma}{\sim} j$.

(Recall that $i \stackrel{\sigma}{\sim} j$ means that $i = \sigma^k(j)$ for some $k \in \mathbb{N}$.)

5.2 Solution

[...]

6 EXERCISE 6

6.1 PROBLEM

Let $n \in \mathbb{N}$. Let X be an n-element set. Let d be the lowest common multiple of the first n positive integers $1, 2, \ldots, n$ (that is, the smallest positive integer that is divisible by each of $1, 2, \ldots, n$).

Let $k \in \mathbb{N}$. Prove that the following two statements are equivalent:

- 1. We have $\sigma^k = \text{id for each permutation } \sigma \in S_X$.
- 2. The number k is a multiple of d.

6.2 Remark

For example, if n = 5, then d = lcm(1, 2, 3, 4, 5) = 60. Thus, the exercise claims that every permutation σ of a 5-element set satisfies $\sigma^{60} = \text{id}$, and more generally, $\sigma^k = \text{id}$ whenever k is a multiple of 60; and conversely, if k is not a multiple of 60, then some permutation σ does not satisfy $\sigma^k = \text{id}$.

6.3 Solution

[...]

References

- [17f-hw7s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set #7 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
- [Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 13 September 2022. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf