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Math 533 Winter 2021, Lecture 16: Multivariate
polynomials

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Polynomials II

We fix a commutative ring R. We shall now resume the study of polynomials.

1.1. Multivariate polynomials again

Recall from Lecture 13 the following fact:

Theorem 1.1.1. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m such
that its leading coefficient [xm] b is a unit. Then, each element of R [x] /b can
be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R.

Equivalently, the m vectors x0, x1, . . . , xm−1 form a basis of the R-module
R [x] /b. Thus, this R-module R [x] /b is free of rank m = deg b. If m > 0,
then the ring R [x] /b contains “a copy of R”.

Thus we understand quotients of univariate polynomials rings rather well
when the leading coefficient is a unit. They are less predictable when it is
not a unit. If R is a field, however, then the leading coefficient of a nonzero
polynomial b ∈ R [x] is always a unit, so we don’t need to worry about this
issue.

But can we do this with multivariate polynomials?
Consider, for example, the two-variable polynomial ring R [x, y]. How does

R [x, y] /b look like for a polynomial b ∈ R [x, y] ? Keep in mind that the “idea”
behind quotienting out b is that we are setting b to 0. So R [x, y] /b is “the ring
of polynomials in x and y subject to the assumption that b (x, y) = 0”.

Let us first try to answer this question for some special polynomials b; we
will then look for a pattern. There is a lot to be learned from the examples.

1.1.1. Example 1: R [x, y] /y

What is R [x, y] /y ? We expect this to be isomorphic to R [x], because setting y
to 0 in a polynomial f (x, y) should give f (x, 0) ∈ R [x].

This is indeed true, and the formal proof is essentially just a formalization of
this informal argument:

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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Proposition 1.1.2. We have R [x, y] /y ∼= R [x] as R-algebras.

Proof. Define a map

α : R [x, y] /y → R [x] ,

f 7→ f (x, 0) .

First, we need to check that this map α is well-defined. In other words, we need
to check the following:

Claim 1: If f , g ∈ R [x, y] are two polynomials satisfying f = g in
R [x, y] /y, then f (x, 0) = g (x, 0).

[Proof of Claim 1: Let f , g ∈ R [x, y] be two polynomials satisfying f = g in
R [x, y] /y. Then, f = g means that f − g ∈ yR [x, y]; in other words, f − g =
yp for some polynomial p ∈ R [x, y]. Consider this p. Now, evaluating both
sides of the equality f − g = yp at (x, 0) (that is, substituting 0 for y) yields
f (x, 0)− g (x, 0) = 0p (x, 0) = 0 and thus f (x, 0) = g (x, 0). This proves Claim
1.]

Having proved Claim 1, we thus know that the map α is well-defined. It
is straightforward to see that α is an R-algebra morphism (because the map
R [x, y] → R [x] , f 7→ f (x, 0) is an R-algebra morphism1).

In the opposite direction, define a map

β : R [x] → R [x, y] /y,

g 7→ g [x].

It is again clear that this is an R-algebra morphism.
Now, we shall show that the maps α and β are mutually inverse. To prove

this, we need to check that α ◦ β = id and β ◦ α = id. Checking α ◦ β = id is the
easy part. The “hard part” is showing that β ◦ α = id. There are two ways to
do this:

[First proof of β ◦ α = id: To show this, we need to prove that (β ◦ α)
(

f
)
= f

for each f ∈ R [x, y]. So let us fix an f ∈ R [x, y]. Then,

(β ◦ α)
(

f
)
= β

(
α
(

f
))

= β ( f (x, 0))
(

since α
(

f
)

was defined to be f (x, 0)
)

= ( f (x, 0)) [x] (by the definition of β)

= f (x, 0) (since ( f (x, 0)) [x] = f (x, 0)) .

Thus, it remains to show that f (x, 0) = f (because we want to show that
(β ◦ α)

(
f
)
= f ). In other words, it remains to show that f − f (x, 0) ∈ yR [x, y].

1We saw this (in a more general setting) in Lecture 11.
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We do this directly: Write f in the form f = ∑
i,j∈N

ai,jxiyj (with ai,j ∈ R). Then,

f (x, 0) = ∑
i,j∈N

ai,jxi0j = ∑
i∈N

ai,jxi 00︸︷︷︸
=1

+ ∑
i,j∈N;

j>0

ai,jxi 0j︸︷︷︸
=0

(since j>0) here, we have split the sum into two parts:
one that contains all terms with j = 0

and one that contains all terms with j > 0


= ∑

i∈N

ai,jxi = ∑
i,j∈N;

j=0

ai,jxiyj
(

since yj = 1 for j = 0
)

.

Subtracting this from f = ∑
i,j∈N

ai,jxiyj, we find

f − f (x, 0) = ∑
i,j∈N

ai,jxiyj − ∑
i,j∈N;

j=0

ai,jxiyj = ∑
i,j∈N;

j>0

ai,jxi yj︸︷︷︸
=yyj−1

(we can do this
because j>0)

= ∑
i,j∈N;

j>0

ai,jxiyyj−1 = y ∑
i,j∈N;

j>0

ai,jxiyj−1 ∈ yR [x, y] ,

as we wanted to prove. Thus, f (x, 0) = f , so that (β ◦ α)
(

f
)
= f (x, 0) = f .

This proves β ◦ α = id.]
[Second proof of β ◦ α = id: Here is a more “cultured” proof. We know that

β and α are R-algebra morphisms, hence are R-linear maps. Thus, β ◦ α and id
are two R-linear maps from R [x, y] /y to R [x, y] /y. Our goal is to prove that
these two R-linear maps β ◦ α and id are equal. As we have learned in Lecture
10, there is a shortcut for proving that two R-linear maps are equal: It suffices
to pick a family of vectors that spans the domain (in our case, the R-module
R [x, y] /y), and to show that the two maps agree on the vectors of this family.
In our case, there is a rather natural choice of such a family: the family of
monomials, or rather of their cosets. That is, we choose the family

(
xiyj

)
i,j∈N

.

This family spans the R-module R [x, y] /y (since the family
(
xiyj)

i,j∈N
spans

the R-module R [x, y], and since the canonical projection onto R [x, y] /y clearly
preserves their spanning property). Thus, we only need to show that the two
maps β ◦ α and id agree on the vectors of this family – i.e., to show that

(β ◦ α)
(

xiyj
)
= id

(
xiyj

)
for any i, j ∈ N.

But this is straightforward: We fix i, j ∈ N, and set out to show that (β ◦ α)
(

xiyj
)
=

id
(

xiyj
)

. If j > 0, then xiyj = 0 (since xiyj ∈ yR [x, y] in this case) and therefore
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both (β ◦ α)
(

xiyj
)

and id
(

xiyj
)

must be 0 in this case (since R-linear maps al-

ways send 0 to 0). If, on the other hand, j = 0, then xiyj = xiy0 = xi and
therefore α

(
xiyj

)
= α

(
xi
)
= xi (since substituting 0 for y does not change the

monomial xi) and thus (β ◦ α)
(

xiyj
)
= β

(
xi) = xi = xiyj = id

(
xiyj

)
. Hence,

in both cases, we have shown that (β ◦ α)
(

xiyj
)
= id

(
xiyj

)
. This completes

the proof of β ◦ α = id.]
Either way, we have now shown that β ◦ α = id. Combined with α ◦ β = id,

this yields that the two maps α and β are mutually inverse. Thus, α is an
invertible R-algebra morphism, hence an R-algebra isomorphism. This proves
Proposition 1.1.2.

We can easily generalize this to multiple variables:

Proposition 1.1.3. For any n > 0, we have

R [x1, x2, . . . , xn] /xn ∼= R [x1, x2, . . . , xn−1] as R-algebras.

Proof. Same idea as for Proposition 1.1.2, but requiring more subscripts to jug-
gle.

1.1.2. Example 2: R [x, y] /
(
x2 + y2 − 1

)
How does R [x, y] /

(
x2 + y2 − 1

)
look like?

This is a fairly useful R-algebra; it can be viewed as the algebra of polynomial
functions on the unit circle. Indeed, any element f ∈ R [x, y] /

(
x2 + y2 − 1

)
can

be “evaluated” at a point (a, b) on the unit circle (meaning, a pair of elements
a, b ∈ R with a2 + b2 = 1).

There are various interesting ring-theoretical questions to be asked about
the quotient ring R [x, y] /

(
x2 + y2 − 1

)
; however, let us restrict ourselves to

studying it as an R-module. As an R-module, is R [x, y] /
(
x2 + y2 − 1

)
free?

What is a basis? This boils down to asking whether (and how) we can divide
polynomials with remainder by x2 + y2 − 1.

Here we will be helped by the following fact:

Proposition 1.1.4. We have

R [x, y] ∼= (R [x]) [y] as R-algebras.

More concretely, the map

φ : R [x, y] → (R [x]) [y] ,

∑
i,j∈N

ai,jxiyj 7→ ∑
j∈N

(
∑

i∈N

ai,jxi

)
yj (

where ai,j ∈ R
)
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is an R-algebra isomorphism.

Proof. First of all, you are excused for wondering what the deal is: Isn’t the

above map φ just the identity map, since ∑
j∈N

(
∑

i∈N

ai,jxi
)

yj is the same polyno-

mial as ∑
i,j∈N

ai,jxiyj (just rewritten)?

Essentially yes, but there is a technical difference between the rings R [x, y]
and (R [x]) [y]. The former is a polynomial ring in two indeterminates x, y over
R, whereas the latter is a polynomial ring in one indeterminate y over the ring
R [x]. Hence,

• the elements of R [x, y] are polynomials in two variables x, y with coeffi-
cients in R, whereas

• the elements of (R [x]) [y] are polynomials in one variable y with coeffi-
cients in R [x] (that is, their coefficients themselves are polynomials in one
variable x over R).

Thus, even if a polynomial in R [x, y] and a polynomial in (R [x]) [y] look ex-
actly the same (such as, for example, the polynomials 2x2y3 in both rings), they
are technically different. (The polynomial 2x2y3 in R [x, y] has the monomial
x2y3 appear in it with coefficient 2, whereas the polynomial 2x2y3 in (R [x]) [y]
has the monomial y3 appear in it with coefficient 2x2.) The map φ thus sends
each polynomial in R [x, y] to the identically-looking polynomial in (R [x]) [y].

This being said, the claim we are proving is saying precisely that the differ-
ence between R [x, y] and (R [x]) [y] is only a technicality; in essence the two
rings are the same. The proof is rather straightforward. The simplest way is as
follows: The map φ defined in the proposition is easily seen to be well-defined
and an R-module isomorphism. Thus, it remains to prove that this map φ re-
spects multiplication and respects the unity. It is clear enough that φ respects
the unity (since the unities of both rings equal x0y0), so we only need to check
that φ respects multiplication. According to the lemma from Lecture 11, it suf-
fices to prove this on a family of vectors that spans the R-module R [x, y]; in
other words, we only need to find a family (mi)i∈I of vectors in R [x, y] that
spans R [x, y], and show that

φ
(
mimj

)
= φ (mi) φ

(
mj
)

for all i, j ∈ I.

Fortunately, the family of monomials
(
xiyj)

(i,j)∈N2 is such a family of vectors
(even better, it is a basis of the R-module R [x, y]); thus, we only need to prove
that

φ
(

xiyu · xjyv
)
= φ

(
xiyu

)
· φ
(

xjyv
)

for all (i, u) , (j, v) ∈ N2.
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But this is easy (the left and right hand sides both equal xi+jyu+v ∈ (R [x]) [y]).
Thus, we conclude that φ respects multiplication; as we said above, this com-
pletes the proof of Proposition 1.1.4.

Now, in view of Proposition 1.1.4, we have

R [x, y] /
(

x2 + y2 − 1
)
∼= (R [x]) [y] /

(
x2 + y2 − 1

)
(1)

(since the isomorphism φ from Proposition 1.1.4 sends the polynomial x2 +
y2 − 1 ∈ R [x, y] to the identically-looking polynomial x2 + y2 − 1 ∈ (R [x]) [y]).

The ring on the right hand side of (1) is a quotient ring of the univari-
ate polynomial ring (R [x]) [y] modulo the monic polynomial x2 + y2 − 1 =

y2 +
(

x2 − 1
)

︸ ︷︷ ︸
constant term in R[x]

in the variable y. Thus, Theorem 1.1.1 (applied to 2,

R [x], y and x2 + y2 − 1 instead of m, R, x and b) shows that this quotient ring
(R [x]) [y] /

(
x2 + y2 − 1

)
has a basis

(
y0, y1

)
as an R [x]-module. This means

that any element of (R [x]) [y] /
(
x2 + y2 − 1

)
can be uniquely written as

αy0 + βy1 for some α, β ∈ R [x] .

Since elements of R [x] themselves can be uniquely written as R-linear combina-
tions of powers of x, we thus conclude that any element of (R [x]) [y] /

(
x2 + y2 − 1

)
can be uniquely written as(

α0x0 + α1x1 + α2x2 + · · ·
)

y0 +
(

β0x0 + β1x1 + β2x2 + · · ·
)

y1

= (α0x0 + α1x1 + α2x2 + · · · ) y0 + (β0x0 + β1x1 + β2x2 + · · · ) y1

= α0x0y0 + α1x1y0 + α2x2y0 + · · ·+ β0x0y1 + β1x1y1 + β2x2y1 + · · ·

for some α0, α1, α2, . . . , β0, β1, β2, . . . ∈ R (with all but finitely many of these coef-
ficients α0, α1, α2, . . . , β0, β1, β2, . . . being 0). Thus, as an R-module, (R [x]) [y] /

(
x2 + y2 − 1

)
has a basis (

x0y0, x1y0, x2y0, . . . , x0y1, x1y1, x2y1, . . .
)

.

In view of the isomorphism (1) (which is an R-algebra isomorphism, and sends
each xiyj to xiyj), we can thus conclude that, as an R-module, R [x, y] /

(
x2 + y2 − 1

)
has a basis (

x0y0, x1y0, x2y0, . . . , x0y1, x1y1, x2y1, . . .
)

. (2)

The order in which we list the variables doesn’t matter much in a polyno-
mial ring; thus, Proposition 1.1.4 has the following analogue (which is proved
similarly):
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Proposition 1.1.5. We have

R [x, y] ∼= (R [y]) [x] as R-algebras.

More concretely, the map

φ : R [x, y] → (R [y]) [x] ,

∑
i,j∈N

ai,jxiyj 7→ ∑
i∈N

(
∑

j∈N

ai,jyj

)
xi (

where ai,j ∈ R
)

is an R-algebra isomorphism.

Proposition 1.1.4 can also be generalized:

Proposition 1.1.6. For any n > 0, we have

R [x1, x2, . . . , xn] ∼= (R [x1, x2, . . . , xn−1]) [xn] as R-algebras.

Proof. Generalize the proof of Proposition 1.1.4 (same idea, more subscripts).

1.1.3. More examples?

Having understood the R-modules R [x, y] /y and R [x, y] /
(
x2 + y2 − 1

)
, we

move on to further examples.
How does R [x, y] / (xy) look like? We cannot answer this using the methods

used above, since the polynomial xy is neither monic in y when considered as
a polynomial in (R [x]) [y] nor monic in x when considered as a polynomial in
(R [y]) [x].

What about R [x, y] / (xy (x − y)) ? Can we divide (x + y)3 by xy (x − y) with
remainder? What is the remainder? Should we replace x2y by xy2 or vice versa?

To make things more complicated (but also more useful), let’s not forget that
we can quotient a ring by an ideal, not just by a single element. Even if R is a
field, the polynomial ring R [x, y] is not a PID (unlike R [x] for a field R), so not
every ideal is principal.

The following shorthand will be useful:

Definition 1.1.7. Let S be a commutative ring. Let a1, a2, . . . , ak be elements
of S. Then, the ideal a1S + a2S + · · ·+ akS (this is the set of all S-linear com-
binations of a1, a2, . . . , ak) is called the ideal generated by a1, a2, . . . , ak. The
quotient ring S/ (a1S + a2S + · · ·+ akS) will be denoted by S/ (a1, a2, . . . , ak).

(Many authors actually write (a1, a2, . . . , ak) for the ideal a1S + a2S + · · · +
akS, but this risks confusion since (a1, a2, . . . , ak) also means the k-tuple.)
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Informally, S/ (a1, a2, . . . , ak) is what is obtained from S if you set all of
a1, a2, . . . , ak to 0.

For an example, we can look at R [x, y] / (x + y, x − y). This behaves differ-
ently depending on R:

• If R = Q, then

R [x, y] / (x + y, x − y) = Q [x, y] / (x + y, x − y) = Q [x, y] / (x, y)

(since it is easy to see that the Q [x, y]-linear combinations of x + y and
x − y are precisely the Q [x, y]-linear combinations of x and y), and thus

R [x, y] / (x + y, x − y) = Q [x, y] / (x, y) ∼= Q.

• If R = Z/2, then

R [x, y] / (x + y, x − y) = (Z/2) [x, y] /

 x + y︸ ︷︷ ︸
=x−y

(since we are in
characteristic 2)

, x − y


= (Z/2) [x, y] / (x − y, x − y)
= (Z/2) [x, y] / (x − y) ∼= (Z/2) [x] .

We can easily come up with more complicated examples:
What is R [x, y, z] /

(
x2 − yz, y2 − zx, z2 − xy

)
? What lies in the ideal(

x2 − yz
)

R [x, y, z] +
(
y2 − zx

)
R [x, y, z] +

(
z2 − xy

)
R [x, y, z] ?

What is R [x, y, z] /
(
x2 + xy, y2 + yz, z2 + zx

)
? What lies in the ideal(

x2 + xy
)

R [x, y, z] +
(
y2 + yz

)
R [x, y, z] +

(
z2 + zx

)
R [x, y, z] ? For example, I

claim that z4 lies in this ideal, but z3 does not. How do I know? How can you
tell?

In theory, you could imagine that there are ideals that do not even have a
finite list of elements generating them. There are rings that have such ideals.
For example, the polynomial ring Z [x1, x2, x3, . . .] in infinitely many variables
has such ideals. But polynomial rings in finitely many variables over a field are
not this bad. Indeed:

Theorem 1.1.8 (Hilbert’s basis theorem). Let F be a field. Let S be the poly-
nomial ring F [x1, x2, . . . , xn] for some n ∈ N. Then, any ideal I of S is finitely
generated (this means that there is a finite list (a1, a2, . . . , ak) of elements of I
such that I = a1S + a2S + · · ·+ akS).

Proof. See [DF, §9.6, Corollary 22].
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Warning: If n = 1, then the ideal I in Theorem 1.1.8 is principal (since F [x1]
is a PID), so you can get by with a length-1 list (i.e., with k = 1). However, if
n = 2, then the list can be arbitrarily large. You cannot always find a length-
2 list. For example, in the polynomial ring F [x, y], the ideal generated by all
monomials of degree p (that is, by xp, xp−1y, xp−2y2, . . . , yp) cannot be generated
by p or fewer elements.

1.2. Degrees and the deg-lex order

Let us now attempt a more general approach.
From now on, for the rest of this chapter, we fix a commutative ring R and

an n ∈ N.
We let P denote the polynomial ring R [x1, x2, . . . , xn].
As we recall, a monomial is an element of the free abelian monoid C(n) with n

generators x1, x2, . . . , xn; it has the form xa1
1 xa2

2 · · · xan
n for some (a1, a2, . . . , an) ∈

Nn.
Our first goal is to define the degree of a polynomial in n variables. We begin

by defining the degree of a monomial:

Definition 1.2.1. The degree of a monomial m = xa1
1 xa2

2 · · · xan
n ∈ C(n) is de-

fined to be the number a1 + a2 + · · ·+ an ∈ N. It is denoted by degm.

For example, the monomial x5
1x2x2

4 = x5
1x1

2x0
3x2

4 has degree 5 + 1 + 0 + 2 = 8.

Definition 1.2.2. A monomial m is said to appear in a polynomial f ∈ P if
[m] f ̸= 0. (Recall that [m] f means the coefficient of m in f .)

For example, the monomial x2y appears in (x + y)3 ∈ R [x, y] (if 3 ̸= 0 in R),
but the monomial xy does not.

Definition 1.2.3. The degree (or total degree) of a nonzero polynomial f ∈ P
is the largest degree of a monomial that appears in f .

For example, the polynomial (x + y + 1)3 has degree 3.
Definition 1.2.3 generalizes our old definition of degree for nonzero univari-

ate polynomials.
The following proposition generalizes a fact that we proved for univariate

polynomials in Lecture 12:

Proposition 1.2.4 (Degree-of-a-product formula). Let R be a commutative
ring. Let p, q ∈ P be nonzero.

(a) We have deg (pq) ≤ deg p + deg q.
(b) We have deg (pq) = deg p + deg q if R is an integral domain.
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Part (a) of this proposition is pretty clear. (The reason is that deg (mn) =
degm+ deg n for any monomials m, n.)

What about part (b)? We proved this for univariate polynomials using lead-
ing coefficients. What is a leading coefficient when several monomials can have
the same degree? In order to define it, we need to break ties (i.e., establish an
ordering on monomials of equal degrees) in a way that will be compatible with
products2. To that aim, we shall introduce a total order on the set C(n) of all
monomials.

Recall that a total order (or, to be more precise, a strict total order) on a set
S is a binary relation ≺ on S that is

• asymmetric (meaning that no two elements a and b of S satisfy a ≺ b and
b ≺ a at the same time);

• transitive (meaning that if a, b, c ∈ S satisfy a ≺ b and b ≺ c, then a ≺ c);

• trichotomous (meaning that for any two elements a and b of S, we have
a ≺ b or a = b or b ≺ a).

Examples:

• The relation < on the set N or on the set Z or on the set R is a total order.

• So is the relation > on each of these three sets.

• If S is a finite set, and if (s1, s2, . . . , sk) is a list of all elements of S, with
each element of S appearing exactly once in this list, then we can define
a total order ≺ on S as follows: We declare that two elements u, v ∈ S
satisfy u ≺ v if and only if u appears prior to v in this list (s1, s2, . . . , sk)
(that is, if u = si and v = sj for some i < j).

If ≺ is a total order on a set S, then we view relations of the form a ≺ b as
saying that a is in some sense smaller than b. We will use the notations ≼, ≻
and ≽ accordingly; this means that

• we write “a ≼ b” for “a ≺ b or a = b”.

• we write “a ≻ b” for “b ≺ a”.

• we write “a ≽ b” for “a ≻ b or a = b”.

So we all know a total order on the set R of all real numbers. But what
about other sets? For example, how can we find a total order on the set of
words in the English language? A long time ago, creators of dictionaries and
encyclopedias were faced with this very problem, because it would be hard

2I will explain what this means later.
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to look a word up in a dictionary if there was no well-known total order in
which the words appeared in the dictionary. The total order commonly used in
dictionaries is known as the lexicographic order (or dictionary order): Words
are ordered by their first letter (e.g., “ant” ≺ “bear”); ties are broken using the
second letter (“ant” ≺ “armadillo”); remaining ties are broken using the third
letter (“camel” ≺ “cat”); and so on; absent letters are treated as being smaller
than present letters (e.g., “ant” ≺ “anteater”). We use this as an inspiration for
defining a total order on C(n), but we shall use the degree as the first level of
comparison.

Definition 1.2.5. We define a total order ≺ (called the degree-lexicographic
order, or – for short – the deg-lex order) on the set C(n) of all monomials as
follows:

For two monomials m = xa1
1 xa2

2 · · · xan
n and n = xb1

1 xb2
2 · · · xbn

n , we declare
that m ≺ n if and only if

• either degm < deg n;

• or degm = deg n and the following holds: There is an i ∈ {1, 2, . . . , n}
such that ai ̸= bi, and the smallest such i satisfies ai < bi.

In words:

• If two monomials have different degrees, then we declare the monomial
with smaller degree to be the smaller one.

• If they have equal degrees, then we look at the first variable that has
different exponents in the two monomials, and we declare the monomial
with the smaller exponent on this variable to be smaller.

For example:

• We have x2
1 ≺ x2x2

3, since deg
(
x2

1
)
= 2 < 3 = deg

(
x2x2

3
)
.

• We have x5
1x2x3x2

4 ≺ x5
1x2x2

3x4, since the two monomials have the same
degree, and the first variable that has different exponents in these two
monomials is x3, and this variable appears with a smaller exponent in
x5

1x2x3x2
4 (namely, with exponent 1) than in x5

1x2x2
3x4 (namely, with expo-

nent 2).

• We have x1x2
3 ≺ x1x2x3, since the first variable that has different exponents

in these two monomials is x2, and this variable appears with a smaller
exponent in x1x2

3 (namely, with exponent 0) than in x1x2x3 (namely, with
exponent 1).
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• The reader may easily check that x3
3 ≺ x1x2x2

3 ≺ x1x2
2x3 ≺ x2

1x2x3 ≺ x5
3 ≺

x2
1x2

2x2
3.

The deg-lex order has several good properties:

Proposition 1.2.6. (a) The deg-lex order really is a total order on C(n).
(b) If m, n, p ∈ C(n) satisfy m ≺ n, then mp ≺ np.
(c) We have 1 ≼ m for any m ∈ C(n).
(d) Let m ∈ C(n) be any monomial. Then, there are only finitely many

monomials p such that p ≺ m.
(e) There are no infinite decreasing chains m0 ≻ m1 ≻ m2 ≻ · · · of mono-

mials.
(f) If T is a nonempty finite set of monomials, then T has a largest element

with respect to ≺ (that is, an element t ∈ T such that m ≼ t for all m ∈ T).
(g) If T is a nonempty set of monomials, then T has a smallest element

with respect to ≺ (that is, an element t ∈ T such that m ≽ t for all m ∈ T).

Note that we require T to be finite in Proposition 1.2.6 (f) but not in Propo-
sition 1.2.6 (g). This is similar to the situation for sets of nonnegative integers
(viz., any nonempty set of nonnegative integers has a smallest element, but
only finite nonempty sets of nonnegative integers have largest elements).

Hints to the proof of Proposition 1.2.6. (a), (b), (c), (d) LTTR.
(e) This follows from (d).
(f) This holds for any total order on any set.
(g) This is easily proved using (d) (or, less easily, using (e)). LTTR.

(Proposition 1.2.6 (b) is what I meant when I said that the deg-lex order is
“compatible with products”.)

Now, we can define leading coefficients of multivariate polynomials:

Definition 1.2.7. Let f ∈ P be a nonzero polynomial.
(a) The leading monomial of f means the largest (with respect to ≺) mono-

mial that appears in f . It is denoted by LM f .
(b) The leading coefficient of f means the coefficient [LM f ] f . It is denoted

by LC f .
(c) The leading term of f means the product LC f · LM f . It is denoted by

LT f .

For example, if 3 ̸= 0 in R, then

LM
(
(x1 + x2 + 1)3 − x3

1

)
= x2

1x2;

LC
(
(x1 + x2 + 1)3 − x3

1

)
= 3;

LT
(
(x1 + x2 + 1)3 − x3

1

)
= 3x2

1x2.

Two simple consequences of this definition are:
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Proposition 1.2.8. Let f ∈ P be a nonzero polynomial. Then, f − LT f = 0 or
else LM ( f − LT f ) ≺ LM f .

Proof. By Definition 1.2.7, we have

f = LT f + (an R-linear combination of monomials m with m ≺ LM f ) .

Hence, f − LT f is an R-linear combination of monomials m with m ≺ LM f .
Therefore, f − LT f = 0 or else LM ( f − LT f ) ≺ LM f .

Proposition 1.2.9. Let f , g ∈ P be nonzero polynomials such that LC f is not
a zero-divisor in R. Then,

LM ( f g) = LM f · LM g and LC ( f g) = LC f · LC g.

Proof. LTTR. (Use Proposition 1.2.6 (b).)

Now we can easily prove Proposition 1.2.4 (b). (The details are LTTR.) From
Proposition 1.2.4, we obtain the following:

Corollary 1.2.10. If R is an integral domain, then the polynomial ring P =
R [x1, x2, . . . , xn] is an integral domain.

1.3. Division with remainder and Gröbner bases

By defining leading monomials and leading coefficients, we have recovered one
piece of the nice theory of univariate polynomials in the multivariate case. Can
we do more? Can we define division with remainder?

1.3.1. The case of principal ideals

We can divide with remainder by a single polynomial3:

Theorem 1.3.1. Let b ∈ P be a nonzero polynomial whose leading coefficient
LC b is a unit of R. Let a ∈ P be any polynomial.

Then, there is a unique pair (q, r) of polynomials in P such that

a = qb + r and r is LM b-reduced.

Here, a polynomial r ∈ P is said to be m-reduced (where m is a monomial) if
no monomial divisible by m appears in r.

3Recall that P = R [x1, x2, . . . , xn].
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This generalizes the division-with-remainder theorem for univariate polyno-
mials; indeed, if n = 1, then the condition “r is LM b-reduced” is equivalent to
“deg r < deg b” (which is familiar from the case of univariate polynomials).

Let us illustrate Theorem 1.3.1 on an example:

• Let n = 2 and R = Z, and let us rename the indeterminates x1, x2 as
x, y. Thus, P = Z [x, y]. Let b = xy (x − y) ∈ P. Thus, LM b = x2y and
LC b = 1.

Let a = (x + y)4. We want to divide a by b with remainder. That is, we
want to find the pair (q, r) in Theorem 1.3.1.

Theorem 1.3.1 says that “a can be written as a multiple of b plus some
LM b-reduced polynomial”. In other words, it says that by subtracting an
appropriate multiple of b from a, we can obtain an LM b-reduced polyno-
mial. How do we find the right multiple to subtract?

In the univariate case, “LM b-reduced” was simply saying that deg r <
deg b, and we achieved this by repeatedly subtracting multiples of b from
a in order to chip away at the leading term (reducing the degree by at
least 1 in each step). We can do this similarly in the multivariate case:
We simply check whether a is already LM b-reduced. As long as it isn’t,
we find some monomial divisible by LM b that appears in a, and we clear
it out by subtracting an appropriate multiple of b (so that this monomial
no longer appears in a). More precisely, we clear out the highest such
monomial that appears in a. We keep doing this until no such monomials
remain (which means that a has become LM b-reduced).

Let us actually do this in our above example: We start with

a = (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Two monomials that are multiples of LM b = x2y appear on the right
hand side: x3y and x2y2. The highest of them is x3y, so we clear it out
by subtracting an appropriate multiple of b. This appropriate multiple is
4xb, since we want to clear out a 4x3y term. So we get

a − 4xb =
(

x4 + 4x3y + 6x2y2 + 4xy3 + y4
)
− 4x · xy (x − y)

= x4 + 10x2y2 + 4xy3 + y4.

Now we still have one monomial left that is a multiple of LM b = x2y,
namely x2y2. We clear it out by subtracting 10yb, and we end up with

a − 4xb − 10yb =
(

x4 + 10x2y2 + 4xy3 + y4
)
− 10y · xy (x − y)

= x4 + 14xy3 + y4.
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The right hand side of this equality is LM b-reduced, so it is the remainder
we were looking for. That is, the r in our pair (q, r) is x4 + 14xy3 + y4.
The q in this pair we find by collecting the multiples of b that we have
subtracted; thus, we get q = 4x + 10y. Hence, our pair (q, r) is

(q, r) =
(

4x + 10y, x4 + 14xy3 + y4
)

.

Hints to the proof of Theorem 1.3.1. The existence of the pair (q, r) is proved by
the same idea as in the example we just did. All we need to do is to explain
why our procedure terminates (rather than running forever). This is not hard:
We observe that, as we keep subtracting appropriate multiples of b from a, the
highest monomial that is a multiple of LM b and appears in a becomes smaller
and smaller (because each subtraction clears out the highest such monomial,
and can only introduce lower such monomials). Thus, if our procedure would
run forever, then we would obtain an infinite decreasing chain m0 ≻ m1 ≻
m2 ≻ · · · of monomials; but this would contradict Proposition 1.2.6 (e). Thus,
the algorithm eventually terminates, and this proves the existence of (q, r).

To prove the uniqueness of (q, r), it suffices to show that no nonzero multiple
of b is LM b-reduced4. But this follows easily from Proposition 1.2.9.

As a consequence of Theorem 1.3.1 (or, more precisely, of the algorithm for
the construction of (q, r) that we demonstrated in the above example), we obtain
an algorithmic way to tell whether a polynomial a ∈ P is divisible by b or not
(whenever b ∈ P is a nonzero polynomial whose leading coefficient LC b is a
unit of R). Namely, we compute the pair (q, r) from Theorem 1.3.1, and check
whether r = 0. The uniqueness of this pair easily yields that b | a if and only if
r = 0.

Another consequence of Theorem 1.3.1 is the following theorem that charac-
terizes the R-module P/b:

Corollary 1.3.2. Let b ∈ P be a nonzero polynomial whose leading coefficient
LC b is a unit of R. Then, each element of P/b can be uniquely written in the
form

∑
m is a monomial

not divisible by LM b

amm with am ∈ R

(where all but finitely many m satisfy am = 0). Equivalently, the family
(m)m is a monomial not divisible by LM b is a basis of the R-module P/b. If b is not
constant, then the ring P/b contains “a copy of R”.

Corollary 1.3.2 generalizes Theorem 1.1.1 (and is proved in the same way, ex-
cept that we use Theorem 1.3.1 instead of the univariate division-with-remainder
theorem). Here are some examples:

4Indeed, if (q1, r1) and (q2, r2) are two pairs (q, r) satisfying the claim of Theorem 1.3.1, then
r1 − r2 = (q2 − q1) b is a multiple of b that is LM b-reduced (since r1 and r2 are LM b-
reduced).
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• Let us take P = R [x, y] and b = y in Corollary 1.3.2. Then, LM b = y, so
that Corollary 1.3.2 yields that the family (m)m is a monomial not divisible by y
is a basis of the R-module P/b = R [x, y] /y. Since the monomials not
divisible by y are precisely the powers of x (that is, x0, x1, x2, . . .), we can
rewrite this as follows: The family

(
xi
)

i∈N
=
(

x0, x1, x2, . . .
)

is a basis

of the R-module P/b = R [x, y] /y. This is in line with Proposition 1.1.2
(indeed, the isomorphism R [x, y] /y → R [x] sends this family to the stan-
dard basis

(
x0, x1, x2, . . .

)
of R [x]).

• Let us take P = R [x, y] and b = x2 + y2 − 1 in Corollary 1.3.2. Then,
LM b = x2, so that Corollary 1.3.2 yields that the family
(m)m is a monomial not divisible by x2 is a basis of the R-module
P/b = R [x, y] /

(
x2 + y2 − 1

)
. Since the monomials not divisible by x2 are

precisely the monomials xiyj with i < 2, we can rewrite this as follows:
The family(

xiyj
)
(i,j)∈N2; i<2

=
(

x0y0, x0y1, x0y2, . . . , x1y0, x1y1, x1y2, . . .
)

is a basis of the R-module P/b = R [x, y] /
(
x2 + y2 − 1

)
. This is not the

basis that we obtained back in (2), but rather is obtained from the latter
by interchanging x and y. Of course, it is no surprise that interchanging x
and y turns a basis into a basis; indeed, the variables x and y clearly play
symmetric roles in R [x, y] /

(
x2 + y2 − 1

)
, so every basis that treats them

unequally has a “mirror” version with x and y interchanged.

• Let us take P = R [x, y] and b = xy in Corollary 1.3.2. Then, LM b = xy, so
that Corollary 1.3.2 yields that the family (m)m is a monomial not divisible by xy
is a basis of the R-module P/b = R [x, y] / (xy). Since the monomials not
divisible by xy are precisely the monomials 1, x1, x2, x3, . . . , y1, y2, y3, . . .
(that is, the monomials that are powers of a single indeterminate), we can
rewrite this as follows: The family(

1, x1, x2, x3, . . . , y1, y2, y3, . . .
)

is a basis of the R-module P/b = R [x, y] / (xy). This can be obtained in
more direct ways, too.

• Likewise, applying Corollary 1.3.2 to P = R [x, y] and b = xy (x − y)
yields that the family

(m)m is a monomial not divisible by x2y

=
(

1, x1, x2, x3, . . . , y1, y2, y3, . . . , xy1, xy2, xy3, . . .
)

is a basis of the R-module R [x, y] / (xy (x − y)).
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