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Math 533 Winter 2021, Lecture 15: Finite fields
and quadratic residues

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Finite fields (cont’d)

1.1. One more lemma

The following lemma will be used twice in today’s lecture:

Lemma 1.1.1. Let p be a prime. Then:
(a) We have ap = a for each a ∈ Z/p.
(b) Let F be a field such that Z/p is a subring of F. Then,

{a ∈ F | ap = a} = Z/p.

This lemma gives a criterion for showing that an element of F lies in Z/p:
namely, just show that ap = a.

Proof of Lemma 1.1.1. (a) Let a ∈ Z/p. Write a as a = u for some integer u.
Then, Fermat’s Little Theorem yields up ≡ u mod p. But this means up = u. In
other words, ap = a (since a = u). This proves Lemma 1.1.1 (a).

(b) From Lemma 1.1.1 (a), we get Z/p ⊆ {a ∈ F | ap = a}.
Now, I claim that |{a ∈ F | ap = a}| ≤ p. Indeed, F is an integral domain.

Thus, the easy half of the FTA (see Lecture 12) yields that if n is a nonnegative
integer, then any nonzero polynomial of degree ≤ n over F has at most n roots
in F. Applying this to the polynomial xp − x (which is nonzero and has degree
p), we conclude that the polynomial xp − x has at most p roots in F. But the
set of all roots of this polynomial xp − x in F is {a ∈ F | ap = a}; hence, the
preceding sentence says that |{a ∈ F | ap = a}| ≤ p. Thus, in particular, the
set {a ∈ F | ap = a} is finite.

However, an easy and fundamental fact in combinatorics says that if X and
Y are two finite sets with X ⊆ Y and |Y| ≤ |X|, then X = Y. Applying this
to X = Z/p and Y = {a ∈ F | ap = a}, we obtain Z/p = {a ∈ F | ap = a}
(since Z/p ⊆ {a ∈ F | ap = a} and |{a ∈ F | ap = a}| ≤ p = |Z/p|). This
proves Lemma 1.1.1 (b).

Another useful lemma says (in terms of Lecture 14) that the Frobenius endo-
morphism of a field of characteristic p is always injective:

Lemma 1.1.2. Let p be a prime. Let F be a field of characteristic p. Let a, b ∈ F
satisfy a ̸= b. Then, ap ̸= bp.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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Note that this would fail for F = R and p = 2 (because, for example, 1 ̸= −1
but 12 = (−1)2), and also fail for F = C and any p > 1. Thus, this marks one
more of the situations where fields of prime characteristic p behave better than
fields of characteristic 0.

Proof of Lemma 1.1.2. From a ̸= b, we see that the element a − b of F is nonzero.
But F is a field, and thus an integral domain. Hence, it is easy to see (by
induction on k) that any finite product u1u2 · · · uk of nonzero elements of F is
nonzero. Thus, in particular, the product (a − b) (a − b) · · · (a − b)︸ ︷︷ ︸

p times

is nonzero

(since a − b is nonzero). In other words, (a − b)p is nonzero.
However, part (c) of the Idiot’s Binomial Formula (see Lecture 14) yields

(a − b)p = ap − bp, so that ap − bp = (a − b)p ̸= 0 (since (a − b)p is nonzero). In
other words, ap ̸= bp. This proves Lemma 1.1.2.

1.2. An application of root adjunction

What are finite fields (particularly the ones that are not just Z/p) good for?
Known applications include error-correcting codes (BCH codes), group theory
(many finite simple groups can be constructed as matrix groups over finite
fields), block designs (roughly speaking, finite structures with symmetries that
resemble geometries) and, of course, number theory (not unexpectedly; number
theory uses everything). Let me show a more humble – but also more self-
contained – application. Namely, by adjoining roots of polynomials to Z/p, we
will prove a curious fact about Fibonacci numbers:1

Theorem 1.2.1. Let ( f0, f1, f2, . . .) be the Fibonacci sequence. This is the se-
quence of integers defined recursively by f0 = 0 and f1 = 1 and

fn = fn−1 + fn−2 for all n ≥ 2.

Let p be a prime. Then:
(a) If p ≡ ±1 mod 5 (meaning that p is congruent to one of 1 and −1

modulo 5), then p | fp−1.
(b) If p ≡ ±2 mod 5 (meaning that p is congruent to one of 2 and −2

modulo 5), then p | fp+1.

For example:

• For p = 2, Theorem 1.2.1 (b) says that 2 | f3 (since 2 ≡ 2 mod 5), and
indeed we have f3 = 2.

1You have seen the Fibonacci sequence already (in Exercise 6 on homework set #1). Much
more about it can be found (e.g.) in [Vorobi02] or [Grinbe21].

https://en.wikipedia.org/wiki/BCH_code
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/Group_of_Lie_type
https://en.wikipedia.org/wiki/Group_of_Lie_type
https://en.wikipedia.org/wiki/Block_design
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• For p = 7, Theorem 1.2.1 (b) says that 7 | f8 (since 7 ≡ 2 mod 5), and
indeed we have f8 = 21 = 3 · 7.

• For p = 11, Theorem 1.2.1 (a) says that 11 | f10 (since 11 ≡ 1 mod 5), and
indeed we have f10 = 55 = 5 · 11.

Our proof of Theorem 1.2.1 will be inspired by the famous Binet formula for
Fibonacci numbers:

Theorem 1.2.2 (Binet formula for Fibonacci numbers). Let φ =
1 +

√
5

2
≈

1.618 and ψ =
1 −

√
5

2
≈ −0.618 be the two roots of the quadratic polynomial

x2 − x − 1 in R. Let ( f0, f1, f2, . . .) be the Fibonacci sequence. Then,

fn =
1√
5

φn − 1√
5

ψn for each n ∈ N.

This is somewhat mysterious – why should irrational numbers like
√

5 ap-
pear in a formula for an integer sequence like ( f0, f1, f2, . . .) ? Proving Theorem
1.2.2 is an easy exercise in strong induction. Finding it is trickier – the matrix
approach from Exercise 6 on homework set #1 can help here. Indeed, once you

know that the matrix A =

(
0 1
1 1

)
∈ R2×2 satisfies An = fn A + fn−1 I2 for

each n (this was proven in Exercise 6 (c) on homework set #1), you can boil
down the computation of fn to the computation of An. But there is a famous
trick for computing powers of a matrix: namely, you diagonalize the matrix
and take the powers of its diagonal entries2. This trick only works if the matrix
is diagonalizable; but fortunately, our matrix A is diagonalizable, so we can
compute An using this trick, ultimately obtaining Theorem 1.2.2 stated above.
This demystifies the formula: x2 − x − 1 is just the characteristic polynomial of
the matrix A, and φ and ψ are its eigenvalues.

Anyway, how does this help us proving Theorem 1.2.1? The Binet formula
involves irrational numbers and division; we thus cannot directly draw any
conclusions about divisibility from it.

We can, however, use it as an inspiration. To wit, we shall introduce ana-
logues of φ and ψ in “characteristic p”. These should be roots of the same
polynomial x2 − x − 1, but regarded as a polynomial over Z/p instead of R.
Depending on p, this polynomial may or may not have roots in Z/p, but we
can always construct a splitting field in which it will have roots (see Lecture
14). Let us use this to attempt a proof of Theorem 1.2.1:

2Namely: If A = QDQ−1, then An = QDnQ−1 for any n ∈ N. If the matrix D is diagonal,
then Dn is easily computed by taking its diagonal entries to the n-th powers; thus, An can
be obtained as well.
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Proof of Theorem 1.2.1, part 1. First, we WLOG assume that p ̸= 5 (since Theo-
rem 1.2.1 makes no statement about p = 5). Hence, p ∤ 5 (since p is prime), so
that 5 ̸= 0 in Z/p. Furthermore, from p ̸= 5, we obtain 5 ∤ p (since p is prime);
thus, the remainder of p upon division by 5 must be 1, 2, 3 or 4. Therefore, p
must satisfy one of the conditions p ≡ ±1 mod 5 and p ≡ ±2 mod 5.

Let F be the splitting field of the polynomial x2 − x − 1 over Z/p. (We know
from Lecture 14 that such an F exists, since the polynomial is monic.) Thus,

x2 − x − 1 = (x − φ) (x − ψ) for some φ, ψ ∈ F.

Consider these φ, ψ. Comparing coefficients in front of the monomials x1 and
x0 in the polynomial identity

x2 − x − 1 = (x − φ) (x − ψ) = x2 − (φ + ψ) x + φψ

yields3

−1 = − (φ + ψ) and − 1 = φψ.

(Of course, the “1” here stands for 1F.) In other words,

φ + ψ = 1 and φψ = −1.

Define an element
√

5 of F by
√

5 = φ−ψ. This is certainly a strange notation
(this

√
5 is not the actual number

√
5 but just an analogue of it in our field F),

but it is harmless (as we won’t deal with the actual number
√

5 in this proof,
but only with the element

√
5 = φ − ψ that we just introduced). Moreover, it is

justified because

(φ − ψ)2 = φ2 − 2φψ + ψ2 =

φ + ψ︸ ︷︷ ︸
=1

2

− 4 φψ︸︷︷︸
=−1

= 12 − 4 (−1) = 5.

As a consequence,
(√

5
)2

= 5 ̸= 0, so that
√

5 ̸= 0. Thus,
√

5 is a unit of F

(since F is a field), so we can divide by
√

5.
Now, we claim that an analogue of the Binet formula holds in F: Namely, we

have
fn =

1√
5

φn − 1√
5

ψn for each n ∈ N. (1)

3This is perhaps a good time to recall the warnings about evaluating polynomials over finite
fields. Two polynomials f and g over a finite field F do not need to be identical just be-
cause their evaluations at all elements of F are identical (for example, the polynomials x2

and x over Z/2 are not identical, but their evaluations on both elements 0 and 1 of Z/2
are identical). However, our two polynomials x2 − x − 1 and x2 − (φ + ψ) x + φψ (whose
coefficients we are comparing here) are known to be identical (not just their evaluations but
the polynomials themselves); thus, we can compare their coefficients.
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This can be proved by the same strong induction argument as the original Binet
formula (Theorem 1.2.2).

Now, we want to show that p | fp−1 for some primes p and that p | fp+1
for other primes p (remember: we have already gotten rid of the p = 5 case).
In other words, we want to show that fp−1 = 0 for some primes p, and that
fp+1 = 0 for other primes p. For now, let us ignore the question of which
primes p satisfy which of these.

Here comes a trick that will look magical, but is actually an instance of a
general method. We have φ2 − φ − 1 = 0 (since φ is a root of the polynomial
x2 − x − 1), so that φ2 = φ+ 1. Taking this equality to the p-th power, we obtain

φ2p = (φ + 1)p = φp + 1p (by the Idiot’s Binomial Formula)
= φp + 1.

In other words, φ2p − φp − 1 = 0. Thus, φp is a root of the polynomial x2 −
x − 1 = (x − φ) (x − ψ). In other words, (φp − φ) (φp − ψ) = 0. Since F is an
integral domain, this entails φp − φ = 0 or φp − ψ = 0. In other words, φp = φ
or φp = ψ. In other words, φp ∈ {φ, ψ}. Similarly, ψp ∈ {φ, ψ}.

Moreover, φ − ψ =
√

5 ̸= 0, so that φ ̸= ψ and therefore φp ̸= ψp (by
Lemma 1.1.2, since F has characteristic p). Combining this with φp ∈ {φ, ψ}
and ψp ∈ {φ, ψ}, we conclude that φp and ψp are two distinct elements of the
set {φ, ψ}. Thus, {φp, ψp} = {φ, ψ}. So we are in one of the following two
cases:

Case 1: We have φp = φ and ψp = ψ.
Case 2: We have φp = ψ and ψp = φ.
Let us consider Case 1. In this case, we have φp = φ and ψp = ψ. Now, φ ̸= 0

(since φ2 = φ + 1 would turn into the absurd equality 0 = 1 if φ was 0); thus,
we can cancel φ from the equality φp = φ (since F is a field). As a result, we
obtain φp−1 = 1. Similarly, ψp−1 = 1. Now, (1) yields

fp−1 =
1√
5

φp−1︸ ︷︷ ︸
=1

− 1√
5

ψp−1︸ ︷︷ ︸
=1

=
1√
5
· 1 − 1√

5
· 1 = 0.

Thus, we have shown that fp−1 = 0 (that is, p | fp−1) in Case 1.
Let us next consider Case 2. In this case, we have φp = ψ and ψp = φ. Thus,

φp+1 = φp︸︷︷︸
=ψ

φ = ψφ = φψ = −1 and similarly ψp+1 = −1. Now, (1) yields

fp+1 =
1√
5

φp+1︸ ︷︷ ︸
=−1

− 1√
5

ψp+1︸ ︷︷ ︸
=−1

=
1√
5
(−1)− 1√

5
(−1) = 0.

Thus, we have shown that fp+1 = 0 (that is, p | fp+1) in Case 2.
So we have shown that we always have p | fp−1 or p | fp+1. But why does

the former hold for p ≡ ±1 mod 5 and the latter for p ≡ ±2 mod 5 ? In other
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words, why does our Case 1 correspond to p ≡ ±1 mod 5 and our Case 2 to
p ≡ ±2 mod 5 ?

This will take some more work. We have the following chain of equivalences:

(we are in Case 1)
⇐⇒ (φp = φ and ψp = ψ)

⇐⇒ (φp = φ)(
because if φp = φ, then ψp cannot be φ (since φp ̸= ψp)

and thus must be ψ (since ψp ∈ {φ, ψ} )

)
⇐⇒ (φ ∈ {a ∈ F | ap = a})
⇐⇒ (φ ∈ Z/p) (by Lemma 1.1.1 (b))

⇐⇒
(

the polynomial x2 − x − 1 has a root in Z/p
)

. (2)

(In the last equivalence sign, the “=⇒” part is obvious (since φ is a root of x2 −
x − 1). The “⇐=” part can be proved as follows: If the polynomial x2 − x − 1
has a root in Z/p, then this root must be either φ or ψ (because x2 − x − 1 =
(x − φ) (x − ψ)); however, in either of these cases, we obtain φ ∈ Z/p (because
if ψ ∈ Z/p, then φ = (φ + ψ)︸ ︷︷ ︸

=1∈Z/p

− ψ︸︷︷︸
∈Z/p

∈ Z/p).)

Thus, our question is reduced to asking when the polynomial x2 − x − 1 has
a root in Z/p. In other words, when can we find our φ and ψ in Z/p, and
when do we have to go into a larger field to find them?

We WLOG assume that p ̸= 2 (since the case p = 2 is trivial to do by hand).
Thus, 2 ∈ Z/p is nonzero and thus has an inverse. This allows us to complete
the square (just as in high school, but over the field Z/p now):

x2 − x − 1 =

(
x − 1

2

)2

− 5
4

. (3)

Thus, the polynomial x2 − x − 1 has a root in Z/p if and only if
5
4

is a square in

Z/p. Obviously,
5
4

is a square in Z/p if and only if 5 is a square in Z/p (since

4 = 22 is always a square in Z/p). Thus, in order to prove Theorem 1.2.1, it
remains to prove the following:

Theorem 1.2.3. Let p be a prime such that p ̸= 2. Then:
(a) If p ≡ ±1 mod 5 (meaning that p is congruent to one of 1 and −1

modulo 5), then 5 is a square in Z/p.
(b) If p ≡ ±2 mod 5 (meaning that p is congruent to one of 2 and −2

modulo 5), then 5 is not a square in Z/p.
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For example, 5 ∈ Z/p is not a square for p = 7, but is a square for p = 11
(namely, 5 = 42).

I will now prove Theorem 1.2.3; then, I will explain how it helps complete
the above proof of Theorem 1.2.1, and afterwards (perhaps most interestingly)
discuss how to generalize it to other numbers instead of 5.

Proof of Theorem 1.2.3. The following proof (due to Gauss) will again use field
extensions. We WLOG assume that p ̸= 5 (since Theorem 1.2.3 makes no claim
about the case p = 5).

An element z of a field F is said to be a primitive 5-th root of unity if it
satisfies z5 = 1 but z ̸= 1. In other words, the element z is a primitive 5-th root
of unity if it is nonzero and its order in the group F× (this is the group of units
of F) is 5.

For example, R has no primitive 5-th roots of unity (since a real number z sat-
isfying z5 = 1 must necessarily satisfy z = 1), but C has four of them: namely,
e2πik/5 for k ∈ {1, 2, 3, 4}. (See https://upload.wikimedia.org/wikipedia/
commons/4/40/One5Root.svg for an illustration of the latter on the Argand di-
agram: The 5 blue points, which are the vertices of a regular points, all satisfy
z5 = 1, and all but one of them are primitive 5-th roots of unity.)

Does Z/p have any primitive 5-th roots of unity? Sometimes yes (e.g., for
p = 11); sometimes no (e.g., for p = 7). We don’t care – we shall just adjoin
one.

To see how, we notice the following: If F is a field of characteristic p, then a
primitive 5-th root of unity in F is just an element z ∈ F that satisfies z4 + z3 +
z2 + z + 1 = 0. 4 Knowing this, we can easily adjoin a primitive 5-th root of
unity to Z/p: Namely, x4 + x3 + x2 + x + 1 ∈ (Z/p) [x] is a monic polynomial
of degree 4 over Z/p. Thus, by Lecture 14, there exists a field that contains
Z/p as a subring and that contains a root of this polynomial. Let S be such a
field, and let z be this root. Thus, z ∈ S satisfies z4 + z3 + z2 + z + 1 = 0, and
therefore is a primitive 5-th root of unity (by what we have just said). That is,
we have z5 = 1 and z ̸= 1.

4Proof. If z is a primitive 5-th root of unity in F, then z5 = 1 but z ̸= 1, so that
z5 − 1
z − 1

=

0 (since the numerator z5 − 1 is 0 but the denominator z − 1 is nonzero), and therefore

z4 + z3 + z2 + z + 1 = 0 (since z4 + z3 + z2 + z + 1 =
z5 − 1
z − 1

).

Conversely, assume that z4 + z3 + z2 + z + 1 = 0. Then, z5 − 1 =

(z − 1)
(

z4 + z3 + z2 + z + 1
)

︸ ︷︷ ︸
=0

= 0, so that z5 = 1. However, if we had z = 1, then we

would have z4 + z3 + z2 + z + 1 = 14 + 13 + 12 + 1 + 1 = 5 ̸= 0, which would contradict
z4 + z3 + z2 + z + 1 = 0 = 0. Hence, we must have z ̸= 1. Thus we have shown that z5 = 1
and z ̸= 1; in other words, z is a primitive 5-th root of unity.

https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
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Now comes the magic: Set τ = z − z2 − z3 + z4 ∈ S. Then,

τ2 =
(

z − z2 − z3 + z4
)2

= z2 + z4 + z6 + z8 − 2zz2 − 2zz3 + 2zz4 + 2z2z3 − 2z2z4 − 2z3z4

(by expanding the square)

= z2 + z4 + z6 + z8 − 2z3 − 2z4 + 2z5 + 2z5 − 2z6 − 2z7

= z2 + z4 + z + z3 − 2z3 − 2z4 + 2 + 2 − 2z − 2z2(
since z5 = 1 and thus z6 = z and z7 = z2

)
= 4 −

(
z + z2 + z3 + z4

)
= 5 −

(
z4 + z3 + z2 + z + 1

)
︸ ︷︷ ︸

=0

= 5.

Thus, τ is a “square root” of 5 in S (meaning: an element of S whose square is
5). Hence, the only “square roots” of 5 in S are τ and −τ 5.

This suggests that studying τ should help understand whether 5 is a square
in Z/p. Indeed, if τ belongs to Z/p, then 5 is a square in Z/p (since τ2 = 5).
Conversely (but less obviously), if τ does not belong to Z/p, then 5 is not a
square in Z/p (because the only “square roots” of 5 in S are τ and −τ, and
neither of them belongs to Z/p 6). Now, how can we tell whether τ belongs
to Z/p ?

Inspired by Lemma 1.1.1 (b), we compute τp. From τ = z − z2 − z3 + z4, we
obtain

τp =
(

z − z2 − z3 + z4
)p

= zp − z2p − z3p + z4p

(by the Idiot’s Binomial Theorem from Lecture 14, applied several times). The
right hand side of this can be greatly simplified if you know the remainder of
p upon division by 5. Indeed, we have z5 = 1, so that z6 = z and z7 = z2 and
more generally zk = zℓ for any two integers k and ℓ satisfying k ≡ ℓmod 5.
Hence, in order to simplify the right hand side, we distinguish the following
four cases:

Case 1: We have p ≡ 1 mod 5.
Case 2: We have p ≡ 2 mod 5.
Case 3: We have p ≡ 3 mod 5.
Case 4: We have p ≡ 4 mod 5.
(There is no Case 0, since 5 ∤ p entails p ̸≡ 0 mod 5.)

5This is a particular case of the following general fact: If R is an integral domain, and if u, v ∈
R satisfy u2 = v, then the only “square roots” of v in R are u and −u. (To check this, argue
as follows: If w is a square root of v in R, then (w − u) (w + u) = w2︸︷︷︸

=v

− u2︸︷︷︸
=v

= v − v = 0,

so that w − u = 0 or w + u = 0 (since R is an integral domain), so that w = u or w = −u.)
6Indeed, from τ /∈ Z/p, we obtain −τ /∈ Z/p (since otherwise, τ = − (−τ) would yield

τ ∈ Z/p).
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In Case 2, we have

τp = zp︸︷︷︸
=z2

(since p≡2 mod 5)

− z2p︸︷︷︸
=z4

(since 2p≡4 mod 5)

− z3p︸︷︷︸
=z1

(since 3p≡1 mod 5)

+ z4p︸︷︷︸
=z3

(since 4p≡3 mod 5)

= z2 − z4 − z1 + z3 = −
(

z − z2 − z3 + z4
)

︸ ︷︷ ︸
=τ

= −τ.

Similarly, we get τp = −τ in Case 3, and we get τp = τ in Cases 1 and 4.
Thus, in Cases 1 and 4, we have τp = τ and therefore τ ∈ {a ∈ F | ap = a} =

Z/p (by Lemma 1.1.1 (b)), and thus 5 is a square in Z/p (since τ2 = 5). On
the other hand, in Cases 2 and 3, we have τp = −τ ̸= τ (since 2τ ̸= 0 7) and
therefore τ /∈ {a ∈ F | ap = a} = Z/p (by Lemma 1.1.1 (b)), and thus 5 is not
a square in Z/p (as explained above). This proves Theorem 1.2.3.

The “magical” use of z (a primitive 5-th root of unity) to construct a square
root of

√
5 is connected to the ubiquity of

√
5 in the geometry of regular pen-

tagons. But it is not specific to the number 5: Gauss has shown that
√

p can be
similarly constructed from a primitive p-th root of unity for any prime p. (Alas,
we won’t get to the details of this.)

Next, let us use Theorem 1.2.3 to complete our above proof of Theorem 1.2.1:

Proof of Theorem 1.2.1, part 2. Recall the two Cases 1 and 2 that appeared in part
1 of this proof. We extend the equivalence (2) as follows:

(we are in Case 1)

⇐⇒
(

the polynomial x2 − x − 1 has a root in Z/p
)

⇐⇒
(

the polynomial
(

x − 1
2

)2

− 5
4

has a root in Z/p

)
(by (3))

⇐⇒
(

5
4

is a square in Z/p
)

⇐⇒
(
5 is a square in Z/p

)(
since

5
4
= a2 is equivalent to 5 = (2a)2

)
⇐⇒ (p ≡ ±1 mod 5) (4)

(by Theorem 1.2.3, since p must satisfy one of the conditions p ≡ ±1 mod 5 and
p ≡ ±2 mod 5). But we have shown that if we are in Case 1, then p | fp−1. Thus,

7This can be shown as follows: From τ2 = 5 ̸= 0, we obtain τ ̸= 0. Moreover, p ̸= 2 shows
that 2 ̸= 0 in Z/p. Now, F is an integral domain; hence, from 2 ̸= 0 and τ ̸= 0, we obtain
2τ ̸= 0. In other words, 2τ ̸= 0.

https://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
https://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
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we conclude using (4) that if p ≡ ±1 mod 5, then p | fp−1. This proves Theorem
1.2.1 (a). Likewise, if p ≡ ±2 mod 5, then we do not have p ≡ ±1 mod 5, so that
we are not in Case 1 (by (4)), and thus we are in Case 2; hence, as we proved
above, we must have p | fp+1 in this case. Thus, Theorem 1.2.1 (b) is proved
again.

1.3. Quadratic residues: an introduction

We have touched upon an interesting subject, so let us delve deeper. Theorem
1.2.3 answers the question for which primes p the residue class 5 ∈ Z/p is a
square in Z/p; but we can ask the same question about the residue class a of
any a ∈ Z.

Definition 1.3.1. Let p be a prime. Let a be an integer not divisible by p.
Then, a is said to be a quadratic residue modulo p (short: a QR mod p) if

the residue class a ∈ Z/p is a square (or, equivalently, if there is an integer b
such that a ≡ b2 mod p).

Otherwise, a is said to be a quadratic nonresidue modulo p (short: a QNR
mod p).

Definition 1.3.2. Let p be a prime. Let a be an integer. The Legendre symbol(
a
p

)
(do not mistake this for a fraction! this is not a fraction!) is the integer

defined as follows:

(
a
p

)
=


0, if p | a;
1, if a is a QR mod p;
−1, if a is a QNR mod p.

Note that the Legendre symbol
(

a
p

)
depends only on the prime p and the

residue class a ∈ Z/p, not on the integer a itself. For example,
(
−1
p

)
=(

p − 1
p

)
for any prime p.

Examples:

• 2 is a QR mod 7, since 2 ≡ 32 mod 7. Thus,
(

2
7

)
= 1.

• 2 is a QNR mod 5, since the squares in Z/5 are 0, 1, 4. Thus,
(

2
5

)
= −1.

• −1 is a QR mod 5, since −1 ≡ 22 mod 5. Thus,
(
−1
5

)
= 1.



Lecture 15, version February 22, 2023 page 11

• −1 is a QNR mod 3. Thus,
(
−1
3

)
= −1.

• Theorem 1.2.3 says that every prime p ̸= 2 satisfies

(
5
p

)
=


0, if p = 5;
1, if p ≡ ±1 mod 5;
−1, if p ≡ ±2 mod 5.

This might whet an appetite: can we find similarly simple expressions for(
2
p

)
or
(

3
p

)
or
(
−1
p

)
? What can we say about Legendre symbols in general?

We begin with a simple yet surprising rule:

Theorem 1.3.3 (Euler’s QR criterion). Let p ̸= 2 be a prime. Let a be an
integer. Then, (

a
p

)
≡ a(p−1)/2 mod p.

Proof. Since p is prime and satisfies p ̸= 2, we see that p is odd and ≥ 3. Hence,
(p − 1) /2 is a positive integer. Thus, 0(p−1)/2 = 0.

We must prove that
(

a
p

)
≡ a(p−1)/2 mod p. If p | a, then this boils down to

0 ≡ 0 mod p (since 0(p−1)/2 = 0). Thus, we WLOG assume that p ∤ a.
Let u = a ∈ Z/p; thus, u is nonzero (since p ∤ a). Hence, the definition of(
a
p

)
yields

(
a
p

)
=

{
1, if a is a QR mod p;
−1, if a is a QNR mod p

=

{
1, if u is a square;
−1, if u is not a square

(by the definition of QRs and QNRs) and thus(
a
p

)
=

{
1, if u is a square;
−1, if u is not a square.

(5)

Also,
a(p−1)/2 = a(p−1)/2 = u(p−1)/2 (6)
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(since a = u). Now, we have the following chain of equivalences.((
a
p

)
≡ a(p−1)/2 mod p

)
(this is the claim we are proving)

⇐⇒
((

a
p

)
= a(p−1)/2

)
⇐⇒

(
a(p−1)/2 =

(
a
p

))

⇐⇒
(

u(p−1)/2 =

{
1, if u is a square;
−1, if u is not a square

)

(by (5) and (6)). Hence, it remains to prove that

• u(p−1)/2 = 1 if u is a square;

• u(p−1)/2 = −1 if u is not a square.

Equivalently, we shall prove the following three claims:

Claim 1: Any nonzero element v ∈ Z/p satisfies v(p−1)/2 = 1 or
v(p−1)/2 = −1.

Claim 2: Any nonzero square v ∈ Z/p satisfies v(p−1)/2 = 1.

Claim 3: Any element v ∈ Z/p that is not a square satisfies v(p−1)/2 ̸=
1.

This will prove the two bullet points we claimed above: The first bullet point
will follow from Claim 2, while the second will follow from Claims 1 and 3. So
it remains to prove the three Claims 1, 2 and 3.

Proof of Claim 1. Let v ∈ Z/p be a nonzero element. Then, Lemma 1.1.1 (a)
yields vp = v. We can cancel v from this equality (since v is nonzero and
Z/p is a field), and thus obtain vp−1 = 1. Since p − 1 is even, we have(

v(p−1)/2
)2

= vp−1 = 1, so that
(

v(p−1)/2
)2

− 1 = 0. In view of
(

v(p−1)/2
)2

−

1 =
(

v(p−1)/2 − 1
) (

v(p−1)/2 + 1
)

, this rewrites as
(

v(p−1)/2 − 1
) (

v(p−1)/2 + 1
)
=

0. Since Z/p is an integral domain, this entails v(p−1)/2 − 1 = 0 or v(p−1)/2 +

1 = 0. In other words, v(p−1)/2 = 1 or v(p−1)/2 = −1. This proves Claim 1.

Proof of Claim 2. Let v ∈ Z/p be a nonzero square. Thus, v = w2 for some
w ∈ Z/p. Consider this w. Now, w ̸= 0 (since w2 = v is nonzero). But Lemma
1.1.1 (a) yields wp = w. We can cancel w from this equality (since w ̸= 0 and
Z/p is a field), and thus obtain wp−1 = 1. Now, from v = w2, we obtain
v(p−1)/2 =

(
w2)(p−1)/2

= wp−1 = 1 = 1. This proves Claim 2.
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Proof of Claim 3. Here we take a bird’s eye view (as in our above proof of Lemma
1.1.1 (b)), rather than treating a single element v. Indeed, Z/p is an integral
domain. Thus, the easy half of the FTA (see Lecture 12) yields that if n is a
nonnegative integer, then any nonzero polynomial of degree ≤ n over Z/p
has at most n roots in Z/p. Applying this to the polynomial x(p−1)/2 − 1
(which is nonzero and has degree (p − 1) /2), we conclude that the polyno-
mial x(p−1)/2 − 1 has at most (p − 1) /2 roots in Z/p. But the set of all roots of
this polynomial x(p−1)/2 − 1 in Z/p is

{
v ∈ Z/p | v(p−1)/2 = 1

}
; hence, the

preceding sentence says that
∣∣∣{v ∈ Z/p | v(p−1)/2 = 1

}∣∣∣ ≤ (p − 1) /2.

On the other hand, {nonzero squares v ∈ Z/p} ⊆
{

v ∈ Z/p | v(p−1)/2 = 1
}

(by Claim 2) and |{nonzero squares v ∈ Z/p}| = (p − 1) /2 (indeed, this is a
particular case of something that was proved in the solution of Exercise 10 (c)
on homework set #1; but the proof is not hard8).

However, an easy and fundamental fact in combinatorics says that if X and
Y are two finite sets with X ⊆ Y and |Y| ≤ |X|, then X = Y. Applying this
to X = {nonzero squares v ∈ Z/p} and Y =

{
v ∈ Z/p | v(p−1)/2 = 1

}
, we

obtain {nonzero squares v ∈ Z/p} =
{

v ∈ Z/p | v(p−1)/2 = 1
}

(since

{nonzero squares v ∈ Z/p} ⊆
{

v ∈ Z/p | v(p−1)/2 = 1
}

and∣∣∣{v ∈ Z/p | v(p−1)/2 = 1
}∣∣∣ ≤ (p − 1) /2 = |{nonzero squares v ∈ Z/p}|).

Thus, every v ∈ Z/p satisfying v(p−1)/2 = 1 must be a nonzero square. By
taking the contrapositive of this statement, we obtain Claim 3.

Having proved Claims 1, 2 and 3, we thus have completed the proof of The-
orem 1.3.3.

Corollary 1.3.4 (Multiplicativity of the Legendre symbol). Let p ̸= 2 be a
prime. Let a, b ∈ Z. Then, (

ab
p

)
=

(
a
p

)(
b
p

)
.

Proof. Note that p > 2 (since p ̸= 2 and since p is a prime). Thus, the three
integers 0, 1,−1 are pairwise incongruent9 modulo p. Yes, we will use this; just
wait.

8Proof idea: Each nonzero square v ∈ Z/p has exactly two (distinct) “square roots”, and each
of the p− 1 elements 1, 2, . . . , p − 1 appears as a “square root” of exactly one nonzero square.
Hence, there is a 2-to-1 correspondence between the p − 1 elements 1, 2, . . . , p − 1 and the
nonzero squares v ∈ Z/p. Therefore, the number of nonzero squares v ∈ Z/p is (p − 1) /2.
In other words, |{nonzero squares v ∈ Z/p}| = (p − 1) /2.

9“Incongruent” means “not congruent”.
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Theorem 1.3.3 yields(
ab
p

)
≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 mod p. (7)

But Theorem 1.3.3 also yields
(

a
p

)
≡ a(p−1)/2 mod p and

(
b
p

)
≡ b(p−1)/2 mod p.

Multiplying these two congruences, we obtain(
a
p

)(
b
p

)
≡ a(p−1)/2b(p−1)/2 mod p.

Comparing this congruence with (7), we find(
ab
p

)
≡
(

a
p

)(
b
p

)
mod p. (8)

We want an equality, not a congruence! But the congruence (8) turns out to
entail the equality. Indeed, both sides of the congruence (8) equal 0 or 1 or −1
(since any Legendre symbol is either 0 or 1 or −1, and the same holds for a
product of Legendre symbols). Hence, their congruence implies their equality
(since 0, 1,−1 are pairwise incongruent modulo p). This proves Corollary 1.3.4.

Corollary 1.3.4 has two nice corollaries of its own:

Corollary 1.3.5. Let p ̸= 2 be a prime. The map

(Z/p)× → {1,−1} ,

a 7→
(

a
p

)
is a group morphism (i.e., a homomorphism of groups).

Proof. The map is well-defined, since (as we have explained above)
(

a
p

)
de-

pends only on p and a ∈ Z/p (not on a itself). Let us now show that this map
is a group morphism.

In order to show that a map between two groups is a group morphism,
it suffices to show that this map respects multiplication (this is well-known).
Thus, it suffices to show that our map respects multiplication. In other words, it

suffices to show that
(

ab
p

)
=

(
a
p

)(
b
p

)
for any a, b ∈ Z that are not divisible

by p (since any two elements of the group (Z/p)× can be written in the forms a
and b for two such a, b ∈ Z, and then their product will be ab). But this follows
from Corollary 1.3.4.
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Corollary 1.3.6. Let p ̸= 2 be a prime. Let u, v ∈ Z/p be two nonzero residue
classes. Then:

(a) If u and v are squares, then uv is a square.
(b) If only one of u and v is a square, then uv is not a square.
(c) If none of u and v is a square, then uv is a square.

Note that Corollary 1.3.6 (c) would fail if we replaced Z/p by Q. For exam-
ple, none of the rational numbers 2 and 3 is a square, but neither is 2 · 3. But it
does hold in Z/p (as we shall now show), and (more generally) in finite fields,
as well as in R (since the non-squares in R are precisely the negative reals, but
a product of two negative reals is always positive).

Proof of Corollary 1.3.6. We shall only prove part (c), for two reasons: First of all,
parts (a) and (b) hold for any field (unlike part (c), as we just discussed), and
can easily be proved using nothing but the field axioms. Also, the proof we
will give for part (c) can easily be adapted to the other two parts.

(c) Assume that none of u and v is a square. Write u and v in the form u = a
and v = b for some integers a and b. Then, a is a QNR mod p (since a = u

is not a square and thus nonzero), and thus
(

a
p

)
= −1 (by the definition of

the Legendre symbol). Similarly,
(

b
p

)
= −1. Hence, Corollary 1.3.4 yields(

ab
p

)
=

(
a
p

)
︸ ︷︷ ︸
=−1

(
b
p

)
︸ ︷︷ ︸
=−1

= (−1) (−1) = 1. In other words, ab is a QR mod p (by

the definition of the Legendre symbol). In other words, ab is nonzero and a
square. In view of ab = a · b = uv (since a = u and b = v), this yields that uv is
a square. Thus, Corollary 1.3.6 (c) is proven.

Let us now return to the computation of Legendre symbols. Thanks to Corol-

lary 1.3.4, we have (for example)
(

6
p

)
=

(
2
p

)(
3
p

)
and

(
−6
p

)
=

(
−1
p

)(
2
p

)(
3
p

)
for any prime p. But how do we compute

(
−1
p

)
,
(

2
p

)
and

(
3
p

)
?

We begin with
(
−1
p

)
, which is probably the easiest one:

Theorem 1.3.7. Let p ̸= 2 be a prime. Then, −1 is a QR mod p (that is,
−1 ∈ Z/p is a square) if and only if p ≡ 1 mod 4. In other words,(

−1
p

)
=

{
1, if p ≡ 1 mod 4;
−1, if p ≡ 3 mod 4.
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Proof. Since p is a prime satisfying p ̸= 2, the number p is odd. Hence,
(p − 1) /2 ∈ Z.

Theorem 1.3.3 yields the congruence(
−1
p

)
≡ (−1)(p−1)/2 mod p.

This congruence must actually be an equality, since both sides are 0 or 1 or −1
(just as in the proof of Corollary 1.3.4). In other words,(

−1
p

)
= (−1)(p−1)/2 . (9)

Now, p must satisfy p ≡ 1 mod 4 or p ≡ 3 mod 4 (since p is odd). In the former
case, (−1)(p−1)/2 is 1; in the latter, −1. Hence, (9) becomes(

−1
p

)
=

{
1, if p ≡ 1 mod 4;
−1, if p ≡ 3 mod 4.

So we have simple formulas for
(
−1
p

)
and

(
5
p

)
. What about

(
a
p

)
for a

general a ? We only need to know a formula for
(

q
p

)
for each prime q (because,

as per Corollary 1.3.4 above, we can then get a general formula for
(

a
p

)
by

decomposing a into a product of primes and possibly −1, and multiplying).
Here is one:

Theorem 1.3.8 (Quadratic Reciprocity Law). (a) Let p ̸= 2 be a prime. Then,(
2
p

)
= (−1)(p2−1)/8 =

{
1, if p ≡ ±1 mod 8;
−1, if p ≡ ±3 mod 8.

(b) Let p and q be two distinct primes distinct from 2. Then,(
q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)
.

For example, if p is a prime distinct from 2 and 5, then Theorem 1.3.8 (b)
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(applied to q = 5) yields(
5
p

)
= (−1)(p−1)(5−1)/4︸ ︷︷ ︸

=1
(since 5−1=4 and thus

(p−1)(5−1)/4=p−1 is even)

( p
5

)
=
( p

5

)

=

{
1, if p ∈ Z/5 is a square;
−1, if p ∈ Z/5 is not a square

=

{
1, if p ≡ ±1 mod 5;
−1, if p ≡ ±2 mod 5

(the last equality follows from the fact that the nonzero squares in Z/5 are 1
and −1); this recovers the claim of Theorem 1.2.3. So Theorem 1.2.3 was merely
the tip of an iceberg.

Theorem 1.3.8 is one of the most classical theorems in mathematics – discov-
ered by Euler, proved by Gauss. By now, it has received over 250 proofs (see
https://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html for a list), and
new proofs keep getting published. You’ll get to prove its part (a) on home-
work set #4, inspired by the q = 5 case we proved above. This will hopefully
shed some more light on the strange definition of τ.

See [Burton11, Chapter 9] or [Stein09, Chapter 4] (or almost any text on
elementary number theory) for more about quadratic residues. A collection
of proofs of Theorem 1.3.8 has also been published as a book ([Baumga15]);
one of the most elementary proofs is presented in [KeeGui20, §3.12]. See also
[Schroe09, particularly Chapter 16] for an application of quadratic residues to
the acoustics of concert halls.
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