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Math 533 Winter 2021, Lecture 17: Multivariate
polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Polynomials II

1.1. Division with remainder and Gröbner bases (cont’d)

Last time (i.e., in Lecture 16), we started discussing quotient rings of multivari-
ate polynomial rings.

Recall our standing conventions: R is a commutative ring; n ∈ N; we set
P = R [x1, x2, . . . , xn].

We have stated the following theorem (and sketched its proof):

Theorem 1.1.1. Let b ∈ P be a nonzero polynomial whose leading coefficient
LC b is a unit of R. Let a ∈ P be any polynomial.

Then, there is a unique pair (q, r) of polynomials in P such that

a = qb + r and r is LM b-reduced.

Here, a polynomial r ∈ P is said to be m-reduced (where m is a monomial) if
no monomial divisible by m appears in r.

We used this theorem to find a basis of the R-module P/b = P/bP.

1.1.1. The case of arbitrary ideals

Now what if we want to know how P/I looks like for a non-principal ideal I,
say I = b1P + b2P + · · · + bkP for some b1, b2, . . . , bk ∈ P ? Can we divide a
polynomial by I with remainder? Can we check whether a polynomial belongs
to I ? (Remember: If I = bP is a principal ideal, then this means checking
whether the polynomial is divisible by b. We have seen how to do this using
Theorem 1.1.1)

We can try to replicate the above “division with remainder” logic.

Example 1.1.2. Let n = 2, and let us write x, y for the indeterminates x1, x2.
Let R = Q (just to be specific), and let I = b1P + b2P with

b1 = xy + 1,
b2 = y + 1.

Let a ∈ P be any polynomial. We try to divide a by I with remainder. This
means writing a in the form a = i + r where i ∈ I and r is a “remainder”.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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Here, a “remainder” (modulo b1 and b2) means a polynomial that is both
LM b1-reduced and LM b2-reduced, i.e., that contains neither multiples of
LM b1 nor multiples of LM b2 among its monomials. We can achieve this by
subtracting multiples of b1 and multiples of b2 from a until no such remain.
In more detail: Whenever some monomial that is a multiple of LM b1 appears
in our polynomial, we can subtract an appropriate multiple of b1 from our
polynomial to remove this monomial. (Namely, the multiple of b1 that we
choose is the one whose leading term would cancel the multiple of LM b1 we
want to remove from our polynomial.) Similarly we get rid of multiples of
LM b2. When no more monomials that are multiples of LM b1 or multiples of
LM b2 remain in our polynomial, then we have found our “remainder”.

We refer to this procedure as the division-with-remainder algorithm.
Note that this is a nondeterministic algorithm, in the sense that you often
have a choice of which step you make. For instance, if your polynomial con-
tains a monomial that is a multiple of both LM b1 and LM b2 at the same time,
do you remove it by subtracting a multiple of b1 or by subtracting a multiple
of b2 ? Thus, the “remainder” at the end might fail to be unique.

Let us check this on a specific example. Let a = xy − y ∈ P. Here is one
way to perform our division-with-remainder algorithm:

a = xy − y
subtract 1b1−→

to get rid of the xy monomial
(xy − y)− (xy + 1) = −y − 1

subtract −1b2−→
to get rid of the y monomial

(−y − 1)− (−1) (y + 1) = 0.

Here is another way to do it:

a = xy − y
subtract xb2−→

to get rid of the xy monomial
(xy − y)− x (y + 1) = −x − y

subtract −1b2−→
to get rid of the y monomial

(−x − y)− (−1) (y + 1) = −x − 1.

Both results we have obtained are both LM b1-reduced and LM b2-reduced,
so they qualify as “remainders” of a modulo b1 and b2. However, they are not
equal! So the remainder is not unique this time (unlike in Theorem 1.1.1). In
particular, the first remainder we obtained was 0, which showed that a ∈ I
(because this remainder was obtained from a by subtracting multiples of
b1 and b2, and of course these multiples all belong to I); but the second
remainder was not 0, thus allowing no such conclusion. So we don’t have
a sure way of telling whether a polynomial belongs to I or not; if we are
unlucky, we get a nonzero remainder even for a polynomial that does belong
to I.

This is bad!
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Example 1.1.3. A simpler example: Let n = 2 and I = b1P + b2P with

b1 = xy + x,
b2 = xy + y.

The polynomial x − y lies in I (since x − y = b1 − b2), but it is both LM b1-
reduced and LM b2-reduced, so we cannot see this from our division-with-
remainder algorithm no matter what choices we make (because the algorithm
does nothing: x − y already is a “remainder”). We could, of course, subtract
b1 from x − y (to obtain (x − y)− (xy + x) = −y − xy), but this would be a
“step backwards”, as it would increase the leading monomial (and even the
degree) of our polynomial. The idea of the division-with-remainder algo-
rithm is to reduce the polynomial step by step, always “walking downhill”,
rather than having to “cross a mountain” first (temporarily increasing the
leading monomial).

Example 1.1.3 might give you an idea of what is standing in our way here:
It is the fact that when we compute b1 − b2, the leading terms xy cancel. It
means, in a sense, that our b1 and b2 are “unnecessarily convoluted”; we should
perhaps fix this by replacing b2 by the smaller polynomial b2 − b1 = y − x. This
simplifies b2 but does not change I (since b1P + b2P = b1P + (b2 − b1) P). This
is similar to one of the row-reduction steps involved in bringing a matrix to
row echelon form.

What does it mean in general that a list (b1, b2, . . . , bk) of polynomials is “un-
necessarily convoluted”? The xy cancellation in b1 − b2 above was easy to see;
what other cancellations can hide in a list of polynomials?

Let me formalize this question. The following definition will be a bit long-
winded but it is just giving names to the kind of observations you would have
made when trying to discuss the above algorithm:

Definition 1.1.4. Let b = (b1, b2, . . . , bk) be a list of nonzero polynomials in P
whose leading coefficients are units of R.

(a) Given two polynomials c, d ∈ P, we write c −→
b

d (and say “c can be

reduced to d in a single step using b”) if

• some monomial m appearing in c is a multiple of LM bi for some i ∈
{1, 2, . . . , k};

• we have

d = c − [m] c
LC bi

· m

LM bi
· bi.

(This equation essentially says that we obtain d from c by subtracting
the appropriate multiple of bi to get rid of the monomial m. The mul-

tiple is
[m] c
LC bi

· m

LM bi
· bi, since the

m

LM bi
factor is needed to turn the
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leading monomial of bi into m, whereas the
[m] c
LC bi

factor serves to make

the coefficient of this monomial the same as that in c. Note that the

fraction
[m] c
LC bi

∈ R is well-defined since LC bi is a unit, whereas the

fraction
m

LM bi
∈ C(n) is well-defined since m is a multiple of LM bi.)

For instance, using the notations of Example 1.1.2 and setting b = (b1, b2),
we have

xy − y −→
b

−x − y,

because we obtain −x − y from xy − y by subtracting the multiple 1b1 of b1
(which kills the xy monomial). Likewise, for the same b, we have

5x2y3 −→
b

−5xy2,

because we obtain −5xy2 from 5x2y3 by subtracting the multiple 5xy2b1 of b1
(which kills the x2y3 monomial).

(b) Given two polynomials c, d ∈ P, we write c ∗−→
b

d (and say “c can be

reduced to d in many steps using b”) if there is a sequence (c0, c1, . . . , cm) of
polynomials in P such that c0 = c and cm = d and

ci −→
b

ci+1 for each i ∈ {0, 1, . . . , m − 1} .

Note that this sequence can be trivial (i.e., we can have m = 0), in which
case of course we have c = d. Thus, c ∗−→

b
c for any c ∈ P. (Like any true

algebraists, we understand “many steps” to allow “zero steps”.) We also can
have m = 1; thus, c ∗−→

b
d holds if c −→

b
d. (That is, “many steps” allows

“one step”.)
As an example of a nontrivial many-steps reduction, we observe that using

the notations of Example 1.1.2 and setting b = (b1, b2), we have

5x2y3 −→
b

−5xy2 −→
b

5y −→
b

−5

and thus 5x2y3 ∗−→
b

−5.

(c) We say that a polynomial r ∈ P is b-reduced if it is LM bi-reduced for all
i ∈ {1, 2, . . . , k}. This is equivalent to saying that there exists no polynomial
s ∈ P with r −→

b
s (that is, “r cannot be reduced any further using b”).

(d) A remainder of a polynomial a ∈ P modulo b means a b-reduced
polynomial r ∈ P such that a ∗−→

b
r. Such a remainder always exists (this

is not hard to show), but is not always unique (as we have seen in Example
1.1.2).

(e) We say that the list b is a Gröbner basis if any a ∈ P has a unique
remainder modulo b.
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(Don’t take the word “basis” in “Gröbner basis” to heart. It is closer to
“generating set” or “spanning set” than to any sort of “basis” in linear algebra.
In particular, a Gröbner basis can be R-linearly dependent or even contain the
same polynomial twice.)

So we have seen that not every list of nonzero polynomials is a Gröbner basis.
But here are the more interesting questions:

• Can we tell whether a list of nonzero polynomials is a Gröbner basis? (We
cannot afford to check every a ∈ P and every way of reducing it modulo
b.)

• If a list is not a Gröbner basis, can we at least find a Gröbner basis that
generates the same ideal as the list?

If R is not a field, then the answers to these questions are “no” for reasons
that should be familiar from the univariate case (non-unit leading coefficients,
etc.).

When R is a field, Bruno Buchberger has answered both questions in the
positive in the 1960s. The algorithms he found are one of the pillars of modern
computer algebra. I will state the main results without proof, but you can find
proofs in the literature (e.g., [DF, §9.6] or [deGraa20, Chapter 1]).

We will need the notion of an S-polynomial:

Definition 1.1.5. Let f , g ∈ P be nonzero polynomials whose leading coeffi-
cients are units of R.

Let p = xp1
1 xp2

2 · · · xpn
n = LM f and q = xq1

1 xq2
2 · · · xqn

n = LM g be their lead-
ing monomials, and let λ = LC f and µ = LC g be their leading coefficients.
So

f = λp+ (smaller terms) ;
g = µq+ (smaller terms) .

Let
m = xmax{p1,q1}

1 xmax{p2,q2}
2 · · · xmax{pn,qn}

n .

(This is the lcm of p and q among the monomials; it is the smallest-degree
monomial that is divisible by both p and q.) Note that

m

p
and

m

q
are well-

defined monomials (since p | m and q | m).
The S-polynomial (short for syzygy polynomial) of f and g is defined to

be the polynomial

S ( f , g) :=
1
λ
· m
p
· f − 1

µ
· m
q
· g ∈ P.

Here is the intuition behind this: S ( f , g) is the simplest way to form a
P-linear combination of f and g in which the leading terms of f and g can-
cel. Namely, in order to obtain such a P-linear combination, we must first
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rescale f and g so that their leading coefficients become equal (this can be

achieved by scaling f by
1
λ

and scaling g by
1
µ

); then we must multiply them

with appropriate monomials to make their leading monomials equal (this
can be achieved by multiplying f by

m

p
and multiplying g by

m

q
, so that

both leading monomials become m). The resulting two polynomials have
equal leading terms (namely, m), so their leading terms cancel out when we
subtract them. The result of this subtraction is S ( f , g). To be more spe-
cific, when we multiplied f and g with appropriate monomials to make their
leading monomial equal, we made sure to choose the latter monomials as
low-degree as possible; this is why we took m to be the lcm of p and q and
not some other monomial divisible by p and q (such as the product pq).

Example 1.1.6. For n = 2 (and denoting x1, x2 by x, y as usual), we have

S
(

x2y + 1, xy2 + 1
)
= y

(
x2y + 1

)
− x

(
xy2 + 1

)
= y − x

and
S (xy + 1, 2x) = 1 (xy + 1)− 1

2
· y · 2x = 1.

Note that the cancellation of the leading terms in the construction of S ( f , g)
is precisely the sort of cancellation that prevented us from having a unique
remainder in our above examples.

The following crucial theorem says that these cancellations are a canary in
the mine: If they don’t happen, then the list is a Gröbner basis.

Theorem 1.1.7 (Buchberger’s criterion). Let b = (b1, b2, . . . , bk) be a list of
nonzero polynomials in P whose leading coefficients are units of R.

Then, b is a Gröbner basis if and only if every i < j satisfy

S
(
bi, bj

) ∗−→
b

0.

The idea behind this theorem is that a list of polynomials (whose leading
coefficients are units) is a Gröbner basis if and only if any S-polynomial of two
polynomials in the list reduces to 0 modulo the list. Note that “reduces to 0
modulo the list” means that there is some way to get the remainder 0 when ap-
plying the division-with-remainder algorithm to this S-polynomial; we are not
requiring that every way of applying the division-with-remainder algorithm to
it will give 0. (But this will follow automatically if we have shown that b is a
Gröbner basis.)
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Example 1.1.8. Let n = 2, and write x, y for x1, x2. Let I = b1P + b2P, where

b1 = xy + 1,
b2 = y + 1.

We already know from Example 1.1.2 that (b1, b2) is not a Gröbner basis, but
let us now see this using Buchberger’s criterion:

S (b1, b2) = 1 (xy + 1)− x (y + 1) = 1 − x.

This polynomial 1− x is already b-reduced (where b = (b1, b2)), and it is not
0, so we don’t have S (b1, b2)

∗−→
b

0. Thus, Theorem 1.1.7 confirms again that

our b is not a Gröbner basis.

Example 1.1.9. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P +
b3P, where

b1 = x2 − yz,

b2 = y2 − zx,

b3 = z2 − xy.

Is b := (b1, b2, b3) a Gröbner basis? We check this using Buchberger’s cri-
terion. First, we rewrite b1, b2, b3 in a way that their leading terms are up
front:

b1 = x2 − yz,

b2 = −zx + y2,

b3 = −xy + z2.

(It is generally advised to always write the terms of a polynomial in the deg-
lex order, from highest to lowest, when performing division-with-remainder
or computing S-polynomials. Otherwise, it is too easy to get confused about
which terms are leading!)

Now, we compute remainders of S
(
bi, bj

)
modulo b for all i < j:

• We have

S (b1, b2) = S
(

x2 − yz,−zx + y2
)

= z
(

x2 − yz
)
− (−x)

(
−zx + y2

)
= xy2 − yz2

−→
b

(
xy2 − yz2

)
− (−y)

(
−xy + z2

)
(

here, we subtracted − yb3

in order to remove the xy2 monomial

)
= 0,
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so that S (b1, b2)
∗−→
b

0.

• We have

S (b1, b3) = S
(

x2 − yz,−xy + z2
)

= y
(

x2 − yz
)
− (−x)

(
−xy + z2

)
= xz2 − y2z

−→
b

(
xz2 − y2z

)
− (−z)

(
−zx + y2

)
(

here, we subtracted − zb2

in order to remove the xz2 monomial

)
= 0,

so that S (b1, b3)
∗−→
b

0.

• We have

S (b2, b3) = S
(
−zx + y2,−xy + z2

)
= y

(
−zx + y2

)
− z

(
−xy + z2

)
= y3 − z3 is b-reduced and not 0.

Thus, we do not have S (b2, b3)
∗−→
b

0. This shows that (b1, b2, b3) is not

a Gröbner basis.

(This example was a bit unusual in that our many-step reductions were
actually one-step reductions. But it is certainly not unusual in that we have
wasted a lot of work before getting the answer “no”.)

Buchberger’s criterion is proved (e.g.) in [DF, p. 324] and in [deGraa20, proof
of Theorem 1.1.33 ]. The “only if” part is obvious; the “if” part is interesting.

Gröbner bases help us better understand ideals of P:

Definition 1.1.10. Let I be an ideal of P. A Gröbner basis of I means a
Gröbner basis (b1, b2, . . . , bk) that generates I (that is, that satisfies I = b1P +
b2P + · · ·+ bkP).

Corollary 1.1.11 (Macaulay’s basis theorem). Let b = (b1, b2, . . . , bk) be a
list of nonzero polynomials in P whose leading coefficients are units of R.
Assume that b is a Gröbner basis.

Let I be the ideal b1P + b2P + · · ·+ bkP of P. Then, each element of P/I
can be uniquely written in the form

∑
m is a b-reduced

monomial

amm with am ∈ R
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(where all but finitely many m satisfy am = 0). Equivalently, the family
(m)m is a b-reduced monomial is a basis of the R-module P/I. If none of the poly-
nomials b1, b2, . . . , bk is constant, then the ring P/b contains “a copy of R”.

Proof. LTTR.

To summarize: If we know a Gröbner basis of an ideal I of P, then we know
a lot about I (in particular, we can tell when a polynomial belongs to I, and we
can find a basis for P/I). But how do we find a Gröbner basis of an ideal? Is
there always one?

Not for arbitrary R. But if R is a field, then yes:

Theorem 1.1.12 (Buchberger’s theorem). Let R be a field. Let I be an ideal of
the polynomial ring P = R [x1, x2, . . . , xn]. Then, I has a Gröbner basis.

Moreover, if b1, b2, . . . , bk are nonzero polynomials such that I = b1P +
b2P + · · ·+ bkP, then we can construct a Gröbner basis of I by the following
algorithm (Buchberger’s algorithm):

• Initially, let b be the list (b1, b2, . . . , bk).

• As long as there exist two entries of b whose S-polynomial has a
nonzero remainder modulo b, we append this remainder to the list.
(It is enough to compute one remainder for each pair of entries of b.)

• Once no such two entries exist any more, we are done: b is a Gröbner
basis of I.

This algorithm always terminates after finitely many steps (i.e., we don’t
keep adding new entries to b forever).

We won’t prove this, but we will give an example:

Example 1.1.13. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P +
b3P, where

b1 = x2 − yz,

b2 = y2 − zx,

b3 = z2 − xy.

We want to find a Gröbner basis of this ideal I.
As we have seen before, the list b := (b1, b2, b3) is not a Gröbner basis,

since S (b2, b3) = y3 − z3 does not have remainder 0 modulo b. Its remainder
is y3 − z3 itself. Thus, following Buchberger’s algorithm, we append this
remainder to the list. That is, we set b4 = y3 − z3, and continue with the list
(b1, b2, b3, b4). We call this list b again.
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Since b has grown, we must now also check whether the new S-
polynomials

S (b1, b4) , S (b2, b4) , S (b3, b4)

reduce to 0 modulo b. Fortunately, they do. Thus, our new list b =
(b1, b2, b3, b4) is a Gröbner basis of I.

Example 1.1.14. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P +
b3P, where

b1 = x2 + xy,

b2 = y2 + yz,

b3 = z2 + zx.

Then, again, it is not hard to see that (b1, b2, b3) is not a Gröbner basis of I.
Using Buchberger’s algorithm, we can easily compute its Gröbner basis. For
example, I has Gröbner basis(

x2 + xy, y2 + yz, xz + z2, yz2 − z3, z4
)

.

(Note that the Gröbner basis of an ideal is not unique, so you might get a
different one if you perform Buchberger’s algorithm differently. When there
are several pairs

(
bi, bj

)
whose S-polynomial does not reduce to 0, you have

a choice of which of these pairs you handle first.)
This Gröbner basis reveals that z4 ∈ I but z3 /∈ I (since z3 is reduced

modulo the above Gröbner basis). Just working from the original definition
of I, this would be far from obvious!

You can do Gröbner basis computations with most computer algebra sys-
tems (e.g., SageMath, Mathematica, Singular, SymPy). For example, here is
SageMath code for the Gröbner basis of the above ideal. Note that we took
R = Q in this computation (the “QQ” means the ring of rational numbers),
but the same computation works over any field R (and, because our ideal is
rather nice, even over any commutative ring R; this is not automatic).

1.1.2. Term orders

We have so far been using the deg-lex order on the monomials. There are many
other total orders that share most of its nice properties and are often more
suited for specific problems.

Let me only mention the lexicographic order, which is defined just as the
deg-lex order but without taking the degree into account. That is:

https://sagecell.sagemath.org/?z=eJwL0LOp0FGo1FGoslOwVQjIz6nMy8_NTMwJysxL1wgM1OTyBAnrZaakJuZoVMQZKWgrVGgBlVeCmZVaVUCdYGaVVgVQsV56UX5qUl5qUXxSYnFmsYYmAFkYHJ0=&lang=sage&interacts=eJyLjgUAARUAuQ==
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Definition 1.1.15. We define a total order ≺ (called the lexicographic order,
or – for short – the lex order) on the set C(n) of all monomials as follows:

For two monomials m = xa1
1 xa2

2 · · · xan
n and n = xb1

1 xb2
2 · · · xbn

n , we declare
that m ≺ n if and only if

• there is an i ∈ {1, 2, . . . , n} such that ai ̸= bi, and the smallest such i
satisfies ai < bi.

Recall the proposition from Lecture 16 where we collected properties of the
deg-lex order:

Proposition 1.1.16. (a) The deg-lex order really is a total order on C(n).
(b) If m, n, p ∈ C(n) satisfy m ≺ n, then mp ≺ np.
(c) We have 1 ≼ m for any m ∈ C(n).
(d) Let m ∈ C(n) be any monomial. Then, there are only finitely many

monomials p such that p ≺ m.
(e) There are no infinite decreasing chains m0 ≻ m1 ≻ m2 ≻ · · · of mono-

mials.
(f) If T is a nonempty finite set of monomials, then T has a largest element

with respect to ≺ (that is, an element t ∈ T such that m ≼ t for all m ∈ T).
(g) If T is a nonempty set of monomials, then T has a smallest element

with respect to ≺ (that is, an element t ∈ T such that m ≽ t for all m ∈ T).

All of these properties except for part (d) hold for the lex order as well. Part
(d) fails (for n > 1), because x1 is larger (with respect to the lex order) than any
power of x2 (and, of course, there are infinitely many powers of x2). Part (e)
is still true, but its proof is harder. However, the theory of Gröbner bases does
not use part (d), so it still can be done with the lex order. This yields new (in
general, different) Gröbner bases.

Example 1.1.17. Let n = 3 and let I =
(
x2 − y

)
P +

(
y2 − z

)
P +

(
z2 − x

)
P

(where we write x, y, z for x1, x2, x3). Then, a Gröbner basis of I with respect
to the deg-lex order is (

x2 − y, y2 − z, z2 − x
)

(this is precisely the list of generators that we started with). But this is not
a Gröbner basis with respect to the lex order. Instead, a Gröbner basis of I
with respect to the lex order is(

x − z2, y − z4, z8 − z
)

.
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Example 1.1.18. Let n = 3 and let I =
(
x2 − y3) P +

(
y4 − z2) P +

(
z2 − x5) P

(where we write x, y, z for x1, x2, x3). Then, a Gröbner basis of I with respect
to the deg-lex order is(

z6 − yz2, x3z2 − yz2, xy2z2 − z2, xz4 − y2z2,

yz4 − xz2, x4 − y2z2, x2y − z2, y3 − x2
)

.

But a Gröbner basis of I with respect to the lex order is(
x2 − y3, xz2 − z8, y4 − z2, yz2 − z6, z16 − z2

)
.

In the SageMath computer algebra system, you can signal the use of the lex
order (as opposed to the deg-lex order, which is used by default) by replacing
“PolynomialRing(QQ)” by “PolynomialRing(QQ, order="lex")”.

This last example illustrates one reason to vary the total order on monomials:
Gröbner bases can often be rather long (even if the ideal is easy to write down).
The size of a Gröbner basis can be doubly exponential in the number of gener-
ators of I (I believe). In real life, this worst case doesn’t happen very often, but
when it does, switching to a different monomial order will often make it easier.
(It’s essentially a way of rolling the dice again if you got an unlucky roll.)

1.2. Solving polynomial systems using Gröbner bases

Another occasion to use Gröbner bases (and the lex order in particular) is solv-
ing systems of polynomial equations. Polynomial equations are closely con-
nected to ideals:

Definition 1.2.1. Let b1, b2, . . . , bk be k polynomials in P, and let A be a
commutative R-algebra. Then, a root (or, alternatively, a common root) of
(b1, b2, . . . , bk) in A means an n-tuple (a1, a2, . . . , an) ∈ An such that

bi (a1, a2, . . . , an) = 0 for all i ∈ {1, 2, . . . , k} .

This definition generalizes the standard notion of a root of a polynomial to
multiple variables and multiple polynomials.

Thus, solving systems of polynomial equations means finding roots of lists
of polynomials. It turns out that the list of polynomials doesn’t really matter;
what does is the ideal it generates:

Proposition 1.2.2. Let b1, b2, . . . , bk be k polynomials in P, and let A be a
commutative R-algebra.
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Then, the roots of (b1, b2, . . . , bk) in A depend only on the ideal generated
by b1, b2, . . . , bk, rather than on the polynomials b1, b2, . . . , bk themselves.

More concretely: If I = b1P + b2P + · · ·+ bkP is the ideal of P generated
by b1, b2, . . . , bk, then the roots of (b1, b2, . . . , bk) are precisely the n-tuples
(a1, a2, . . . , an) ∈ An such that

f (a1, a2, . . . , an) = 0 for all f ∈ I.

Proof. Easy, LTTR. (You have to prove that if (a1, a2, . . . , an) ∈ An is a root of
(b1, b2, . . . , bk), then f (a1, a2, . . . , an) = 0 for all f ∈ I. But this is easy: Each
f ∈ I is a P-linear combination c1b1 + c2b2 + · · · + ckbk of (b1, b2, . . . , bk), and
therefore satisfies

f (a1, a2, . . . , an)

= c1 (a1, a2, . . . , an) b1 (a1, a2, . . . , an)︸ ︷︷ ︸
=0

+c2 (a1, a2, . . . , an) b2 (a1, a2, . . . , an)︸ ︷︷ ︸
=0

+ · · ·+ ck (a1, a2, . . . , an) bk (a1, a2, . . . , an)︸ ︷︷ ︸
=0

= 0.

The converse is even more obvious, since the polynomials b1, b2, . . . , bk all be-
long to I.)

Thus, if we want to find the roots of (b1, b2, . . . , bk), we can replace (b1, b2, . . . , bk)
by any other tuple of polynomials that generates the same ideal of P. (This is
just the polynomial analogue of the classical “addition” strategy for solving
systems of linear equations.)

One of the most useful ways to do this is to replace (b1, b2, . . . , bk) by a Gröb-
ner basis of the ideal it generates – particularly, by a Gröbner basis with respect
to the lex order. Let us see how this helps on an example:

Example 1.2.3. Recall Exercise 8 on homework set #0:

Solve the following system of equations:

a2 + b + c = 1,

b2 + c + a = 1,

c2 + a + b = 1

for three complex numbers a, b, c.

Let us formalize this in terms of polynomials and roots. We set R = Q and
n = 3, and we write x, y, z for x1, x2, x3. Thus, the exercise is asking for the
roots of (

x2 + y + z − 1, y2 + z + x − 1, z2 + x + y − 1
)
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in the Q-algebra C.
Let I be the ideal of P = Q [x, y, z] generated by the three polynomials

x2 + y + z − 1, y2 + z + x − 1, z2 + x + y − 1. Using a computer (or a lot
of patience), we can easily find a Gröbner basis of I with respect to the lex
order. We get(

x + y + z2 − 1, y2 − y − z2 + z, yz2 +
1
2

z4 − 1
2

z2, z6 − 4z4 + 4z3 − z2
)

.

We observe that the last polynomial in this Gröbner basis only involves the
variable z ! Thus, the c entry in each of the solutions (a, b, c) of our system
must be a root of this polynomial z6 − 4z4 + 4z3 − z2. We can therefore find all
possibilities for c by finding the roots of this polynomial (I am here assuming
that you can solve univariate polynomials; we will learn a bit more about this
in Lecture 18). In our concrete case, we can easily do this:

z6 − 4z4 + 4z3 − z2 = z2 (z − 1)2
(

z2 + 2z − 1
)

.

Thus, the options for c are 0, 1,
√

2 − 1,
√

2 + 1.
Now let us find b. Either we use the symmetry of the original system to

argue that the options for b must be the same as for c; or we use the second-
to-last polynomial in our Gröbner basis (or the second one) to compute b
now that c is known. At last, we get to a in a similar way.

In the end, we get finitely many options for (a, b, c). We need to check
which of these options actually are solutions of the original system. This is a
lot of work, but a computer can do it.

Of course, there are more elegant ways to solve the above exercise (other-
wise, I would not have posed it on homework set #0). However, the way we
just showed is generalizable. In general, if a system of polynomial equations
over C has only finitely many solutions, then we can find them all in this way
(provided that we have an algorithm for finding all roots of a univariate poly-
nomial).1 Thus, using Gröbner bases with respect to the lex order, we can
(often) reduce solving systems of polynomial equations in multiple variables to

1If a system of polynomial equations has infinitely many solutions, then this strategy usually
will not work. For example, if we try to use it to solve the system

ab = 0,
bc = 0,
ca = 0,

then we find the Gröbner basis (xy, yz, xz), which doesn’t get us any closer to the solutions.
Blame this on the problem, not on the Gröbner basis: The system has a more complicated
combinatorial structure (its solution set is the union of the three axes in 3D space; there are
infinitely many options for each of a, b, c).
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solving polynomial equations in a single variable.
Some things don’t look like systems of polynomial equations, but yet boil

down to such systems. Here is an example:

Example 1.2.4. Recall Exercise 4 on homework set #0:

Simplify 3
√

2 +
√

5 + 3
√

2 −
√

5.

There are various ways of solving this using some creativity or lucky ideas.
Let us try to be more methodical here. We set

a =
3
√

2 +
√

5, b =
3
√

2 −
√

5, c =
3
√

2 +
√

5 +
3
√

2 −
√

5.

Thus, we want to find a simpler expression for c. A good first step would be
to find a polynomial whose root c is (since we would then have a chance of
finding c by root-finding techniques). We see that a, b, c satisfy the following
system of equations: (

a3 − 2
)2

− 5 = 0,(
b3 − 2

)2
− 5 = 0,

a + b − c = 0.

(Indeed, the first equation comes from “unraveling” a =
3
√

2 +
√

5, and like-
wise for the second; the third comes from the obvious fact that c = a + b.)

We try to solve this system using Gröbner bases. Thus, we consider the
ideal

I :=
((

x3 − 2
)2

− 5
)

P +

((
y3 − 2

)2
− 5

)
P + (x + y − z) P

of the polynomial ring P = Q [x, y, z]. Using SageMath, we can easily find
a Gröbner basis of this ideal I with respect to the lex order. Its last entry is
a polynomial that involves only the variable z, so we can narrow down the
options for c to the roots of this polynomial.

This looks nice in theory, but in practice you will realize that this last entry
is

z21 − 40z18 + 218z15 − 72z12 − 9931z9 − 5216z6 + 19136z3 − 4096.

Eek. With a good computer algebra system, you can factor this polynomial,
but there will be some degree-4 factors irreducible over Q. The polynomial
has 5 real roots, so c must be one of them, but we need some harder work to
find out which one. This is all not very convenient.

But our approach can be salvaged. We have been “throwing away” in-
formation about our a, b, c; no wonder that we got so many options for c.
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Indeed, the equation
(
a3 − 2

)2 − 5 = 0 doesn’t really mean a =
3
√

2 +
√

5; it
only means that a is some cube root of (2 plus some square root of 5). Here,
we are using the word “root” in the wider sense, so a nonzero complex num-
ber has two square roots and three cube roots; thus, there are 6 possibilities
in total for a. Likewise for b. Our system of equations above allows c to be a
sum of any of the 6 possible a’s with any of the 6 possible b’s. Unsurprisingly,
this leaves lots of different options for c.

Thus, we need to integrate a bit more information about the actual values
of a, b into our system. Of course, we know that a is the real cube root of
the positive square root of 5. But this is not the kind of information we can
easily integrate into a system of equations.

However, we can observe that

ab =
3
√

2 +
√

5 · 3
√

2 −
√

5 = 3

√(
2 +

√
5
)
·
(

2 −
√

5
)

(
since 3

√
u · 3

√
v = 3

√
uv for any u, v ∈ R

)
= 3

√
−1 = −1.

Thus, we can extend our system to(
a3 − 2

)2
− 5 = 0,(

b3 − 2
)2

− 5 = 0,

a + b − c = 0,
ab + 1 = 0.

This is a different system and has a smaller set of solutions than the previous
one, but that’s good news, since the solution we are looking for is one of its
solutions.

Now, solving this new system using the Gröbner basis technique, we find
that c is a root of the polynomial z3 + 3z − 4 (since this polynomial is the last
entry of the Gröbner basis we find). But the roots of this polynomial are easy
to find: The factorization

z3 + 3z − 4 = (z − 1)
(

z2 + z + 4
)

︸ ︷︷ ︸
always positive on R

shows that its only real root is 1, so that c must be 1 (since c is real by
definition). Thus our exercise is solved.

See [CoLiOs15] for more about solving systems of polynomial equations, and
for further applications of Gröbner bases.
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