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Math 533 Winter 2021, Lecture 18: Multivariate
polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Polynomials II

1.1. Factorization of polynomials

Last time, I used a computer to factor a polynomial. Let me say some words
about the algorithms that are used for this (or, at least, about an algorithm that
could theoretically be used for this, but is too slow in practice; computers use
faster algorithms).

Let F be a field.
Recall that the ring F [x] is a UFD; thus, each polynomial in F [x] has an essen-

tially unique factorization into irreducible polynomials. (“Essentially” means
“up to order and up to associates”. Keep in mind that the units of F [x] are pre-
cisely the nonzero constant polynomials, so that two polynomials f , g ∈ F [x]
are associate if and only if there exists some λ ∈ F \ {0} satisfying g = λ f .)

How do we find this factorization (into irreducible polynomials)?
When F is finite, we can just check all possibilities by brute force. Indeed,

any factor in the factorization of a nonzero polynomial f must be a polynomial
of degree ≤ deg f , and this leaves finitely many options for it when F is finite.

For general fields F, there is no algorithm that finds the factorization of every
polynomial.1 But what about well-known fields like Q, R and C ?

Over R and C you cannot “really” factor polynomials, because this is not a
numerically stable problem. For example, the polynomial x2 − 2x + 1 factors
over R (as (x − 1)2), but x2 − 1.999x + 1 does not (nontrivially at least). Ap-
proximate algorithms that work for sufficiently non-singular input exist, but
this is more a question of numerical analysis than of algebra.

What about polynomials over Q ? There is an algorithm, whose main ingre-
dient is the following fact:

Proposition 1.1.1 (Gauss’s lemma in one of its forms). Let f ∈ Z [x]. If f is
irreducible in Z [x], then f is irreducible in Q [x].

Proof. Assume the contrary. Thus, f = gh for some nonconstant polynomials
g, h ∈ Q [x] (since the units of Q [x] are precisely the nonzero constant polyno-
mials). By multiplying the two polynomials g and h with the lowest common
denominators of their coefficients, we obtain two nonconstant polynomials u

1See https://mathoverflow.net/a/350877/ for an outline of the proof.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
https://mathoverflow.net/a/350877/
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and v in Z [x]. These two polynomials u and v satisfy uv = Ngh for some posi-
tive integer N (since u and v are positive integer multiples of g and h). Consider
this N. We have uv = N gh︸︷︷︸

= f

= N f , so that N f = uv.

Thus, we have found two nonconstant polynomials u, v ∈ Z [x] and a positive
integer N such that

N f = uv. (1)

We WLOG assume that N is minimal with the property such that such u, v
exist. (In other words, among all triples (u, v, N) of two nonconstant polyno-
mials u, v ∈ Z [x] and a positive integer N satisfying (1), we pick one in which
N is minimal. This might not be the one that we obtained from g and h above.)

If N = 1, then (1) rewrites as f = uv, which contradicts the assumption that
f is irreducible (since u and v are nonconstant and thus non-units). Hence, we
cannot have N = 1. Thus, there exists a prime p that divides N. Consider such
a p. Recall that Z/p is a field (since p is prime). Therefore, Z/p is an integral
domain, so that the polynomial ring (Z/p) [x] is an integral domain as well (by
Lecture 12).

We shall now show a way to turn any polynomial s ∈ Z [x] into a polynomial
s ∈ (Z/p) [x]. It is as simple as you can imagine: We simply replace each
coefficient by its residue class modulo p. In other words, if s = s0x0 + s1x1 +
· · ·+ snxn is a polynomial in Z [x] (with si ∈ Z), then we define a polynomial
s := s0x0 + s1x1 + · · ·+ snxn ∈ (Z/p) [x] (where si means the residue class of si

modulo p). For example, if p = 5, then 2x3 + 7 = 2x3 + 7 = 2x3 + 2. It is easy
to see that the map

Z [x] → (Z/p) [x] ,
s 7→ s

is a ring morphism (since the rules for adding and multiplying polynomials are
the same over Z and over Z/p). Thus, uv = u · v.

Now, f ∈ Z [x]; hence, all coefficients of the polynomial N f are divisible by
N, and thus also divisible by p (since p divides N). Thus, N f = 0 in (Z/p) [x].
However, (1) entails N f = uv = u · v. Thus, u · v = N f = 0. Since (Z/p) [x]
is an integral domain, this shows that u = 0 or v = 0. We WLOG assume that
u = 0 (since otherwise, we can simply swap u with v).

Now, u = 0 means that all coefficients of u are multiples of p. In other words,
1
p

u ∈ Z [x]. Now, the equality (1) yields

N
p

f =

(
1
p

u
)

v.

Since
N
p

is a positive integer (because p divides N) and since
1
p

u ∈ Z [x], this
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equality shows that
(

1
p

u, v,
N
p

)
is a triple of two nonconstant polynomials

1
p

u, v ∈ Z [x] and a positive integer
N
p

satisfying (1) (with u and N replaced by

1
p

and
N
p

). But recall that among all such triples, we chose (u, v, N) to be one

with minimal N. Thus, N ≤ N
p

. Therefore, p ≤ 1 (since N is a positive integer).

This contradicts the assumption that p is prime. This contradiction completes
the proof.

Let us now address two computational problems for polynomials with inte-
ger or rational coefficients.

Problem 1: Let f , g ∈ Z [x] be two polynomials with g ̸= 0. Check
whether g divides f in Z [x].

Solution (sketched). The leading coefficient of g may or may not be a unit of Z;
however, it is always a unit of Q. Thus, we can use division with remainder to
check whether g divides f in the (larger) ring Q [x]. If the answer is “no”, then
(a fortiori) g cannot divide f in Z [x] (since Z [x] is a subring of Q [x]). If the

answer is “yes”, then we compute the quotient
f
g
∈ Q [x] and check whether it

belongs to Z [x] (that is, whether its coefficients are integers). If yes, then the
answer is “yes”; if no, then the answer is “no”. Problem 1 is thus solved.

Problem 2: Let f ∈ Z [x] be a nonzero polynomial. Construct a list
of all divisors of f in Z [x].

Solution (sketched). Let n = deg f . Pick n + 1 integers a1, a2, . . . , an+1 that are
not roots of f . (Such n + 1 integers can always be found, since f is a nonzero
polynomial of degree n and thus has at most n roots in the integral domain Z.
Thus, for example, among the 2n + 1 numbers −n,−n + 1, . . . , n, at least n + 1
many are not roots of f .)

For each i ∈ {1, 2, . . . , n + 1}, let Di be the set of all divisors of the integer
f (ai). This set Di is finite (since f (ai) ̸= 0), and its elements can be explicitly
listed. Hence, the set D1 × D2 × · · · × Dn+1 is finite as well, and its elements
can be explicitly listed.

Now, let g be a divisor of f in Z [x]. Then, g ∈ Z [x], and there exists a
further polynomial h ∈ Z [x] such that f = gh. Consider this h. From f = gh,
we obtain deg f = deg (gh) = deg g+deg h︸ ︷︷ ︸

≥0

≥ deg g, so that deg g ≤ deg f = n.

In other words, the polynomial g must have degree ≤ n.
For each i ∈ {1, 2, . . . , n + 1}, we have

f (ai) = g (ai) h (ai) (since f = gh)
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and thus g (ai) | f (ai), so that g (ai) ∈ Di. Hence,

(g (a1) , g (a2) , . . . , g (an+1)) ∈ D1 × D2 × · · · × Dn+1.

Thus, for each divisor g of f in Z [x], we know that the (n + 1)-tuple
(g (a1) , g (a2) , . . . , g (an+1)) belongs to the finite set D1 ×D2 ×· · ·×Dn+1 (which
does not depend on g and can be explicitly found). Hence, we have finitely
many options for this (n + 1)-tuple.

However, given the (n + 1)-tuple (g (a1) , g (a2) , . . . , g (an+1)), we can uniquely
reconstruct the polynomial g. (Indeed, Exercise 6 (a) on homework set #3 says
that a polynomial g ∈ Q [x] of degree ≤ n is uniquely determined by the
(n + 1)-tuple (g (a1) , g (a2) , . . . , g (an+1)). Moreover, Exercise 6 (b) on home-
work set #3 gives an explicit formula for this polynomial in terms of this
(n + 1)-tuple. Since any divisor g of f must have degree ≤ n (as we have shown
above), this shows that knowing the (n + 1)-tuple (g (a1) , g (a2) , . . . , g (an+1))
for a divisor g of f uniquely determines g, and that we can indeed compute g
from this (n + 1)-tuple (g (a1) , g (a2) , . . . , g (an+1)).)

Thus, we have finitely many options for g (since we have finitely many op-
tions for this (n + 1)-tuple). Usually, only few of these options will actually
produce a polynomial g ∈ Z [x] that divides f (indeed, many of them will
produce polynomials with non-integer coefficients; and even among the poly-
nomials that do have integer coefficients, many will fail to divide f ). However,
we can check which of these options do produce a polynomial g ∈ Z [x] that
divides f (our above solution to Problem 1 helps here). Thus, we end up with
a list of all divisors of f in Z [x].

Problem 3: Let f ∈ Q [x] be a nonzero polynomial. Find a factoriza-
tion of f into a product of irreducible polynomials.

Solution sketch. WLOG assume that f ∈ Z [x] (otherwise, multiply f with the
lowest common denominator of its coefficients). Furthermore, WLOG assume
that the gcd of the coefficients of f is 1 (otherwise, divide f by this gcd). We
find a list of all divisors of f in Z [x] (using the solution to Problem 2). If the
only such divisors are ±1 and ± f , then f is irreducible in Z [x] and thus also
irreducible in Q [x] (by Proposition 1.1.1), so we are done. Else, we find a divisor
g of f that is neither ±1 nor ± f , and thus we can decompose f as a product
gh of two nonconstant polynomials g, h ∈ Z [x]. In that case, we have reduced
the problem to the same problem with the (lower-degree) polynomials g and h.
Thus, recursively iterating the procedure, we end up with a factorization of f
into a product of irreducible polynomials.

Our solution to Problem 3 is a theoretical algorithm for factoring a polyno-
mial in Q [x] into irreducible polynomials. The algorithm is too computation-
ally intensive to be viable in practice, so computers use different methods (often
using Z/p as a stand-in for Z and using the Chinese Remainder Theorem to
“glue” the factorizations over different Z/p’s together).
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Factoring multivariate polynomials over Q can be done similarly using mul-
tivariate Lagrange interpolation. (The word “similarly” is doing heavy duty
here.) Alternatively, it can be reduced to the univariate case by the following
trick: If f ∈ Q [x, y] is a polynomial of degree < N (for some N ∈ N), then the
univariate polynomial f

(
x, xN) “carries all the information of f ” (in the sense

that no two different terms of f get merged when we substitute xN for y). For
example, if f = x2 + xy + y2 and N = 5, then

f
(

x, xN
)
= f

(
x, x5

)
= x2 + xx5 +

(
x5
)2

= x2 + x6 + x10.

Thus, in order to factor f , it suffices to factor f
(
x, xN) (a univariate polyno-

mial), and then try to lift the factorization back by “substituting y for xN”. See
Exercise 9 on homework set #4 for more about this trick. The trick is easily
generalized to polynomials in more than two variables.

2. Modules over a PID (specifically, over Z)

Modules over a field are rather well-behaved: they are all free, i.e., they have
bases and thus are isomorphic to “direct sum powers” of the field.

Modules over an arbitrary ring can be rather wild.
Studying modules over a PID is a middle ground: they are not that wild, but

still sufficiently frequent in “real life”.
I will just give a taste of their theory. The only PID I will work with is Z, and

the only modules I will discuss are finite, but you will see some germs of more
general arguments in my brief treatment of this rather special case.

2.1. Classifying finite abelian groups

Classifying finite groups is notoriously hard. Even the so-called “simple” groups
have a classification that spans a page (and takes a dozen of books to prove).
The finite abelian groups, on the other hand, do have a rather manageable
classification:

Theorem 2.1.1 (Classification of finite abelian groups). Let G be a finite
abelian group.

(a) Then, G is isomorphic to a direct product of finitely many finite cyclic
groups.

In other words, there exist positive integers n1, n2, . . . , nk such that

G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) .

(b) Moreover, we can choose these n1, n2, . . . , nk in such a way that they are
> 1 and satisfy

n1 | n2 | · · · | nk.
(c) Finally, if we choose them in such a way, then they are unique.

https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
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I will outline a proof of parts (a) and (b) of this theorem using modules over
Z. (There are other proofs, e.g., using group theory.)

How do modules come into play here in the first place? Recall from Lecture
8 that abelian groups are Z-modules; thus, classifying finite abelian groups is
the same as classifying finite Z-modules.

One other thing that will be crucial is good old matrices. Recall from linear
algebra that matrices over a field F correspond to linear maps between F-vector
spaces. Likewise, matrices over an arbitrary commutative ring R correspond to
linear maps between free R-modules. Specifically:

Convention 2.1.2. For any commutative ring R and any n ∈ N, we identify

the n-tuples (a1, a2, . . . , an) ∈ Rn with the column vectors


a1
a2
...

an

 ∈ Rn×1.

Thus, Rn becomes the R-module Rn×1 of column vectors of size n.

Proposition 2.1.3. Let R be a commutative ring. If A ∈ Rn×m is an n × m-
matrix over R, then the map

Rm → Rn,
v 7→ Av (2)

is an R-linear map. Moreover, any R-linear map from Rm to Rn has the form
(2) for a unique n × m-matrix A ∈ Rn×m. Thus, there is a 1-to-1 correspon-
dence between n × m-matrices over R and linear maps from Rm to Rn.

Proof. As in linear algebra.

Definition 2.1.4. Let R be a commutative ring. Let A ∈ Rn×m be an n × m-
matrix over R.

(a) We set

Col A : = {Av | v ∈ Rm}
= (the image of the linear map (2))
= (the span of the columns of A) .

This is an R-submodule of Rn, and is called the column space of A. (This is
all exactly as in linear algebra.)

(b) The cokernel of A is defined to be the quotient R-module Rn/ Col A.

Definition 2.1.5. Let R be a commutative ring. An R-module is said to be
finitely presented if it is isomorphic to the cokernel of some matrix over R.



Lecture 18, version August 12, 2023 page 7

Remark 2.1.6. This latter definition might appear somewhat random. Here
is some intuition for those who know a bit about groups, specifically about
their presentations. An R-module is finitely presented if it can be “defined
by finitely many generators and finitely many relations”. For example, recall
that the R-module R4 can be viewed as the R-module consisting of all “for-
mal” R-linear combinations ax + by + cz + dw of four independent symbols
x, y, z, w. Likewise, the R-module

R4/ Col A for A =


3 2
4 7
−5 0
−6 −4


can be expressed as the R-module consisting of all “formal” R-linear combi-
nations ax + by + cz + dw but subject to the relations 3x + 4y = 5z + 6w and
2x + 7y = 4w. Here, the “generators” x, y, z, w are the cosets e1 +Col A, e2 +
Col A, e3 +Col A, e4 +Col A of the four standard basis elements e1, e2, e3, e4
of R4; they satisfy the relations 3x + 4y = 5z + 6w and 2x + 7y = 4w because
we have factored out the submodule

Col A = span




3
4
−5
−6

 ,


2
7
0
−4




= span (3e1 + 4e2 − 5e3 − 6e4, 2e1 + 7e2 − 4e4) .

Our first step towards the classification theorem is the following:

Lemma 2.1.7. Let G be a finite Z-module. (“Finite” means that the set G is
finite.) Then, G is finitely presented.

Proof. The set G is finite and nonempty (since it contains 0); thus, its size |G| is
a positive integer. Let us denote this positive integer by n.

The abelian group (G,+, 0) is finite; thus, Lagrange’s theorem yields that
|G| · a = 0 for each a ∈ G. In other words,

na = 0 for each a ∈ G (3)

(since n = |G|).
Let (m1, m2, . . . , mn) be a list of all the n elements of G (each listed exactly

once). Thus, G = {m1, m2, . . . , mn}.
Consider the free Z-module Zn with its standard basis (e1, e2, . . . , en). The

map

f : Zn → G,
(r1, r2, . . . , rn) 7→ r1m1 + r2m2 + · · ·+ rnmn

https://en.wikipedia.org/wiki/Presentation_of_a_group
https://en.wikipedia.org/wiki/Presentation_of_a_group
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is a Z-module morphism (according to a theorem from Lecture 9, but this
should be obvious by now). Moreover, this map f satisfies f (ei) = mi for each
i ∈ {1, 2, . . . , n}, and thus its image contains all of m1, m2, . . . , mn; thus, this map
f is surjective (since G = {m1, m2, . . . , mn}). The First isomorphism theorem for
modules yields

Zn/ Ker f ∼= f (Zn) = G (since f is surjective) . (4)

Now, we shall construct an n × k-matrix (for some k ∈ N) satisfying Ker f =
Col A.

Indeed, we consider the following two kinds of vectors in Zn:

• The n-stretched basis vectors shall mean the n vectors ne1, ne2, . . . , nen.
These n vectors belong to Ker f , since each i ∈ {1, 2, . . . , n} satisfies

f (nei) = nmi (by the definition of f )
= 0 (by (3), applied to a = mi)

and thus nei ∈ Ker f .

• The reduced kernel vectors shall mean the vectors

(r1, r2, . . . , rn) ∈ {0, 1, . . . , n − 1}n

that belong to Ker f . There are finitely many such vectors, since the set
{0, 1, . . . , n − 1}n is finite.

We have just shown that all n-stretched basis vectors and all reduced kernel
vectors belong to Ker f . Hence, any Z-linear combination of n-stretched basis
vectors and reduced kernel vectors belongs to Ker f (because Ker f is a Z-
submodule of Zn, and thus is closed under linear combination). Conversely,
using division with remainder, it is not hard to see that any vector in Ker f is a
Z-linear combination of n-stretched basis vectors and reduced kernel vectors2.

2Proof. Let v = (v1, v2, . . . , vn) be a vector in Ker f . We must show that v is a Z-linear
combination of n-stretched basis vectors and reduced kernel vectors.

For each i ∈ {1, 2, . . . , n}, we write vi = qin + ri, where qi and ri are the quotient and the
remainder obtained when dividing vi by n. Then,

v = (v1, v2, . . . , vn) = (q1n + r1, q2n + r2, . . . , qnn + rn)

= q1ne1 + q2ne2 + · · ·+ qnnen + (r1, r2, . . . , rn) ,

so that
(r1, r2, . . . , rn) = v − (q1ne1 + q2ne2 + · · ·+ qnnen) ∈ Ker f

(since the vector v as well as all the n vectors ne1, ne2, . . . , nen belong to Ker f , and since Ker f
is a Z-submodule of Zn). Thus, (r1, r2, . . . , rn) is a reduced kernel vector (since the definition
of the ri as remainders ensures that ri ∈ {0, 1, . . . , n − 1} for all i, and thus (r1, r2, . . . , rn) ∈
{0, 1, . . . , n − 1}n). Thus, from

v = q1ne1 + q2ne2 + · · ·+ qnnen + (r1, r2, . . . , rn) ,

we conclude that v is a Z-linear combination of n-stretched basis vectors and reduced kernel
vectors. Qed.
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Hence, Ker f is precisely the set of all Z-linear combinations of n-stretched
basis vectors and reduced kernel vectors. In other words, Ker f is the span of
the vectors we just mentioned.

Now, let A be the matrix whose columns are precisely the n-stretched basis
vectors and the reduced kernel vectors. (This is well-defined, since there are
only finitely many of these vectors.) Then, Col A is the span of the vectors
we just mentioned. But we have seen in the previous paragraph that Ker f
is the span of these vectors. Comparing these two results, we conclude that
Ker f = Col A. Hence, (4) rewrites as

Zn/ Col A ∼= G.

In other words, G is isomorphic to the cokernel of A. Hence, G is finitely
presented. This proves Lemma 2.1.7.

Recall that we still want to prove Theorem 2.1.1 (a), which claims that every
finite Z-module G is isomorphic to a direct product of finitely many finite cyclic
groups. Lemma 2.1.7 shows that G is finitely presented. How does this help
us?

Well, G is finitely presented, i.e., isomorphic to the cokernel of a matrix. If
this matrix happens to be diagonal, then we are basically done! Indeed, for
example, here is how the cokernel of a diagonal 3 × 3-matrix looks like:

Z3/ Col

 a 0 0
0 b 0
0 0 c


= Z3/ span

 a
0
0

 ,

 0
b
0

 ,

 0
0
c


= Z3/ span (ae1, be2, ce3)(

where e1, e2, e3 are the standard basis vectors of Z3
)

∼= (Z/a)× (Z/b)× (Z/c) .

(The “∼=” sign here is a nice exercise in understanding quotients of modules.
Explicitly, it stems from the map

Z3/ span (ae1, be2, ce3) → (Z/a)× (Z/b)× (Z/c) ,

(u, v, w) 7→ (u, v, w) ,

which is easily seen to be a Z-module isomorphism. The intuition is sim-
ply that when we take the quotient of the free Z-module Z3 by its submod-
ule span (ae1, be2, ce3), we end up identifying any two vectors (u, v, w) and
(u′, v′, w′) that satisfy u ≡ u′ mod a and v ≡ v′ mod b and w ≡ w′ mod c; but
this is tantamount to replacing the first entry of our vector by a residue class
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modulo a, the second by a residue class modulo b, and the third by a residue
class modulo c.)

Usually, the matrix whose cokernel we need will be rectangular, not square;
however, even for rectangular matrices there is a notion of being diagonal:

Definition 2.1.8. Let R be a commutative ring. A rectangular matrix A ∈
Rn×m is said to be diagonal if its (i, j)-th entry is 0 whenever i ̸= j.

This is a looser notion of “diagonal” than the one you learnt in linear alge-
bra, since we are not requiring that n = m. For example, a diagonal 2 × 4-

matrix looks like
(

a 0 0 0
0 b 0 0

)
, whereas a diagonal 4 × 2-matrix looks like

a 0
0 b
0 0
0 0

.

Proposition 2.1.9. Let A ∈ Zn×m be diagonal. Then, its cokernel Zn/ Col A
is isomorphic to a direct product of finitely many cyclic groups (which, how-
ever, are not necessarily finite).

Proof of Proposition 2.1.9 (sketched). We give a “proof by example”, or rather a
proof by two (hopefully representative) examples:

Z2/ Col
(

a 0 0 0
0 b 0 0

)
= Z2/ span (ae1, be2, 0, 0) = Z2/ span (ae1, be2)

∼= (Z/a)× (Z/b)

and

Z4/ Col


a 0
0 b
0 0
0 0

 = Z4/ span (ae1, be2) ∼= (Z/a)× (Z/b)× Z × Z.

This suggests a somewhat daring strategy for proving parts (a) and (b) of
Theorem 2.1.1:

1. Let G be a finite abelian group. Thus, G is a finite Z-module.

2. By Lemma 2.1.7, the Z-module G is finitely presented. In other words,
there is a matrix A ∈ Zn×m (for some m ∈ N) such that G ∼= Zn/ Col A.

3. Tweaking this matrix A in a strategic way, we can make it diagonal with-
out changing Zn/ Col A too much (to be precise: Zn/ Col A stays isomor-
phic to G).
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4. Then, we use Proposition 2.1.9 to argue that Zn/ Col A is isomorphic to
a direct product of finitely many cyclic groups (which are not necessarily
finite).

5. We notice that these cyclic groups must be finite, because their direct
product is finite (after all, this direct product is isomorphic to G, which is
finite).

6. Thus, G ∼= (Z/n1) × (Z/n2) × · · · × (Z/nk) for some positive integers
n1, n2, . . . , nk. (This proves Theorem 2.1.1 (a).)

7. We WLOG assume that n1, n2, . . . , nk are > 1, since any ni that equals
1 only contributes a trivial factor Z/1 to the direct product (Z/n1) ×
(Z/n2) × · · · × (Z/nk) (and of course such a factor can simply be re-
moved from the product).

8. Finally, by fudging the n1, n2, . . . , nk appropriately, we ensure that n1 | n2 |
· · · | nk. (This proves Theorem 2.1.1 (b).)

Steps 1, 2, 4, 5, 6, 7 should be rather clear by now. But Steps 3 and 8 sound
rather ambitious. How can we turn an arbitrary matrix into a diagonal one?
How can we pull n1 | n2 | · · · | nk out of thin air?

To make Step 3 a reality, the tool of choice are row operations and column
operations. These are a mild generalization of the row and column operations
that you know from linear algebra. Here is one way to define them:

Definition 2.1.10. (a) A square matrix A ∈ Zk×k is said to be invertible if it
has an inverse matrix in Zk×k (that is, an inverse matrix with integer entries).
In other words, it is said to be invertible if it is a unit of the matrix ring Zk×k.

For example,
(

1 1
1 −1

)
∈ Z2×2 is not invertible. It has an inverse in

Q2×2, but that doesn’t count!
(b) A row operation means an operation transforming a matrix A ∈ Zn×m

into BA, where B ∈ Zn×n is some invertible n × n-matrix.
(c) A column operation means an operation transforming a matrix A ∈

Zn×m into AC, where C ∈ Zm×m is some invertible m × m-matrix.
(d) Two matrices A, A′ ∈ Zn×m are said to be congruent if there exist

invertible matrices B ∈ Zn×n and C ∈ Zm×m such that A′ = BAC. In other
words, A, A′ are said to be congruent if A can be transformed into A′ using
row and column operations.

You know all these notions in the case of a field; we are just adapting it to
the case of Z.
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Remark 2.1.11. (a) Any row operation can be undone by another row opera-
tion.

(b) Adding a multiple of a row to another row is a row operation.
(c) Swapping two rows is a row operation.
(d) Scaling a row by −1 is a row operation. (But scaling a row by 2 is not!)
(e) The analogues of all these statements for columns instead of rows hold.

Proof. As in linear algebra.

Proposition 2.1.12. If two matrices A, A′ ∈ Zn×m are congruent, then their
cokernels Zn/ Col A and Zn/ Col A′ are isomorphic.

Proof. Let A, A′ ∈ Zn×m be two matrices that are congruent. Thus, there exist
invertible matrices B ∈ Zn×n and C ∈ Zm×m such that A′ = BAC. Consider
these B and C.

I claim that the map

f : Zn/ Col A → Zn/ Col A′,

v 7→ Bv

is well-defined and is a Z-module isomorphism.
First of all, let me prove that f is well-defined. Indeed, let v, w ∈ Zn be such

that v = w in Zn/ Col A. We must prove that Bv = Bw in Zn/ Col A′.
From v = w in Zn/ Col A, we obtain v − w ∈ Col A. In other words, v − w =

Au for some u ∈ Zm (since Col A = {Au | u ∈ Zm}). Consider this u. We
have C−1 ∈ Zm×m (since C is invertible) and thus C−1u ∈ Zm. Now,

Bv − Bw = B (v − w)︸ ︷︷ ︸
=Au

= BA︸︷︷︸
=A′C−1

(since BAC=A′)

u = A′ C−1u︸ ︷︷ ︸
∈Zm

∈ Col A′

(since Col A′ = {A′z | z ∈ Zm}). In other words, Bv = Bw in Zn/ Col A′,
which is precisely what we wanted to show.

Thus, we have shown that f is well-defined.
It is straightforward to see that f is a Z-module morphism. Next, in order to

show that f is invertible, I will construct an inverse.
Indeed, I claim that the map

g : Zn/ Col A′ → Zn/ Col A,

v 7→ B−1v

is well-defined and is inverse to f . The “well-defined” part of this claim is left
to the reader (the proof is analogous to the proof that f is well-defined, since
A′ = BAC entails A = B−1A′C−1). The “inverse to f ” part is straightforward
(we have BB−1v = v and B−1Bv = v for any v).

Now, f is invertible (since g is inverse to f ), and thus is a Z-module isomor-
phism (since f is a Z-module morphism). Hence, the Z-modules Zn/ Col A
and Zn/ Col A′ are isomorphic. This proves Proposition 2.1.12.



Lecture 18, version August 12, 2023 page 13

The following theorem will be crucial for Step 3:

Theorem 2.1.13 (Smith normal form, weak version). Each rectangular matrix
A ∈ Zn×m is congruent to a diagonal matrix (i.e., can be transformed into a
diagonal matrix via row and column operations).

This theorem, combined with Proposition 2.1.12, suffices to complete Step 3
of our plan. Thus, we need to prove Theorem 2.1.13. Here is a very rough
outline of the proof:

Proof of Theorem 2.1.13 (sketched). Again, we give a “proof by example”. We start

with the matrix

 4 6
3 2
2 2

 ∈ Z3×2, and we try to transform it into a diagonal

matrix by a sequence of row operations and column operations. Note that this
is in some sense a subtler version of Gaussian elimination (subtler because we
are not allowed to scale rows or columns by any numbers other than −1, and
because we can only add Z-multiples of rows/columns to other row/columns,

rather than Q-multiples). We shall use the “ R−→” arrow for “row operation”
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and the “ C−→” arrow for “column operation”. 4 6
3 2
2 2

 C−→

 4 2
3 −1
2 0

 (here we subtracted column 1 from column 2)

C−→

 0 2
5 −1
2 0

 (here we subtracted 2 · column 2 from column 1)

C−→

 2 0
−1 5
0 2

 (here we swapped columns 1 and 2)

R−→

 2 0
1 −5
0 2

 (here we scaled row 2 by − 1)

R−→

 0 10
1 −5
0 2

 (here we subtracted 2 · row 2 from row 1)

R−→

 1 −5
0 10
0 2

 (here we swapped rows 1 and 2)

C−→

 1 0
0 10
0 2

 (here we added 5 · column 1 to column 2)

R−→

 1 0
0 0
0 2

 (here we subtracted 5 · row 3 from row 2)

R−→

 1 0
0 2
0 0

 (here we swapped rows 2 and 3) ,

and this is a diagonal matrix.
The general procedure is as follows (you can check that this is precisely what

we have done in the example above):

• We first “clear out” the 1st row; this means turning it into (g, 0, 0, . . . , 0),
where g is the gcd of its entries. This is achieved as follows: We first en-
sure that all entries in the 1st row are nonnegative by appropriate column
operations (namely, whenever an entry is negative, we scale the respec-
tive column by −1). Then, as long as the 1st row contains at least two
distinct nonzero entries, we subtract the column that contains the smaller
one (or, better, an appropriate multiple of this column) from the column
that contains the larger one. Note that this is essentially the Euclidean
algorithm (or, to be more precise, a variant thereof for multiple integers).
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Finally, when there is only one nonzero entry left in the 1st row, we move
this entry into the position (1, 1) by another column operation (swapping
its column with the first column).

• Then, we use the same method (but using row operations instead of col-
umn operations) to clear out the 1st column. Note that this might mess up
the 1st row again (i.e., some entries of the 1st row that were previously 0
might become nonzero again); in this case, we again clear out the 1st row,
then again clear out the 1st column, and so on, until neither the 1st row
nor the 1st column contain any nonzero entries except for the (1, 1)-entry.

I claim that this loop cannot go on forever, at least if we do things right.
To see why, you should note that each of the “clean out the 1st row” and
“clean out the 1st column” subroutines causes the (1, 1)-entry to be re-
placed by a gcd of several entries, one of which is the (1, 1)-entry. Clearly,
such a replacement cannot make the (1, 1)-entry larger (at least in absolute
value) [EDIT: This is not completely correct; the (1, 1)-entry will become
larger if it was 0. But this case is special and can be handled separately.].
Moreover, it will make it strictly smaller unless the (1, 1)-entry was the
gcd of all the entries in its row/column to begin with; but in this latter
case, we can “break out of the loop” by cleaning out the 1st row without
messing up the 1st column or vice versa (just make sure to subtract appro-
priate multiples of the 1st column/row from all the other columns/rows,
without ever modifying the 1st column/row).

• Once this is done, the 1st row and the 1st column only contain a single
nonzero entry (if any!), which is the (1, 1)-entry. Thus, we forget about the
1st row and the 1st column, and play the same game with the rest of the
matrix. (So we are working recursively. Note that whatever operations
we do with the rest of the matrix, the 1st row and the 1st column will
be unaffected, because they are filled with 0s everywhere apart from the
(1, 1)-entry. Thus, we won’t ever have to clean them up again.)

• At the end of the procedure, the matrix will be diagonal.

Thus, after a sequence of row operations and column operations, our matrix
has become diagonal. This proves Theorem 2.1.13.

This completes Step 3 of our plan.
Before I move on to Step 8, let me say a few words about generalizing The-

orem 2.1.13 to other rings. In our proof of Theorem 2.1.13, we seemingly used
the fact that the entries of our matrix are integers (since we argued that a non-
negative integer cannot keep decreasing indefinitely). However, the proof is
easily adapted to any Euclidean ring instead of Z (we just need to argue that
the Euclidean norm of the (1, 1)-th entry decreases, instead of that entry itself).
However, Theorem 2.1.13 holds even more generally, with Z replaced by a PID.
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This level of generality is a tad too advanced for us, but proofs of this version of
Theorem 2.1.13 can be found in various algebra texts (e.g., in [ChaLoi21, Theo-
rem (5.3.10)]). Note that the diagonal matrix in Theorem 2.1.13 is not unique.

Remark 2.1.14. When the base ring is a field, the Smith normal form (this is
how the diagonal matrix in Theorem 2.1.13 is called) becomes the rank nor-
mal form (see, e.g., https://math.stackexchange.com/questions/371497/
).

Remark 2.1.15. Incidentally, Theorem 2.1.13 also helps solve systems of linear
equations in integer unknowns (as in Exercise 5 on homework set #0). To wit,
if two matrices A, A′ ∈ Zn×m are congruent, and if B ∈ Zn×n and C ∈ Zm×m

are two invertible matrices satisfying A′ = BAC, and if v ∈ Zn is any vector,
then there is a bijection

{w ∈ Zm | Aw = v} →
{

y ∈ Zm | A′y = Bv
}

,

w 7→ C−1w

(check this!). Thus, solving the equation Aw = v for an unknown vector
w ∈ Zm is tantamount to solving the equation A′y = Bv for an unknown
vector y ∈ Zm. But Theorem 2.1.13 tells us that we can choose A′ to be
diagonal, and then the equation A′y = Bv is rather easy to solve. Thus, we
obtain an algorithm for solving a vector equation of the form Aw = v for an
unknown vector w ∈ Zm; that is, we obtain an algorithm for solving systems
of linear equations in integer unknowns.

Let us return to our multi-step plan for proving Theorem 2.1.1. Step 8 is fun.
Let me first discuss it in the case when k = 2. In this case, I need to explain
how a direct product of the form (Z/n1)× (Z/n2) with two positive integers
n1 and n2 can be rewritten (up to isomorphism) as a direct product of the form
(Z/n′

1)× (Z/n′
2) with n′

1 | n′
2. For simplicity, let me rename n1 and n2 as n and

m; then I claim that n′
1 and n′

2 can be chosen to be gcd (n, m) and lcm (n, m),
respectively (these clearly satisfy n′

1 | n′
2, since gcd (n, m) | n | lcm (n, m)). In

order to prove this claim, I need to show the following lemma:

Lemma 2.1.16. Let n, m ∈ Z. Let g = gcd (n, m) and ℓ = lcm (n, m).
(a) Then, the matrices(

n 0
0 m

)
and

(
g 0
0 ℓ

)
in Z2×2 are congruent.

(b) As a consequence,

(Z/n)× (Z/m) ∼= (Z/g)× (Z/ℓ)

as groups.

https://math.stackexchange.com/questions/371497/
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Proof. This is so enjoyable that you should probably try to prove this on your
own! Read on at your own spoiler risk.

(a) We WLOG assume that g ̸= 0 (since otherwise, we have n = m = 0, and
thus the two matrices in question both equal the zero matrix).

Bezout’s theorem shows that there exist integers x, y such that g = xn + ym
(since g = gcd (n, m)). Consider these x, y. Moreover, there exists some u ∈ Z

such that n = gu (since g | n). Likewise, there exists some v ∈ Z such that
m = gv (since g | m). Consider these u and v.

Furthermore, it is known that gcd (n, m) · lcm (n, m) = |nm|. In other words,
gℓ = |nm|. Thus, gℓ = ± n︸︷︷︸

=gu

m = ±gum. Cancelling g from this equality, we

find ℓ = ±um (since g ̸= 0). Thus, um = ±ℓ, so that −um = − (±ℓ) = ∓ℓ.

Now, we transform the matrix
(

n 0
0 m

)
as follows (using the “ R−→” arrow

for “row operation” and the “ C−→” arrow for “column operation”):(
n 0
0 m

)
C−→

(
n xn
0 m

)
(here we added x · column 1 to column 2)

R−→
(

n xn + ym
0 m

)
(here we added y · row 2 to row 1)

=

(
gu g
0 m

)
(since n = gu and xn + ym = g)

C−→
(

0 g
−um m

)
(here we subtracted u · column 2 from column 1)

=

(
0 g

−um gv

)
(since m = gv)

R−→
(

0 g
−um 0

)
(here we subtracted v · row 1 from row 2)

C−→
(

g 0
0 −um

)
(here, we swapped column 1 with column 2)

=

(
g 0
0 ∓ℓ

)
(since − um = ∓ℓ) .

If the ∓ℓ here is a +ℓ, then we have thus obtained the matrix
(

g 0
0 ℓ

)
, so

that we conclude that the two matrices
(

n 0
0 m

)
and

(
g 0
0 ℓ

)
are congruent,

as we wanted to show. If it is a −ℓ instead, then we need one more column
operation (viz., scaling the second column by −1) in order to get to the same
result and therefore to the same conclusion. Thus, Lemma 2.1.16 (a) is proved.
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(b) Lemma 2.1.16 (a) yields that the matrices(
n 0
0 m

)
and

(
g 0
0 ℓ

)
in Z2×2 are congruent. Hence, Proposition 2.1.12 yields that their cokernels

Z2/ Col
(

n 0
0 m

)
and Z2/ Col

(
g 0
0 ℓ

)
are isomorphic. In view of

Z2/ Col
(

n 0
0 m

)
= Z2/ span (ne1, me2) ∼= (Z/n)× (Z/m)

and

Z2/ Col
(

g 0
0 ℓ

)
= Z2/ span (ge1, ℓe2) ∼= (Z/g)× (Z/ℓ) ,

this means that (Z/n) × (Z/m) and (Z/g) × (Z/ℓ) are isomorphic (as Z-
modules, and thus as groups). This proves Lemma 2.1.16 (b).

Lemma 2.1.16 (b) is sufficient to complete Step 8 in the case when k = 2 (that
is, when G is a direct product of two cyclic groups). In the general case, we
can try to use Lemma 2.1.16 (b) multiple times; in fact, applying Lemma 2.1.16
(b) to any pair of consecutive factors Z/ni and Z/ni+1 in the direct product
(Z/n1) × (Z/n2) × · · · × (Z/nk) will replace these two factors by Z/n′

i and
Z/n′

i+1 with n′
i | n′

i+1. For example, if k = 3, then this boils down to the
following chain of isomorphisms:

(Z/n1)× (Z/n2)︸ ︷︷ ︸
∼=(Z/n′

1)×(Z/n′
2)

for n′
1=gcd(n1,n2) and n′

2=lcm(n1,n2)
(by Lemma 2.1.16 (b))

× (Z/n3)

∼=
(
Z/n′

1
)
×

(
Z/n′

2
)
× (Z/n3)︸ ︷︷ ︸

∼=(Z/n′′
2 )×(Z/n′′

3 )
for n′′

2=gcd(n′
2,n3) and n′′

3=lcm(n′
2,n3)

(by Lemma 2.1.16 (b))

∼=
(
Z/n′

1
)
×

(
Z/n′′

2
)︸ ︷︷ ︸

∼=(Z/n′′′
1 )×(Z/n′′′

2 )
for n′′′

1 =gcd(n′
1,n′′

2 ) and n′′′
2 =lcm(n′

1,n′′
2 )

(by Lemma 2.1.16 (b))

×
(
Z/n′′

3
)

∼=
(
Z/n′′′

1
)
×

(
Z/n′′′

2
)
×

(
Z/n′′

3
)

.

It takes some thought to confirm that the resulting numbers n′′′
1 , n′′′

2 , n′′
3 really

do satisfy n′′′
1 | n′′′

2 | n′′
3 . (Indeed, n′′′

1 | n′′′
2 follows from the definitions of n′′′

1
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and n′′′
2 as gcd and lcm of one and the same pair of integers. As for proving

n′′′
2 | n′′

3 , you have to first argue that combining

n′
1 = gcd (n1, n2) | lcm (n1, n2) = n′

2 | lcm
(
n′

2, n3
)
= n′′

3 and

n′′
2 = gcd

(
n′

2, n3
)
| lcm

(
n′

2, n3
)
= n′′

3

leads to lcm (n′
1, n′′

2 ) | n′′
3 , so that n′′′

2 = lcm (n′
1, n′′

2 ) | n′′
3 .) It might not be

obvious, but this generalizes to arbitrary k:

• First apply Lemma 2.1.16 (b) to the first two factors of the direct product,
then to the second and third factors, then to the third and fourth factors,
and so on, until you have reached the right end of the direct product.
After this, the numbers n1, n2, . . . , nk−1 will all divide nk.

• Then do the same, but stop just before the last factor (i.e., leave the last
factor untouched). After this, the numbers n1, n2, . . . , nk−2 will all divide
nk−1, but the numbers n1, n2, . . . , nk−1 will all divide nk.

• Then do the same, but stop just before the second-to-last factor (i.e., leave
the last two factors untouched). After this, the numbers n1, n2, . . . , nk−3
will all divide nk−2, but the previously mentioned divisibilities will re-
main intact.

• And so on, until at the end there are no more factors left to apply Lemma
2.1.16 (b) to. At that point, you will have n1 | n2 | · · · | nk.

(See also Problem A3 on the Putnam contest 2008: problem statements and
solutions.)

Thus we have outlined a proof of parts (a) and (b) of Theorem 2.1.13. We
will not discuss part (c) here (see [ChaLoi21, last claim of Corollary (5.4.4)] for
a more general result)3.

3Here are some hints to a proof of Theorem 2.1.13 (c):
Show that if G ∼= (Z/n1) × (Z/n2) × · · · × (Z/nk) with n1 | n2 | · · · | nk, then every

prime p and every i ∈ N satisfy∣∣∣piG/pi+1G
∣∣∣ = p(the number of all j∈{1,2,...,k} such that pi+1|nj)

(where we are regarding G as a Z-module, so that piG =
{

pig | g ∈ G
}

and pi+1G ={
pi+1g | g ∈ G

}
). Now, prove that knowing the numbers(
the number of all j ∈ {1, 2, . . . , k} such that pi+1 | nj

)
for all primes p and all i ∈ N uniquely characterizes n1, n2, . . . , nk.

https://kskedlaya.org/putnam-archive/2008.pdf
https://kskedlaya.org/putnam-archive/2008s.pdf
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2.2. Application: Primitive roots

Fun fact:
The sequence of residue classes 1, 2, . . . , 6 in Z/7 is an arithmetic sequence

(in the sense that there exists some “difference” d ∈ Z/7 such that each entry
of this sequence equals the preceding entry plus d).

I claim that you can permute this sequence so that it becomes a geometric
sequence (in the sense that there exists some “quotient” q ∈ Z/7 such that
each entry of the permuted sequence equals the preceding entry times q) !

Namely, 1, 3, 2, 6, 4, 5 is a geometric sequence. Its “quotient” is 3, meaning
that each entry equals the preceding entry times 3:

3 = 1 · 3, 2 = 3 · 3, 6 = 2 · 3, . . . .

This can be generalized: For any prime p, we can arrange the residue classes
1, 2, . . . , p − 1 in a geometric sequence. Here is another way to put it:

Theorem 2.2.1 (Gauss). Let p be a prime. Then, there exists some g ∈ (Z/p)×

such that its p − 1 powers g0, g1, . . . , gp−2 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , gp−2
}

.

Such a g is called a primitive root modulo p.

More generally:

Theorem 2.2.2. Let F be any finite field. Then, the group F× = F \ {0} is
cyclic.

Even more generally:

Theorem 2.2.3. Let F be any field. Let G be a finite subgroup of its group
F× = F \ {0} of units. Then, G is cyclic.

Proof of Theorem 2.2.3. The group G is finite and abelian. Thus, by Theorem
2.1.1 (parts (a) and (b)), we have

G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) (5)

for some positive integers n1, n2, . . . , nk > 1 satisfying n1 | n2 | · · · | nk. Con-
sider these n1, n2, . . . , nk.

Our goal is to show that k ≤ 1 (because then, (5) will show that G is cyclic).
In order to prove this, we assume the contrary. Thus, k > 1, so k ≥ 2.

Now, G is not just a random abelian group. It has a peculiar property:
Namely, for any positive integer d, the group G has no more than d elements
g satisfying gd = 1. (Indeed, all such elements g must be roots of the degree-d
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polynomial xd − 1 ∈ F [x], but we know that a degree-d polynomial over a field
has no more than d roots.)

Applying this to d = n1, we conclude that G has no more than n1 elements g
satisfying gn1 = 1.

However, the Z/n1 factor on the right hand side of (5) contributes n1 such
elements (indeed, each element g of Z/n1 becomes 0 when multiplied by n1,
and thus – if we rewrite the group multiplicatively – satisfies gn1 = 1), and
the Z/n2 factor also contributes n1 such elements (since n1 | n2, so that every
of the n1 multiples of n2/n1 in Z/n2 is such an element). These two factors
overlap only in the identity element. Thus, we have found at least 2n1 − 1 many
elements g ∈ G satisfying gn1 = 1. But there are at most n1 such elements, as we
have seen above. Thus, 2n1 − 1 ≤ n1, or, equivalently, n1 ≤ 1. This contradicts
n1 > 1. This contradiction shows that our assumption was wrong, and this
completes the proof of Theorem 2.2.3.

Proof of Theorem 2.2.2. Apply Theorem 2.2.3 to G = F×.

Proof of Theorem 2.2.1. Apply Theorem 2.2.2 to F = Z/p. This yields that the
group (Z/p)× is cyclic. In other words, there exists some g ∈ (Z/p)× such
that its powers g0, g1, . . . , g|(Z/p)×|−1 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , g|(Z/p)×|−1
}

.

In view of |(Z/p)|× = p − 1, this rewrites as follows: There exists some g ∈
(Z/p)× such that its p − 1 powers g0, g1, . . . , gp−2 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , gp−2
}

.

This proves Theorem 2.2.1.

See Keith Conrad’s note https://kconrad.math.uconn.edu/blurbs/grouptheory/
cyclicmodp.pdf for various other proofs of Theorem 2.2.1.
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