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Math 533 Winter 2021, Lecture 13: Root
adjunction and finite fields

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Monoid algebra and polynomials ([DF, Chapter
9]) (cont’d)

1.1. Adjoining roots (cont’d)

In Lecture 12, we have seen a few examples of the construction in which we
start with a commutative ring R and a polynomial b ∈ R [x], and construct the
quotient ring R [x] /b. To recall, the bottom line of this construction is “throw
a new root of b into the ring R and see what happens”. Often, this produces
a ring extension of R – i.e., a larger ring that contains R as a subring. (For
example, this happens if R = R and b = x2 + 1; this is how Cardano defined
the complex numbers.) However, this doesn’t always go well. Sometimes, what
happens instead is that the ring R collapses to a trivial ring (e.g., if b = 1) or at
least becomes smaller (e.g., we have (Z/6) [x] / (2x− 1) ∼= Z/3). Sometimes,
the ring loses some of its properties: e.g., if we throw a new root of x2 − 1 into
the field Q, then the resulting ring Q [x] /

(
x2 − 1

)
not only fails to be a field,

but even fails to be an integral domain (indeed, we have seen that this ring is
isomorphic to Q×Q).

Let us put these things in order. First, let us show that the residue class x in
R [x] /b is a root of b, so that our construction really creates a root of b:

Proposition 1.1.1. Let b ∈ R [x] be a polynomial. (Recall that R is still a fixed
commutative ring.)

(a) The projection map

πb : R [x]→ R [x] /b,
p 7→ p

is an R [x]-algebra morphism, and thus an R-algebra morphism.
(b) The map1

R→ R [x] /b,
r 7→ r

is an R-algebra morphism.
(c) We have p [x] = p for any p ∈ R [x].
(d) The element x ∈ R [x] /b is a root of b.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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None of this is difficult to prove, but the following proposition will make the
proof (even) more comfortable:

Proposition 1.1.2 (“Polynomials commute with algebra morphisms”). Let A
and B be two R-algebras. Let f : A → B be an R-algebra morphism. Let
a ∈ A. Let p ∈ R [x] be a polynomial. Then,

f (p [a]) = p [ f (a)] .

Proof of Proposition 1.1.2. Let us give a proof by example: Set p = 5x4 + x3 + 7x1.
Then, p [a] = 5a4 + a3 + 7a1 and p [ f (a)] = 5 f (a)4 + f (a)3 + 7 f (a)1. Thus, the
claim we have to prove rewrites as

f
(

5a4 + a3 + 7a1
)
= 5 f (a)4 + f (a)3 + 7 f (a)1 .

But this follows easily from the fact that f is an R-algebra morphism: Indeed,

f
(

5a4 + a3 + 7a1
)
= f

(
5a4
)
+ f

(
a3
)
+ f

(
7a1
)

(since f respects addition)

= 5 f
(

a4
)
+ f

(
a3
)
+ 7 f

(
a1
)

(since f respects scaling)

= 5 f (a)4 + f (a)3 + 7 f (a)1 (since f respects powers) .

The rigorous proof in the general case is LTTR.

Proof of Proposition 1.1.1. (a) This follows from the general fact (proved back in
Lecture 12) that the canonical projection from an R-algebra to its quotient is
an R-algebra morphism. Note that we need to apply this fact to R [x] instead
of R here, in order to conclude that the map in question is an R [x]-algebra
morphism.

(b) The map

R→ R [x] /b,
r 7→ r

is the composition of the projection map πb from part (a) with the inclusion
map

R→ R [x] ,

r 7→ r = rx0.

1Note the difference between the maps in part (a) and in part (b): The map in part (a) takes
as input a polynomial p ∈ R [x], whereas the map in part (b) takes as input a scalar r ∈ R
(and treats it as a constant polynomial, i.e., as rx0 ∈ R [x]). If you regard R as a subring of
R [x], you can thus view the map in part (b) as a restriction of the map in part (a).
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Thus, it is a composition of two R-algebra morphisms (since both πb and the
inclusion map are R-algebra morphisms). Hence, it is an R-algebra morphism
itself2. This proves Proposition 1.1.1 (b).

(c) Here is an abstract argument: Let p ∈ R [x]. The projection map πb from
Proposition 1.1.1 (a) is an R-algebra morphism (by Proposition 1.1.1 (a)). Hence,
Proposition 1.1.2 (applied to A = R [x] and B = R [x] /b and a = x and f = πb)
yields

πb (p [x]) = p [πb (x)] . (1)

However, the definition of πb yields πb (p [x]) = p [x] = p (since p [x] = p) and
πb (x) = x. Hence, (1) rewrites as p = p [x]. This proves Proposition 1.1.1 (c).

Alternatively, you can prove it directly by writing p as p =
n
∑

i=0
pixi with

pi ∈ R. (Indeed, if you do this, then the claim rewrites as
n
∑

i=0
pixi =

n
∑

i=0
pixi; but

this is an easy consequence of how the quotient R [x] /b was defined.)
(d) Proposition 1.1.1 (c) (applied to p = b) yields b [x] = b = 0 (since b ∈

bR [x]). In other words, x is a root of b. This proves Proposition 1.1.1 (d).

Next, for a large class of polynomials b ∈ R [x] (including the monic ones, and
all the nonzero polynomials over a field), we are going to show how R [x] /b
looks like as an R-module:

Theorem 1.1.3. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m such
that its leading coefficient [xm] b is a unit. Then:

(a) Each element of R [x] /b can be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R.

(b) The m vectors x0, x1, . . . , xm−1 form a basis of the R-module R [x] /b.
Thus, this R-module R [x] /b is free of rank m = deg b.

(c) Assume that m > 0. Then, the R-algebra morphism3

R→ R [x] /b,
r 7→ r

is injective. Therefore, R can be viewed as an R-subalgebra (thus a subring)
of R [x] /b if we identify each r ∈ R with its image r ∈ R [x] /b.

(d) In particular, under the assumption that m > 0, there exists a commu-
tative ring that contains R as a subring and that contains a root of b.

2Indeed, there is an easy fact (which we never stated, but which is completely straightforward
to prove after what we have seen) that any composition of two R-algebra morphisms is itself
an R-algebra morphism.

3This is the map from Proposition 1.1.1 (b).
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Proof. (a) Let α ∈ R [x] /b. Then, α = a for some polynomial a ∈ R [x]. Consider
this a. The division-with-remainder theorem for polynomials (see Lecture 12)
tells us that there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

Consider this pair (q, r). Then, in R [x] /b, we have a = r (since a = qb + r
entails a− r = qb = bq ∈ bR [x]).

We have deg r < deg b = m; thus, we can write r in the form r = r0x0 + r1x1 +
· · ·+ rm−1xm−1 for some r0, r1, . . . , rm−1 ∈ R. Consider these r0, r1, . . . , rm−1. We
have

α = a = r = r0x0 + r1x1 + · · ·+ rm−1xm−1(
since r = r0x0 + r1x1 + · · ·+ rm−1xm−1

)
= r0x0 + r1x1 + · · ·+ rm−1xm−1

(since the scaling and the addition of the quotient algebra R [x] /b were inher-
ited from R [x]).

Thus, we have represented our α ∈ R [x] /b in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(namely, for ai = ri). It remains to show that this representation is unique.
This can be shown by walking the above proof backwards and using the

uniqueness part of the division-with-remainder theorem. Here are the details:
Assume that

α = b0x0 + b1x1 + · · ·+ bm−1xm−1 with b0, b1, . . . , bm−1 ∈ R

is some representation of α in the above form. We must then show that this
representation is actually the representation that we constructed above – i.e.,
that we have bi = ri for each i ∈ {0, 1, . . . , m− 1}.

Indeed, define a polynomial s ∈ R [x] by s = b0x0 + b1x1 + · · ·+ bm−1xm−1.
Then, deg s ≤ m− 1 < m = deg b. Also,

a = α = b0x0 + b1x1 + · · ·+ bm−1xm−1 = b0x0 + b1x1 + · · ·+ bm−1xm−1 = s

(since b0x0 + b1x1 + · · · + bm−1xm−1 = s). In other words, a − s ∈ bR [x]. In
other words,

a− s = bd for some d ∈ R [x] .

Consider this d. Thus, a = bd + s = db + s. Now, the pair (d, s) is a pair of
polynomials in R [x] satisfying a = db + s and deg s < deg b. This means that it
satisfies the exact conditions that the pair (q, r) was asked to satisfy. However,
the division-with-remainder theorem for polynomials said that the pair (q, r)
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satisfying those conditions was unique. Hence, we must have (d, s) = (q, r)
(since (d, s) satisfies the same conditions as (q, r)). Thus, d = q and s = r.

Now,

b0x0 + b1x1 + · · ·+ bm−1xm−1 = s = r = r0x0 + r1x1 + · · ·+ rm−1xm−1.

Comparing coefficients in these polynomials, we conclude that bi = ri for each
i ∈ {0, 1, . . . , m− 1} (since

(
x0, x1, x2, . . .

)
is a basis of the R-module R [x]). This

is what we needed to show. Theorem 1.1.3 (a) is thus proved.
(b) This is just Theorem 1.1.3 (a), rewritten in terms of modules and bases.
In some more detail:

• Each element of R [x] /b can be written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(according to Theorem 1.1.3 (a)). In other words, each element of R [x] /b
is an R-linear combination of x0, x1, . . . , xm−1. Thus, the list

(
x0, x1, . . . , xm−1

)
spans the R-module R [x] /b.

• Each element of R [x] /b can be uniquely represented in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(according to Theorem 1.1.3 (a)). Hence, in particular, the zero vector
0 ∈ R [x] /b can be uniquely represented in this form. But it is clear how
to represent 0 in this form: We just write

0 = 0x0 + 0x1 + · · ·+ 0xm−1.

Since we have just said that 0 can be uniquely represented in this form, we
thus conclude that this is the only way to represent 0 in this form. In other
words, if 0 has been represented in the form a0x0 + a1x1 + · · ·+ am−1xm−1

with a0, a1, . . . , am−1 ∈ R, then we must have a0 = a1 = · · · = am−1 = 0. In
other words, if a0, a1, . . . , am−1 ∈ R satisfy a0x0 + a1x1 + · · ·+ am−1xm−1 =
0, then a0 = a1 = · · · = am−1 = 0. But this is saying precisely that the list(

x0, x1, . . . , xm−1
)

is R-linearly independent.

Thus, we have shown that the list
(

x0, x1, . . . , xm−1
)

is R-linearly indepen-
dent and spans R [x] /b. In other words, this list is a basis of R [x] /b. This
proves Theorem 1.1.3 (b).

(c) We know (from Proposition 1.1.1 (b)) that the map

R→ R [x] /b,
r 7→ r
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is an R-algebra morphism. We only need to show that it is injective. It clearly
suffices to show that its kernel is {0} (because we know that an R-module
morphism is injective if and only if its kernel is {0}).

So let r be in the kernel of this morphism. We must prove that r = 0.
Since r is in the kernel of the above morphism, we have r = 0 in R [x] /b. In

other words, r is a multiple of b. In other words, r = bc for some polynomial c ∈
R [x]. Consider this c. From r = bc, we obtain deg r = deg (bc) = deg b + deg c
(by one of the propositions of Lecture 12, since the leading coefficient of b
is a unit). Thus, deg b + deg c = deg r ≤ 0 (since r is constant). However,
deg b = m > 0 by assumption. Hence, deg b > 0 ≥ deg b + deg c. This entails
deg c < 0. This means that c = 0, whence r = b c︸︷︷︸

=0

= 0.

Forget that we fixed r. We thus have proved that if r is in the kernel of our
morphism, then r = 0. Hence, the kernel of our morphism is {0} (since 0 is
clearly in its kernel). Thus, the morphism is injective, and Theorem 1.1.3 (c) is
proven.

(d) Assume that m > 0. The ring R [x] /b contains a root of b (namely, x,
according to Proposition 1.1.1 (d)), and also contains “a copy of R”, in the sense
that there is an injective ring morphism from R to R [x] /b (namely, the one we
constructed in Theorem 1.1.3 (c)). If we replace this copy of R by the original R
(by replacing each r ∈ R [x] /b with the corresponding r ∈ R), then we obtain
a ring that contains R as a subring but also contains a root of b. This proves
Theorem 1.1.3 (d).

Let us summarize: We have generalized the construction of C. Namely, we
have found a way to “adjoin” a root of a polynomial b ∈ R [x] to a commuta-
tive ring R by forming the quotient ring R [x] /b. This latter ring is always a
commutative ring and an R-algebra. Moreover, if b is “nice” (that is, we have
deg b > 0, and the leading coefficient of b is a unit), then this latter ring R [x] /b
will contain R as a subring (by Theorem 1.1.3 (c)) and also will be a free R-
module of rank deg b (by Theorem 1.1.3 (b)). If b is not as “nice”, then the ring
R [x] /b may fail to contain R as a subring (even though it still is an R-algebra),
and may be smaller than R or even trivial.

1.2. Field extensions from adjoining roots

Let F be a field. Then, any non-constant univariate polynomial b ∈ F [x] is
“nice” in the sense of the preceding paragraph, so that F [x] /b is a commutative
ring that contains F as a subring and that contains a root of b. When will this
ring F [x] /b be a field?

We first state a simple fact about the units of F [x]:

Proposition 1.2.1. The units of the polynomial ring F [x] are precisely the
nonzero constant polynomials.



Lecture 13, version March 18, 2021 page 7

Proof. Any nonzero constant polynomial is a unit of F [x] (since it is a unit of
F). Conversely, any unit of F [x] must be a nonzero constant polynomial4.

Recall (from Lecture 12) that F [x] is a Euclidean domain, hence a PID (by
Lecture 6), hence a UFD (by Lecture 7). Furthermore, an element p ∈ F [x] is
prime5 if and only if it is irreducible (by one of the results in Lecture 6, since
F [x] is a PID). The notion of “irreducible” in F [x] is precisely the classical
concept of an irreducible polynomial:

Proposition 1.2.2. Let p ∈ F [x]. Then, p is irreducible if and only if p is
non-constant and cannot be written as a product of two non-constant poly-
nomials.

Proof. The definition of “irreducible” says that p is irreducible if and only if p is
nonzero and not a unit and has the property that whenever a, b ∈ F [x] satisfy
ab = p, at least one of a and b must be a unit.

In view of Proposition 1.2.1, this can be rewritten as follows: p is irreducible
if and only if p is nonzero and not a nonzero constant polynomial and has the
property that whenever a, b ∈ F [x] satisfy ab = p, at least one of a and b must
be a nonzero constant polynomial.

We can declutter this statement (e.g., “nonzero and not a nonzero constant
polynomial” can be shortened to “non-constant”), and thus obtain the follow-
ing: p is irreducible if and only if p is non-constant and has the property that
whenever a, b ∈ F [x] satisfy ab = p, at least one of a and b must be constant.
In other words, p is irreducible if and only if p is non-constant and cannot be
written as a product of two non-constant polynomials.

Now, we can characterize when a quotient ring of the form F [x] /p is a field:

Theorem 1.2.3. Let p ∈ F [x]. Then, the ring F [x] /p is a field if and only if p
is irreducible.

For example, the irreducible polynomial x2 + 1 over R yields the field R [x] /
(
x2 + 1

)
(which is ∼= C), but the non-irreducible polynomial x2 − 1 over R yields the
non-field R [x] /

(
x2 − 1

) ∼= R×R.
Theorem 1.2.3 is analogous to the fact that Z/n is a field (for a positive

integer n) if and only if n is prime. Just like the latter fact, it is a particular case
of the following general property of PIDs:

4Proof. Let u be a unit of F [x]. We must show that u is a nonzero constant polynomial.
We know that u is a unit of F [x]; hence, there exists some v ∈ F [x] satisfying uv = 1.

Consider this v. From uv = 1 6= 0, we obtain u 6= 0, so that u is nonzero. Hence, deg (uv) =
deg u + deg v (by a proposition from Lecture 12, since F is an integral domain). Moreover,
from uv = 1, we obtain deg (uv) = deg 1 = 0, so that 0 = deg (uv) = deg u +deg v︸ ︷︷ ︸

≥0

≥ deg u,

which entails that u is constant. Thus, u is a nonzero constant polynomial, qed.
5See Lecture 6 for the definitions of prime and irreducible elements of an integral domain.
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Theorem 1.2.4. Let R be a PID. Let p ∈ R. Then, the ring R/p is a field if
and only if p is irreducible.

Proof. =⇒: LTTR.
⇐=: Assume that p is irreducible. We must show that R/p is a field.
First of all, p is not a unit (since p is irreducible), so that 1 is not a multiple

of p. Hence, 1 6= 0 in R/p. In other words, the ring R/p is not trivial. This ring
is furthermore commutative (since R is commutative).

Now, let α ∈ R/p be a nonzero. We shall prove that α is a unit.
Write α as a for some a ∈ R. Then, a = α 6= 0 in R/p (since α is nonzero), so

that p - a.
Now, recall that R is a PID, so that any ideal of R is principal. In particular,

this entails that the ideal aR+ pR is principal. In other words, there exists some
g ∈ R such that aR + pR = gR. Consider this g. According to Lecture 6, we can
conclude from aR + pR = gR that g is a gcd of a and p. Thus, g | a and g | p.

However, p is irreducible; hence, every divisor of p is either a unit or asso-
ciate to p (indeed, this is easily seen to be a consequence of the definition of
“irreducible”6). Thus, g is either a unit or associate to p (since g | p). However,
g cannot be associate to p (because if g was associate to p, then we would have
p | g | a, which would contradict p - a). Hence, g must be a unit. So it has an
inverse g−1.

But g = g · 1 ∈ gR = aR+ pR. In other words, there exist two elements u, v ∈
R such that g = au + pv. Consider these u, v. Then, g = au + pv = ua + pv, so
that

g = ua + pv = ua (since pv ∈ pR)

in R/p. Therefore,

g−1u · a = g−1 · u · a = g−1 · ua︸︷︷︸
=g

= g−1 · g = g−1g = 1.

But this equality shows that g−1u is an inverse of a in the ring R/p (because we
know that R/p is commutative, so that we don’t need to check a · g−1u = 1 as
well). Thus, a is a unit. In other words, α is a unit (since α = a).

Forget that we fixed α. We thus have shown that any nonzero α ∈ R/p is
a unit. In other words, R/p is a field (since R/p is a nontrivial commutative
ring).

As a consequence of Theorem 1.2.4, we can now “adjoin” a root of an irre-
ducible polynomial to a field without destroying its field-ness: Namely, if we
have a field F and some irreducible polynomial b ∈ F [x], then the quotient ring
F [x] /b will be a field that contains F as a subring and that contains a root of

6Indeed: If d is a divisor of p, then there exists an e ∈ R such that p = de. Consider this e.
From p = de, we conclude that d or e is a unit (since p is irreducible). In the first case, d is a
unit; in the second case, d is associate to p.
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b. This generalizes Cardano’s definition of C, but can also be applied to adjoin
roots to fields other than R.

Example 1.2.5. The polynomial x2 + 1 ∈ (Z/3) [x] is irreducible. (Indeed,
Z/3 being a finite field, we could verify this by going through all nonconstant
polynomials of degree < 2 and checking that none of them divides x2 + 1.)

Thus, Theorem 1.2.4 yields that (Z/3) [x] /
(
x2 + 1

)
is a field. This field is

a free Z/3-module of rank 2 (by Theorem 1.1.3 (b)), and thus is isomorphic
to (Z/3)2 = (Z/3)× (Z/3) as a Z/3-module (but not as a ring, of course).
Hence, the size of this field is

∣∣∣(Z/3)2
∣∣∣ = |Z/3|2 = 32 = 9.

Thus, we have found a finite field of size 9. We have obtained it from Z/3
in the same way as C was obtained from R: by adjoining a square root of
−1.

Incidentally, this field can also be constructed as Z [i] /3.

2. Finite fields

2.1. Basics

Example 1.2.5 may make you wonder: what finite fields can we find? We know
that for each prime p, the quotient ring Z/p is a field of size p; thus, we know
a finite field of any prime size. Now we have found a finite field of size 9, too.
What other finite fields exist?

Let’s first grab the low-hanging fruit:

Proposition 2.1.1. Let p be a prime number. Then:
(a) There exists an irreducible polynomial b ∈ (Z/p) [x] of degree 2 over

Z/p.
(b) There exists a finite field of size p2.

Proof. We write F for Z/p. Thus, F is a field and satisfies |F| = |Z/p| = p.
(a) If p = 2, then we can take b = x2 + x + 1; it is easy to check that this b is

irreducible.
Thus, WLOG assume that p 6= 2. Hence, p > 2. Thus, 1 6= −1 in Z/p. In

other words, 1 6= −1 in F (since Z/p = F). The map

F → F,

a 7→ a2

is not injective (since 12
= −12 but 1 6= −1), and thus cannot be surjective

(by the pigeonhole principle). Thus, there exists some u ∈ F that is not in the
image of this map. In other words, there exists some u ∈ F that is not a square.
Consider such a u. Then, the polynomial x2 − u has no roots in F.
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Now it is not hard to prove that the polynomial x2 − u is irreducible.7 This
proves Proposition 2.1.1 (a) (since x2 − u ∈ (Z/p) [x] is an irreducible polyno-
mial of degree 2).

(b) Proposition 2.1.1 (a) yields that there exists an irreducible polynomial
b ∈ F [x] of degree 2 over F (since Z/p = F). Consider this b. Theorem
1.2.3 (applied to b instead of p) then yields that the ring F [x] /b is a field.
Moreover, F [x] /b is a free F-module of rank 2 (by Theorem 1.1.3 (b)), and thus
is isomorphic to F2 as a F-module, and therefore has size

∣∣F2
∣∣ = |F|2 = p2 (since

|F| = p). Hence, F [x] /b is a finite field of size p2. This proves Proposition 2.1.1
(b).

By more complicated but somewhat similar arguments8, we can also see that
there exists a finite field of size p3 for any prime p. This suggests generalizing to
pm; but this is much harder. Indeed, a nonconstant polynomial over F of degree
≤ 3 will always be irreducible if it has no roots in F (check this!); however, for
polynomials of degree ≥ 4, this is no longer the case (fun exercise: prove that
the polynomial x4 + 4 ∈ Q [x] is not irreducible, despite of course not having
any roots over Q). Thus, our trick for finding irreducible polynomials will no
longer work for degrees > 3. We can still find a field of size p4 by applying our
trick twice (first get a finite field of size p2, then proceed to find an irreducible

7Proof. Assume that we have written x2 − u as a product f g of two non-constant polynomials
f , g ∈ F [x]. We shall derive a contradiction.

Indeed, we have assumed that x2 − u = f g; hence, deg
(
x2 − u

)
= deg ( f g) = deg f +

deg g (since F is an integral domain). Thus, deg f + deg g = deg
(

x2 − u
)
= 2. Since deg f

and deg g are positive integers (because f and g are non-constant), this entails that deg f
and deg g must equal 1 (since the only pair of positive integers that add up to 2 is (1, 1)).
Thus, in particular, deg f = 1. Hence, f = ax + b for some a, b ∈ F with a 6= 0. Consider

these a, b. From f = ax + b, we obtain f
[
−b
a

]
= a · −b

a
+ b = 0. Thus, the polynomial f

has a root in F (namely,
−b
a

). Hence, the polynomial x2 − u has a root in F as well (indeed,

f | f g = x2 − u, so that every root of f is also a root of x2 − u). This contradicts the fact that
the polynomial x2 − u has no roots in F.

Thus, we have found a contradiction stemming from our assumption that x2 − u is a
product f g of two non-constant polynomials f , g ∈ F [x]. Hence, x2 − u cannot be written
as such a product. In other words, x2 − u is irreducible (since x2 − u is a non-constant
polynomial). Qed.

8Not too similar! It is not true that the map

F → F,

a 7→ a3

is always non-surjective when F = Z/p for p > 3. Instead, you have to argue the existence
of an irreducible polynomial b ∈ (Z/p) [x] of degree 3 over Z/p by a counting argument:
Show that the total number of monic degree-3 polynomials in (Z/p) [x] is p3, whereas the
total number of monic degree-3 polynomials in (Z/p) [x] that can be written as a product of
a degree-1 and a degree-2 polynomial is smaller than p3; thus, at least one monic degree-3
polynomial cannot be written as such a product.
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polynomial of degree 2 over that field), and by induction we can find fields of
sizes p8, p16, p32, . . .. But we don’t get a field of size p5 this way.

So do such fields exist?

2.2. The characteristic of a field

Leaving prime powers aside for a moment, what about fields of size 6 ? It
turns out that such fields don’t exist, for a fairly simple reason. Fields have an
important invariant, the so-called characteristic:

Definition 2.2.1. Let F be a field. The characteristic of F is an integer called
char F, which is defined as follows:

• If there exists a positive integer n such that n · 1F = 0, then char F is
defined to be the smallest such n.

• If such an n does not exist, then char F is defined to be 0.

Roughly speaking, char F is “how often you have to add 1F to itself to obtain
0” (with the caveat that we define it to be 0 if you never obtain 0 by adding 1F
to itself). Here are some examples:

• We have char Q = 0, since there exists no positive integer n such that
n · 1Q = 0. For the same reason, char R = 0 and char C = 0.

• For any prime p, we have char (Z/p) = p. Indeed, p · 1Z/p = p · 1 =

p · 1 = p = 0 in Z/p, but every positive integer n < p satisfies n · 1Z/p =

n · 1 = n · 1 = n 6= 0 in Z/p.

• For our fields F of size p2 or p3, we also have char F = p, since they
contain Z/p as subrings.
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