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Math 533 Winter 2021, Lecture 14: Finite fields

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Finite fields (cont’d)

1.1. The char of a field (cont’d)

Remember how we defined the characteristic of a field:

Definition 1.1.1. Let F be a field. The characteristic of F is an integer called
char F, which is defined as follows:

• If there exists a positive integer n such that n · 1F = 0, then char F is
defined to be the smallest such n.

• If such an n does not exist, then char F is defined to be 0.

Roughly speaking, char F is “how often you have to add 1F to itself to obtain
0” (with the caveat that we define it to be 0 if you never obtain 0 by adding 1F
to itself). We refer to Lecture 13 for examples.

What does a characteristic satisfy in general?

Theorem 1.1.2 (Properties of characteristics). Let F be a field. Let p = char F.
Then:

(a) The field F is a Z/p-algebra. (Remember: Z/0 ∼= Z.)
(b) We have pa = 0 for each a ∈ F.
(c) The number p is either prime or 0.
(d) If F is finite, then p is a prime.
(e) If F is finite, then |F| = pm for some positive integer m.
(f) If p is a prime, then F contains “a copy of Z/p” (meaning: a subring

isomorphic to Z/p).
(g) If p = 0, then F contains “a copy of Q” (meaning: a subring isomorphic

to Q): namely, the map

Q → F,
a
b
7→ a · 1F

b · 1F
(for a, b ∈ Z with b ̸= 0)

is an injective ring morphism.

Proof. We have p · 1F = 0. Indeed, if p = 0, then this is obvious; but otherwise
it follows from the definition of char F.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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(b) Let a ∈ F. Then, a = 1F · a. Thus,

pa = p (1F · a) = (p · 1F)︸ ︷︷ ︸
=0

·a = 0 · a = 0.

This proves Theorem 1.1.2 (b).
(a) We define an action of the ring Z/p on F by

k · a = ka for all k ∈ Z and a ∈ F.

Why is this well-defined? In other words, why is it true that if two integers k
and ℓ satisfy k = ℓ, then ka = ℓa for all a ∈ F ?

Let us check this directly: Let k and ℓ be two integers satisfying k = ℓ in Z/p.
This means k ≡ ℓmod p, so that k − ℓ is a multiple of p. That is, k − ℓ = pu for
some u ∈ Z. Consider this u. Now,

ka − ℓa = (k − ℓ)︸ ︷︷ ︸
=pu

a = pua = 0

(by Theorem 1.1.2 (b), applied to ua instead of a). Thus, ka = ℓa, which is
precisely what we wanted to prove.

Thus, the action of Z/p on F is well-defined. Now, it remains to show that F
is a Z/p-module, and that the “scale-invariance” axiom is satisfied. All of this
is easy and LTTR1. Thus, F becomes a Z/p-algebra. This proves Theorem 1.1.2
(a).

(c) Assume the contrary. Thus, p is neither a prime nor 0. Hence, p is either
1 or a composite2 positive integer (since p is always a nonnegative integer).

Since F is a field, we have 1 ̸= 0 in F. In other words, 1F ̸= 0F. If we had
p = 1, then we would thus have p︸︷︷︸

=1

·1F = 1 · 1F = 1F ̸= 0F, which would

contradict p · 1F = 0. Thus, we cannot have p = 1. Hence, p must be composite
(since p is either 1 or composite). In other words, p = uv for some integers
u > 1 and v > 1. Consider these integers u and v.

1For example, let us prove the associativity law, which says that (rs)m = r (sm) for all r, s ∈
Z/p and m ∈ F. Indeed, let r, s ∈ Z/p and m ∈ F. Write r and s as k and ℓ for some
integers k and ℓ. Then, rs = k · ℓ = kℓ, so that (rs)m = kℓ · m = kℓm (by our definition of
the action of Z/p on F). Also, from r = k and s = ℓ, we obtain

r (sm) = k ·
(
ℓ · m

)
= k

(
ℓ · m

)
(by our definition of the action)

= k (ℓm)
(

since our definition of the action yields ℓ · m = ℓm
)

= kℓm.

Comparing this with (rs)m = kℓm, we obtain (rs)m = r (sm), qed.
2A positive integer is said to be composite if it can be written as a product of two integers each

larger than 1.
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From u > 1 and v > 1 and p = uv, we see that both integers u and v are
smaller than p. Hence, neither u · 1F nor v · 1F can be 0 (since p = char F was
defined to be the smallest positive integer n such that n · 1F = 0). Since F is
an integral domain (because F is a field), this yields that the product (u · 1F) ·
(v · 1F) is also nonzero.

Now, p · 1F = 0, so

0 = p︸︷︷︸
=uv

·1F = uv · 1F = (u · 1F) · (v · 1F) .

This contradicts the fact that the product (u · 1F) · (v · 1F) is nonzero. This
proves Theorem 1.1.2 (c).

(d) Assume that F is finite. We must show that p is a prime.
According to Theorem 1.1.2 (c), it suffices to show that p ̸= 0. So let us show

this. Assume the contrary. Then, p = 0. Hence, none of the elements 1 · 1F,
2 · 1F, 3 · 1F, . . . of F is 0 (by the definition of char F). But F is finite, so two
of these elements must be equal (by the Pigeonhole Principle). In other words,
there exist positive integers u < v such that u · 1F = v · 1F. Consider these u and
v. Then, v − u is a positive integer, and we have (v − u) · 1F = v · 1F − u · 1F = 0
(since u · 1F = v · 1F). But (v − u) · 1F is one of the elements 1 · 1F, 2 · 1F, 3 · 1F, . . .
(since u < v), and we just said that none of these elements is 0. This contradicts
(v − u) · 1F = 0. Thus, our assumption was false; hence, Theorem 1.1.2 (d) is
proven.

(e) Assume that F is finite. Thus, by Theorem 1.1.2 (d), we know that p is
prime.

Since F is a field, we have 1 ̸= 0 in F. Hence, |F| > 1.
From part (a), we know that F is a Z/p-algebra. Thus, in particular, F is a

Z/p-module. But since p is prime, Z/p is a field.
Now, recall that a module over a field is nothing but a vector space. In

particular, every module over a field is free (since any vector space has a basis3).
Thus, in particular, the Z/p-module F is free. In other words, the Z/p-module
F has a basis. This basis must be finite (since F itself is finite). Thus, F ∼=
(Z/p)m as Z/p-modules for some m ∈ N. Consider this m. From F ∼= (Z/p)m,
we obtain |F| =

∣∣(Z/p)m∣∣ = |Z/p|m = pm. It remains to prove that m is
positive. But this is easy: If m was 0, then |F| = pm would imply |F| = p0 =
1, which would contradict |F| > 1. Thus, the proof of Theorem 1.1.2 (e) is
complete.

(f) We will be very brief, since we won’t use Theorem 1.1.2 (f) in what follows.

3Once again, I haven’t actually proved this fact in this course, but you can easily bridge this
gap yourself or look it up in any text on linear algebra (or in Keith Conrad’s https://
kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf ). Our situation is simpler
than the general case, since we know that F is finite, so it is clear that there is a finite list of
vectors in F that span F (because you can just take a list of all elements of F). In order to
obtain a basis from such a list, you only need to successively remove vectors that are linear
combinations of other vectors; once no such vectors remain, the list will be a basis.

https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
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Assume that p is a prime. Then, F is a Z/p-algebra (by Theorem 1.1.2 (a)),
so we can define a map

Z/p → F,
α 7→ α · 1F.

It is straightforward to check that this map is a ring morphism; furthermore,
it is easily seen to be injective4. Hence, its image is a subring of F that is
isomorphic to Z/p. This proves Theorem 1.1.2 (f).

(g) Again, we will omit the details, since we won’t use the fact.
Assume that p = 0. Then, for any nonzero integer b, the element b · 1F of

F is nonzero (why?) and therefore a unit of F (since F is a field). Hence, for
any rational number

a
b
∈ Q (written in such a way that a, b ∈ Z and b ̸= 0),

the element
a · 1F

b · 1F
∈ F is well-defined. Now, of course, the representation of a

rational number as
a
b

with a, b ∈ Z is not unique (for instance,
6
4

and
3
2

are the

same rational number); however, it is not hard to show that
a · 1F

b · 1F
is uniquely

determined by
a
b

(meaning that if a, b, c, d ∈ Q satisfy
a
b
=

c
d

, then we also have
a · 1F

b · 1F
=

c · 1F

d · 1F
). Thus, the map

Q → F,
a
b
7→ a · 1F

b · 1F
(for a, b ∈ Z with b ̸= 0)

is well-defined. Next, it can be shown that this map is a ring morphism and is
injective5. Hence, its image is a subring of F that is isomorphic to Z/p. This
proves Theorem 1.1.2 (g).

Parts (f) and (g) of Theorem 1.1.2 show that any field F has at its “core” a
“small” field: either (a copy of) Z/p (if its characteristic is a prime p) or (a copy
of) Q (if its characteristic is 0).

Note that parts (d) and (e) of Theorem 1.1.2 (in combination) show that the
size of any finite field is a power of a prime. Thus, there are no finite fields of
size 6 or 10 or 12.

4This is actually best understood as a particular case of the following general fact: Any ring
morphism from a field to a nontrivial ring is injective!

The proof of this general fact is actually pretty easy: If f : K → R is a ring morphism
from a field K to a nontrivial ring R, then any a ∈ Ker f must be 0, because otherwise a
would be a unit of K (since K is a field) and therefore f (a) would be a unit of R (since ring
morphisms send units to units); but f (a) = 0 cannot be a unit of R (since R is nontrivial).
Thus, Ker f ⊆ {0}, so that Ker f = {0} and therefore f is injective.

5The injectivity follows just as in part (f).
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Thus, we can limit our search for finite fields to those of size pm for p prime
and m > 0. We have already found such fields for m = 1 and for m = 2 (for all
p), and briefly hinted at the cases m = 3 and m = 4, but we are still missing the
case of general m.

1.2. Tools

We will approach the general case indirectly (no easy and direct proofs are
known). We will need a bunch of tools. The first is the notion of a splitting
field. We begin with a definition:

Definition 1.2.1. Let R be a commutative ring. Let b ∈ R [x] be a polynomial
over R. We say that b splits over R if there exist elements r1, r2, . . . , rm of R
such that

b = (x − r1) (x − r2) · · · (x − rm) .

Note that in this definition, we must necessarily have deg b = m (unless R
is trivial). Also, a polynomial cannot split unless it is monic. This might differ
from how other authors define the notion of “splitting”, but it is sufficient for
what we will do with it.

Example 1.2.2. (a) The polynomial x2 − 1 splits over Q, since

x2 − 1 = (x − 1) (x + 1) = (x − 1) (x − (−1)) .

(b) The polynomial x2 + 1 does not split over R (since it has no roots in
R), but it splits over C, since

x2 + 1 = (x − i) (x + i) = (x − i) (x − (−i)) .

(c) The polynomial x2 splits over Q, since x2 = xx = (x − 0) (x − 0).
(d) The polynomial x4 − 9 does not split over R. Indeed, it has a factoriza-

tion
x4 − 9 =

(
x −

√
3
) (

x +
√

3
) (

x2 + 3
)

,

but the x2 + 3 factor is still not of the form x − r. However, this polynomial
does split over C, since

x4 − 9 =
(

x −
√

3
) (

x +
√

3
) (

x −
√

3i
) (

x +
√

3i
)

.

(e) Any monic polynomial of degree 1 automatically splits over whatever
field it is defined over. So does the constant polynomial 1 (since it is an
empty product).

When a polynomial splits over a field, its roots can be read off directly from
the splitting:
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Proposition 1.2.3. Let F be a field. Let r1, r2, . . . , rm ∈ F. Then,

{the roots of the polynomial (x − r1) (x − r2) · · · (x − rm) ∈ F [x] in F}
= {r1, r2, . . . , rm} .

Proof. The ring F is a field, thus an integral domain. Thus, a product uv of two
elements u, v ∈ F is zero if and only if one of its factors is zero. Hence, a finite
product u1u2 · · · uk of elements of F is zero if and only if one of its factors is
zero6.

Now, we have

{the roots of the polynomial (x − r1) (x − r2) · · · (x − rm) ∈ F [x] in F}
= {a ∈ F | ((x − r1) (x − r2) · · · (x − rm)) [a] = 0}

(by the definition of a “root”)
= {a ∈ F | (a − r1) (a − r2) · · · (a − rm) = 0}(

since the evaluation ((x − r1) (x − r2) · · · (x − rm)) [a]
equals (a − r1) (a − r2) · · · (a − rm)

)
= {a ∈ F | one of a − r1, a − r2, . . . , a − rm is zero}(

since a finite product u1u2 · · · uk of elements of F is zero
if and only if one of its factors is zero

)
= {a ∈ F | a = r1 or a = r2 or · · · or a = rm}
= {r1, r2, . . . , rm} .

This proves Proposition 1.2.3.

Remark 1.2.4. It is worth noting that Proposition 1.2.3 still holds if we replace
“field” by “integral domain” (and the same proof applies); but it does not
hold when F is just a general commutative ring. For example, if F = Z/4,
then the polynomial (x − 0) (x − 0) (x − 1) (x − 3) ∈ F [x] has roots 0, 1, 2, 3,
rather than just 0, 1, 3 as Proposition 1.2.3 would predict.

The Fundamental Theorem of Algebra says that each monic univariate poly-
nomial over C splits over C. This is not actually a theorem of algebra, since it
relies on the definition of C (which is analytic); however, it explains some of the
significance of C. In general, a field F is said to be algebraically closed if each
monic univariate polynomial over F splits over F. The field C is not the only
algebraically closed field, but it is perhaps the best-known.

We won’t need algebraically closed fields in this course; we will need a more
“local” notion: that of a splitting field. To introduce it, we make a simple

6Indeed, this follows easily by induction on k, using the preceding sentence in the induction
step.
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observation, which we have already (tacitly) used in Example 1.2.2 (as we have
been treating the same polynomial x2 + 1 first as a polynomial in R [x] and then
as a polynomial in C [x]):

Proposition 1.2.5. Let S be a commutative ring. Let R be a subring of S. Then,
any polynomial over R automatically is a polynomial over S as well (since its
coefficients lie in R and therefore also lie in S), and thus the polynomial ring
R [x] becomes a subring of S [x].

For example, R [x] is a subring of C [x]. Polynomials like x2 + 1 might not
split over R, but they split over C. This suggests that if a monic polynomial does
not split over a ring, we might fix this by making the ring larger (“extending”
the ring, possibly by “adjoining” some roots), just as C was constructed from
R in order to make x2 + 1 split. Thus we make the following definition:

Definition 1.2.6. Let F be a field. Let b ∈ F [x] be a monic polynomial over
F. Then, a splitting field of b (over F) means a field S such that

• F is a subring of S;

• the polynomial b (regarded as a polynomial in S [x]) splits over S.

Examples:

• C is a splitting field of x2 + 1 over R.

• C is a splitting field of x2 − 2 over Q, but so is R (since x2 − 2 already
splits over R) or even the smaller field Q

[√
2
]
=
{

a + b
√

2 | a, b ∈ Q
}

.

• Q itself is a splitting field of x2 − 1 over Q.

(Be careful with the literature: Many authors have a more restrictive concept
of a “splitting field”, which requires not only that the polynomial split over it,
but also that the field – in some reasonable way – is minimal with this property.
For example, these authors do not accept R as a splitting field of x2 − 2 over Q,
since the much smaller field Q

[√
2
]

suffices to split the polynomial. But our
definition suffices for our purposes.)

The most important fact about splitting fields is that they always exist:

Theorem 1.2.7. Let F be a field. Let b ∈ F [x] be a monic polynomial over F.
Then:

(a) We can write b as a product b = c1c2 · · · ck of monic irreducible polyno-
mials c1, c2, . . . , ck ∈ F [x].

(b) If deg b > 0, then there is a field that contains F as a subring and that
contains a root of b.

(c) There exists a splitting field of b over F.
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Proof. (a) Any nonzero polynomial in F [x] can be made monic by scaling it
with a nonzero scalar (namely, if g ∈ F [x] is a nonzero polynomial, and if c is
its leading coefficient, then c−1g is a monic polynomial). This scaling does not
interfere with its divisibility properties; thus, if g is irreducible, then it remains
so after the scaling.

Hence, it suffices to show that we can write b as a product b = c1c2 · · · ck of
irreducible polynomials c1, c2, . . . , ck ∈ F [x].

Abstractly, this follows easily from the fact that F [x] is a UFD. In a more
down-to-earth manner, this can be shown just like the classical fact that each
positive integer can be written as a product of primes. The proof proceeds
by strong induction on deg b; the main idea is “either b is itself irreducible, in
which case we are done; or b can be written as a product of two polynomials of
smaller degree, in which case the induction hypothesis applies”.

(Note that this proof is constructive when F is finite, since we can actually
try out all polynomials of degree smaller than deg b and check which of them
divide b.)

Theorem 1.2.7 (a) is thus proved.
(b) Assume that deg b > 0. We must find a field that contains F as a subring

and that contains a root of b.
It is tempting to take F [x] /b, but this might fail to be a field (since b might

fail to be irreducible).
Instead, we use Theorem 1.2.7 (a) to write b as a product b = c1c2 · · · ck of

monic irreducible polynomials c1, c2, . . . , ck ∈ F [x], and then we take the field
F [x] /c1 (which is indeed a field, because c1 is irreducible7). This field will
contain a root of c1, and thus also contain a root of b (since a root of c1 is always
a root of b). So Theorem 1.2.7 (b) is proved.

(Where did I use the assumption deg b > 0 in this proof? Hint: Why is there
a c1 ?)

(c) Here is a proof by example: Assume that deg b = 3.
Theorem 1.2.7 (b) says that there is a field F′ that contains F as a subring

and that contains a root of b. Consider this F′, and let r1 be the root of b
that it contains. Thus, x − r1 | b in F′ [x] (since r1 is a root of b). Hence, the

polynomial
b

x − r1
∈ F′ [x] is well-defined. Moreover, this polynomial

b
x − r1

has degree 3 − 1 = 2 and is monic8.
Now, we apply Theorem 1.2.7 (b) again, but this time to the field F′ and the

monic polynomial
b

x − r1
over it. Thus we conclude that there is a field F′′ that

contains F′ as a subring and that contains a root of
b

x − r1
. Consider this F′′,

7We are using a result from Lecture 13 here.
8Here, we are using the fact that when we divide a monic polynomial by a monic polynomial,

the quotient will again be monic. (The proof is LTTR. Note that this holds even if there is a
remainder!)
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and let r2 be the root of
b

x − r1
that it contains. Thus, x − r2 | b

x − r1
in F′′ [x]

(since r2 is a root of
b

x − r1
). Hence, the polynomial

b
x − r1

/ (x − r2) ∈ F′′ [x]

is well-defined. In other words, the polynomial
b

(x − r1) (x − r2)
∈ F′′ [x] is

well-defined. Moreover, this polynomial
b

(x − r1) (x − r2)
has degree 3 − 2 = 1

and is monic.
Now, we apply Theorem 1.2.7 (b) again, but this time to the field F′′ and the

monic polynomial
b

(x − r1) (x − r2)
over it. Thus we conclude that there is a

field F′′′ that contains F′′ as a subring and that contains a root of
b

(x − r1) (x − r2)
.

Consider this F′′′, and let r3 be the root of
b

(x − r1) (x − r2)
that it contains.

Thus, x− r3 | b
(x − r1) (x − r2)

in F′′′ [x]. Hence, the polynomial
b

(x − r1) (x − r2) (x − r3)
∈

F′′′ [x] is well-defined. Furthermore, this polynomial has degree 3 − 3 = 0
and is monic. In other words, this polynomial equals 1. In other words,
b = (x − r1) (x − r2) (x − r3) in F′′′ [x]. This shows that b splits over F′′′. More-
over, by construction, F′′′ is a field that contains F as a subring (since F ⊆
F′ ⊆ F′′ ⊆ F′′′, and each of these “⊆” signs is not just a subset but actually a
subring).

Thus, we have proved Theorem 1.2.7 (c) in our example. Proving it in the
general case is just a matter of formalizing what we did as an induction on
deg b.

Next, to something different. The following is a rather surprising property
of fields of positive characteristic:

Theorem 1.2.8 (Idiot’s Binomial Formula, aka Freshman’s Dream). Let p be
a prime number. Let F be a field of characteristic p, or, more generally, any
commutative Z/p-algebra. Then:

(a) We have (a + b)p = ap + bp for any a, b ∈ F.
(b) We have (a + b)pm

= apm
+ bpm

for any a, b ∈ F and m ∈ N.
(c) We have (a − b)p = ap − bp for any a, b ∈ F.
(d) We have (a − b)pm

= apm − bpm
for any a, b ∈ F and m ∈ N.

For example, for p = 3, Theorem 1.2.8 (a) says that (a + b)3 = a3 + b3. And
indeed, we can show this directly: Theorem 1.1.2 (b) shows that 3u = 0 for any
u ∈ F (for p = 3), and the binomial formula yields

(a + b)3 = a3 + 3a2b︸︷︷︸
=0

(since 3u=0
for any u∈F)

+ 3ab2︸︷︷︸
=0

(since 3u=0
for any u∈F)

+b3 = a3 + b3.
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To prove Theorem 1.2.8 (a) in general, we will argue in the same way; we
will just need to know that all but the leftmost and rightmost addends in the
binomial formula vanish. This is a consequence of the following lemma:

Lemma 1.2.9. Let p be a prime number. Let k ∈ {1, 2, . . . , p − 1}. Then,

p |
(

p
k

)
.

Note that this does indeed depend on p being a prime. For example, the

number 4 is not prime, and we do not have 4 |
(

4
2

)
︸︷︷︸
=6

.

Proof of Lemma 1.2.9. There is an easy-to-prove formula saying that(
p
k

)
=

p
k
·
(

p − 1
k − 1

)
.

Hence,

k
(

p
k

)
= p

(
p − 1
k − 1

)
.

Hence, k
(

p
k

)
is divisible by p. But k is coprime to p (since p is prime), so

we can cancel k from this divisibility, and conclude that
(

p
k

)
is divisible by p.

Lemma 1.2.9 is proved.

Proof of Theorem 1.2.8. (a) Let a, b ∈ F. Then, ab = ba (since F is commutative);
thus, the Binomial Formula yields

(a + b)p =
p

∑
k=0

(
p
k

)
akbp−k = ap +

p−1

∑
k=1

(
p
k

)
akbp−k + bp. (1)

Now, we claim that all the addends in the sum
p−1
∑

k=1

(
p
k

)
akbp−k vanish. In-

deed, let k ∈ {1, 2, . . . , p − 1}. Then, Lemma 1.2.9 tells us that
(

p
k

)
= mp

for some m ∈ Z. Consider this m. Then, each u ∈ F satisfies
(

p
k

)
u =

m pu︸︷︷︸
=0

(by Theorem 1.1.2 (b))

= m · 0 = 0. Hence, in particular, we have

(
p
k

)
akbp−k = 0. (2)
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Now, forget that we fixed k. We thus have shown that (2) holds for each
k ∈ {1, 2, . . . , p − 1}. Hence, (1) becomes

(a + b)p = ap +
p−1

∑
k=1

(
p
k

)
akbp−k︸ ︷︷ ︸
=0

(by (2))

+bp = ap + bp.

This proves Theorem 1.2.8 (a).
(b) This follows by induction on m using Theorem 1.2.8 (a), since any u ∈ F

satisfies upm
=
(

upm−1
)p

.
(c) Let a, b ∈ F. Applying Theorem 1.2.8 (a) to a − b instead of a, we get

((a − b) + b)p = (a − b)p + bp.

Solving this for (a − b)p, we get

(a − b)p =

(a − b) + b︸ ︷︷ ︸
=a

p

− bp = ap − bp.

This proves Theorem 1.2.8 (c).
(d) This follows by induction on m using Theorem 1.2.8 (c).

Corollary 1.2.10. Let p be a prime number. Let F be a field of characteristic
p, or, more generally, any commutative Z/p-algebra. Then, the map

F → F,
a 7→ ap

is a ring morphism.

Proof. Theorem 1.2.8 (a) says that this map respects addition. But it is also
clear that this map respects multiplication (since (ab)p = apbp for any a, b ∈ F)
and respects zero and unity (since 0p = 0 and 1p = 1). Thus, it is a ring
morphism.

The ring morphism in Corollary 1.2.10 is known as the Frobenius endomor-
phism of F. It exists for arbitrary commutative Z/p-algebras, but it is particu-
larly well-behaved for finite fields. (In particular, it is bijective when F is a finite
field; this will be on homework set #4.)

Our last tool is essentially a criterion for a polynomial to have distinct roots.
The criterion is in terms of its derivative, which is defined as follows:



Lecture 14, version May 17, 2023 page 12

Definition 1.2.11. Let R be a commutative ring. Let f ∈ R [x] be a poly-
nomial. The derivative f ′ of f is a polynomial in R [x] defined as fol-
lows: Writing f in the form f = ∑

k∈N

fkxk for some f0, f1, f2, . . . ∈ R, we

set f ′ = ∑
k>0

fkkxk−1.

For example, if f = 7x4 + 2x + 3, then f ′ = 7 · 4x3 + 2 · 1x0 = 28x3 + 2 (where
we have, of course, ignored zero coefficients).

Definition 1.2.11 is obviously inspired by the formula for the derivative of
a polynomial function in calculus. Unlike in calculus, we are not wasting our
time with little εs and convergence issues; instead, we are just defining f ′ using
the explicit formula that probably took you some time to prove back in calculus.
There is no free lunch here – with this definition, you cannot re-use anything
you have learned about derivatives in your analysis classes (already because
you are working in a much more general setting now, with a commutative ring
R instead of the real numbers); thus, a host of basic properties of derivatives
need to be proven before the notion becomes useful. In particular, the following
needs to be shown:

Proposition 1.2.12. Let R be a commutative ring. Let f , g ∈ R [x]. Then:
(a) We have ( f + g)′ = f ′ + g′.
(b) We have ( f g)′ = f ′g + f g′. (This is called the Leibniz rule.)

Proof. This is part of homework set #3 exercise 7.

The following corollary is an algebraic analogue of the well-known fact “a
double root of a polynomial is a root of its derivative”:

Corollary 1.2.13. Let R be a commutative ring. Let f ∈ R [x] and r ∈ R. If
(x − r)2 | f in R [x], then x − r | f ′ in R [x].

Proof. Assume that (x − r)2 | f . Thus, we can write f as f = (x − r)2 g for some
g ∈ R [x]. Consider this g. From f = (x − r)2 g, we obtain

f ′ =
(
(x − r)2 g

)′
=
(
(x − r)2

)′
︸ ︷︷ ︸

=2(x−r)
(this is easy to
check directly)

g + (x − r)2 g′ (by the Leibniz rule)

= 2 (x − r) g + (x − r)2 g′ = (x − r)
(
2g + (x − r) g′

)
.

Thus, x − r | f ′, so that Corollary 1.2.13 is proven.

(Note that
(
(x − r)2

)′
= 2 (x − r) could also be obtained from the chain

rule for polynomials, which says – just like the chain rule in calculus – that
( f [g])′ = f ′ [g] · g′ for any two polynomials f , g ∈ R [x]. But then you would
have to prove this chain rule – which is a nice exercise in fact.)
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1.3. Existence of finite fields

Now we are in walking distance of the existence of fields of size pm:

Theorem 1.3.1. Let p be a prime number. Let m be a positive integer. Then,
there exists a finite field of size pm.

Proof. From p > 1 and m > 0, we obtain pm > 1. Hence, the polynomial
xpm − x is monic. Thus, by Theorem 1.2.7 (c), there exists a splitting field of
this polynomial over Z/p. Let S be such a splitting field. Thus, the polynomial
xpm − x splits over S. In other words, there exist elements r1, r2, . . . , rpm of S
such that

xpm − x = (x − r1) (x − r2) · · ·
(
x − rpm

)
. (3)

Consider these r1, r2, . . . , rpm .
Let

L =
{

r1, r2, . . . , rpm
}

.

Our goal will be to show that L is a finite field of size pm.
Everything in this statement needs proof!9 Even the size is not obvious, let

alone that L is a field. Let us start with the size:

Claim 1: We have |L| = pm.

[Proof: This amounts to showing that r1, r2, . . . , rpm are distinct (since this will
immediately yield that L =

{
r1, r2, . . . , rpm

}
is a pm-element set). Let us thus

do this. Indeed, assume the contrary. Then, ri = rj for some i < j. Hence, the
x − ri and x − rj factors on the right hand side of (3) are identical. Thus, x − ri
appears twice as a factor on this right hand side; consequently, (3) entails that
(x − ri)

2 | xpm − x. Hence, Corollary 1.2.13 (applied to R = S and f = xpm − x

and r = ri) yields x − ri |
(

xpm − x
)′

. But Definition 1.2.11 yields(
xpm − x

)′
= pmxpm−1︸ ︷︷ ︸

=0
(since pu=0
for any u∈S)

−1 = −1.

Thus, x − ri |
(

xpm − x
)′

= −1 | 1. But it is impossible for the degree-1
polynomial x − ri to divide the degree-0 polynomial 1 (for degree reasons).
So we have found a contradiction.]

Next, let us characterize L somewhat differently:

Claim 2: We have

L =
{

the roots of xpm − x in S
}
=
{

a ∈ S | apm − a = 0
}

=
{

a ∈ S | apm
= a

}
.

9Except for the “finite” part, which is obvious but not overly helpful by itself.
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[Proof of Claim 2: The equation (3) yields that{
the roots of xpm − x in S

}
=
{

the roots of (x − r1) (x − r2) · · ·
(
x − rpm

)
in S

}
=
{

r1, r2, . . . , rpm
}

(by Proposition 1.2.3)
= L.

Hence,

L =
{

the roots of xpm − x in S
}
=
{

a ∈ S | apm − a = 0
}

=
{

a ∈ S | apm
= a

}
.

This proves Claim 2.]
Now, why is L a field? First, let us check that L is a ring:

Claim 3: The set L is a subring of S.

[Proof of Claim 3: Claim 2 yields that

L =
{

a ∈ S | apm
= a

}
. (4)

Hence, 0 ∈ L (since 0pm
= 0) and 1 ∈ L (since 1pm

= 1). Furthermore, I claim
that L is closed under addition. Indeed, if a, b ∈ L, then (4) yields apm

= a and
bpm

= b, so that

(a + b)pm
= apm︸︷︷︸

=a

+ bpm︸︷︷︸
=b

(by Theorem 1.2.8 (b))

= a + b,

and this means a + b ∈ L (again because of (4)). This shows that L is closed
under addition For a similar reason, L is closed under subtraction10, so that
L is closed under negation. Finally, L is closed under multiplication, since
(ab)pm

= apm
bpm

for any a, b ∈ L. Hence, L is a subring of S.]
Thus, in particular, L is a commutative ring (since S is a field, thus a commu-

tative ring). Now, let us see that L is a field:

Claim 4: The ring L is a field.

[Proof of Claim 4: We know that S is a field, so that 0 ̸= 1 in S, and this of
course means that 0 ̸= 1 in L. It thus remains to show that every nonzero
element of L is a unit.

10Use Theorem 1.2.8 (d) instead of Theorem 1.2.8 (b) here.
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Let a ∈ L be nonzero. Then, a has an inverse in S, since S is a field. This

inverse a−1 satisfies
(
a−1)pm

=
(

apm
)−1

(indeed, this is a particular case of the

identity
(

g−1)k
=
(

gk)−1
, which holds whenever g is an element of a group

and k is an integer). But a ∈ L and thus apm
= a (by (4)). Hence,

(
a−1
)pm

=

(
apm︸︷︷︸
=a

)−1

= a−1,

so that a−1 ∈ L (by (4) again). Thus, a has an inverse in L; in other words, a is
a unit of L.

Thus, we have shown that every nonzero element of L is a unit. As we said,
this finishes the proof of Claim 4.]

Combining Claims 1 and 4, we conclude that L is a field of size pm. Thus,
such a field exists. This proves Theorem 1.3.1.

So we are done with the first deep result of this course! There is much more
to say about finite fields:

• We have obtained L rather indirectly: First, we took a splitting field S of
the huge polynomial xpm − x; then we carved L out of it by taking the
roots of this polynomial. Could we get L more directly? For example, if
there is an irreducible polynomial f of degree m over Z/p, then we can
just take the field (Z/p) [x] / f . Is there such an f ?

• Can there be several non-isomorphic fields of size pm (for fixed p and m)?
For example, can there be two non-isomorphic fields of size p2 ? It is not
hard to see that any field of size p2 can be obtained (up to isomorphism)
by adjoining a root of an irreducible quadratic polynomial to Z/p; thus,
the question is whether different such polynomials can lead to different
fields.

If we were working with infinite fields, examples of such behavior would
be easy to find. For example, adjoining a root of x2 − 2 to Q yields the field
Q
[√

2
]
, whereas adjoining a root of x2 − 3 to Q yields the field Q

[√
3
]
. It

is not hard to see that Q
[√

2
]

is not isomorphic to Q
[√

3
]

(for example,

you can show that 2 is a square in Q
[√

2
]

but not in Q
[√

3
]
). Can this

happen with Z/p instead of Q ?

You will see some answers on homework set #4.
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