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Math 533 Winter 2021, Lecture 13: Root
adjunction and finite fields

website: https://www.cip.ifi.lmu.de/ grinberg/t/21w/

1. Monoid algebra and polynomials ([DF, Chapter
9]) (cont’'d)

1.1. Adjoining roots (cont’d)

In Lecture 12, we have seen a few examples of the construction in which we
start with a commutative ring R and a polynomial b € R [x], and construct the
quotient ring R [x] /b. To recall, the bottom line of this construction is “throw
a new root of b into the ring R and see what happens”. Often, this produces
a ring extension of R — i.e., a larger ring that contains R as a subring. (For
example, this happens if R = R and b = x? + 1; this is how Cardano defined
the complex numbers.) However, this doesn’t always go well. Sometimes, what
happens instead is that the ring R collapses to a trivial ring (e.g., if b = 1) or at
least becomes smaller (e.g., we have (Z/6) [x] / (2x — 1) = Z/3). Sometimes,
the ring loses some of its properties: e.g., if we throw a new root of x> — 1 into
the field Q, then the resulting ring Q [x] / (x> — 1) not only fails to be a field,
but even fails to be an integral domain (indeed, we have seen that this ring is
isomorphic to Q x Q).

Let us put these things in order. First, let us show that the residue class X in
R[x] /b is a root of b, so that our construction really creates a root of b:

Proposition 1.1.1. Let b € R [x] be a polynomial. (Recall that R is still a fixed
commutative ring.)
(@) The projection map
7t R[x] = R[x] /b,
p=p
is an R [x]|-algebra morphism, and thus an R-algebra morphism.
(b) The mapﬂ
R — R[x] /b,
re=r
is an R-algebra morphism.

(c) We have p [x] = p for any p € R [«x].
(d) The element x € R [x] /b is a root of b.
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None of this is difficult to prove, but the following proposition will make the
proof (even) more comfortable:

Proposition 1.1.2 (“Polynomials commute with algebra morphisms”). Let A
and B be two R-algebras. Let f : A — B be an R-algebra morphism. Let
a € A. Let p € R[x] be a polynomial. Then,

fplal) =plf(a)].

Proof of Proposition Let us give a proof by example: Set p = 5x* + x> + 7x!.
Then, p [a] = 5a + a® +7a' and p [f (a)] = 5f (a)* + f (a)®> + 7f (a)". Thus, the
claim we have to prove rewrites as

f <5a4 + a3+ 7a1) =5f(a)*+ f ()’ +7f (a)".

But this follows easily from the fact that f is an R-algebra morphism: Indeed,

f (5114 +a° + 7a1) =f (5614) +f (a3) +f <7a1> (since f respects addition)
=5f (a4> +f <a3> +7f <a1) (since f respects scaling)
=5f(a)*+f ()’ +7f (a)" (since f respects powers) .
The rigorous proof in the general case is LTTR. [

Proof of Proposition (a) This follows from the general fact (proved back in
Lecture 12) that the canonical projection from an R-algebra to its quotient is
an R-algebra morphism. Note that we need to apply this fact to R [x] instead
of R here, in order to conclude that the map in question is an R [x]-algebra
morphism.

(b) The map
R — R[x] /b,
re—r

is the composition of the projection map 7, from part (a) with the inclusion
map

R — R[x],

1"—)7’:7’3(0.

!Note the difference between the maps in part (a) and in part (b): The map in part (a) takes
as input a polynomial p € R [x], whereas the map in part (b) takes as input a scalar ¥ € R
(and treats it as a constant polynomial, i.e., as rx’ € R [x]). If you regard R as a subring of
R [x], you can thus view the map in part (b) as a restriction of the map in part (a).
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Thus, it is a composition of two R-algebra morphisms (since both 7, and the
inclusion map are R-algebra mor hlsms) Hence, it is an R-algebra morphism
itself?} This proves Proposition [1.1.1] (b).

(c) Here is an abstract argument Let p € R[x]. The projection map 7 from
Proposition[I.1.1](a) is an R-algebra morphism (by Proposition[I.1.1](a)). Hence,
Proposition [1.1.2) (applied to A = R [x] and B = R [x] /band a = x and f = 71)
yields

my (p [x]) = plm (x)] 1)
However, the definition of 7}, yields 7, (p [x]) = p [x] = P (since p [x] = p) and
7, (x) = X. Hence, (1) rewrites as p = p [x]. This proves Proposmon 1 (0).

Alternatively, you can prove it directly by writing p as p = ‘Z pix' with

pi € R. (Indeed, if you do this, then the claim rewrites as Z pzx = Z pix’; but
i=0
this is an easy consequence of how the quotient R [x] /b was defined.)

(d) Proposition [1.1.1| (c) (applied to p = b) yields b[x] = b = 6 (since b €
R [x]). In other words X is a root of b. This proves Proposition[1.1.1](d). [

Next, for a large class of polynomials b € R [x] (including the monic ones, and
all the nonzero polynomials over a field), we are going to show how R [x] /b
looks like as an R-module:

Theorem 1.1.3. Let m € IN. Let b € R[x]| be a polynomial of degree m such
that its leading coefficient [x™] b is a unit. Then:
(a) Each element of R [x] /b can be uniquely written in the form

aox0 + ayxt + - +a,_qam-1 with ag,aqy,...,4,,-1 € R.

(b) The m vectors x0,x1,...,x"~1 form a basis of the R-module R [x] /.
Thus, this R-module R [x] /b is free of rank m = degb.
(c) Assume that m > 0. Then, the R-algebra morphlsmﬁ

R — R[x] /b,

r—r
is injective. Therefore, R can be viewed as an R-subalgebra (thus a subring)
of R [x] /b if we identify each r € R with its image 7 € R [x] /.

(d) In particular, under the assumption that m > 0, there exists a commu-
tative ring that contains R as a subring and that contains a root of b.

%Indeed, there is an easy fact (which we never stated, but which is completely straightforward
to prove after what we have seen) that any composition of two R-algebra morphisms is itself
an R-algebra morphism.

3This is the map from Proposition _ (b)
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Proof. (a) Let«w € R [x] /b. Then, « = @ for some polynomial a € R [x]|. Consider
this a. The division-with-remainder theorem for polynomials (see Lecture 12)
tells us that there is a unique pair (g, ) of polynomials in R [x] such that

a=qb+r and degr < degb.

Consider this pair (g,7). Then, in R[x| /b, we have @ = 7 (since a = qb+r
entails a — r = gb = bg € bR [x]).

We have deg r < degb = m; thus, we can write r in the form r = rox? +ryxt +
oo 4 1y_1x™ 1 for some rg, 11, ..., m—1 € R. Consider these 1,71, ..., m_1. We
have

a=a=7=rox"+rxl +---Fr,_qxm1

(since r=rox’+rxl +- -+ rm,lxm_1>

=rox0 +rxl + - 4yl

(since the scaling and the addition of the quotient algebra R [x] /b were inher-
ited from R [x]).
Thus, we have represented our « € R [x] /b in the form

aox0 +ajxt + -+ a,_qxm1 with ag,aq,...,4,—1 € R

(namely, for a; = r;). It remains to show that this representation is unique.

This can be shown by walking the above proof backwards and using the
uniqueness part of the division-with-remainder theorem. Here are the details:
Assume that

a:b0@+blﬁ+~~+bm_1xm—1 with by, bq,...,b,,—1 € R

is some representation of a in the above form. We must then show that this
representation is actually the representation that we constructed above - i.e.,
that we have b; = r; for each i € {0,1,...,m — 1}.

Indeed, define a polynomial s € R [x] by s = box? + byx! + -+ + by, 2™ L.
Then, degs < m —1 < m = degb. Also,

=0 =Dbox0 4+ bixl 4 4 by 12" 1 =bpx0 + b1xl 4+ - - 4+ byy_x" 1 =5

(since box® + bix! + -+ - + by _1x""1 = s5). In other words, a —s € bR [x]. In
other words,
a—s=bd for some d € R [x].

Consider this d. Thus, a = bd +s = db +s. Now, the pair (d,s) is a pair of
polynomials in R [x] satisfying a = db + s and degs < degb. This means that it
satisfies the exact conditions that the pair (g, ) was asked to satisfy. However,
the division-with-remainder theorem for polynomials said that the pair (g, )
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satisfying those conditions was unique. Hence, we must have (d,s) = (g,7)
(since (d, s) satisfies the same conditions as (¢,7)). Thus, d = g and s = r.
Now,

box? +byxt 4+ 4 by X" P =s=r=rpx’ +rxt + - +r,_1x" L

Comparing coefﬁcients in these polynomials, we conclude that b; = r; for each
ie{0,1,. — 1} (since (x0,x1,x2,. ) is a basis of the R-module R [x]). This
is what we needed to show. Theorern 3| (a) is thus proved.
(b) This is just Theorem [1.1.3|(a), rewrltten in terms of modules and bases.
In some more detail:

e Each element of R [x] /b can be written in the form
aox0 + agxl + -+ - +a,,_qxm1 with ag,aq,...,a,-1 € R

(according to Theorem [1.1.3[(a)). In other words, each element of R [x] /b
is an R-linear combination of x0, x1,..., x"™~1, Thus, the list (F, ., xm_1>
spans the R-module R [x] /.

e Each element of R [x] /b can be uniquely represented in the form
aoﬁ + alﬁ + o a, a1 with ag,aq,...,a,,-1 € R

(according to Theorem 3| (@)). Hence, in particular, the zero vector
0€RI[x]/b can be unlquely represented in this form. But it is clear how
to represent 0 in this form: We just write

GIOF—FOF_}_..._’_Oxm—l

Since we have just said that 0 can be uniquely represented in this form, we
thus conclude that this is the only way to represent 0 in this form. In other

words, if 0 has been represented in the form apx® 4+ ajxl + - +a, qxm-1

with ag, aq,...,a4,,-1 € R, then we musthaveay =a1 =---=4a,_1=0.In
other words, if ag,ay, ..., a1 € R satisfy apx0 + ayxl + -+ - +a, _qxm1 =
0, thenay = a7 = - - - = a,,—1 = 0. But this is saying precisely that the list

(E, Xl xm—1> is R-linearly independent.

Thus, we have shown that the list (F, ;, .. .,xmfl) is R-linearly indepen-
dent and spans R[ ] /b. In other words, this list is a basis of R [x] /b. This

proves Theorem [1.1.3| (b).
(c) We know (from Proposition [I.1.1] (b)) that the map

R — Rx] /b,
r—r
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is an R-algebra morphism. We only need to show that it is injective. It clearly
suffices to show that its kernel is {0} (because we know that an R-module
morphism is injective if and only if its kernel is {0}).

So let r be in the kernel of this morphism. We must prove that r = 0.

Since r is in the kernel of the above morphism, we have 7 = 0 in R [x] /b. In
other words, r is a multiple of b. In other words, r = bc for some polynomial ¢ €
R [x]. Consider this c. From r = bc, we obtain degr = deg (bc) = degb + degc
(by one of the propositions of Lecture 12, since the leading coefficient of b
is a unit). Thus, degb + degc = degr < 0 (since r is constant). However,
degb = m > 0 by assumption. Hence, degb > 0 > degb + degc. This entails
degc < 0. This means that c = 0, whence r = b\c/_/ =0.

Forget that we fixed r. We thus have proved that if r is in the kernel of our
morphism, then » = 0. Hence, the kernel of our morphism is {0} (since 0 is
clearly in its kernel). Thus, the morphism is injective, and Theorem (c) is
proven.

(d) Assume that m > 0. The ring R [x] /b contains a root of b (namely, ¥,
according to Proposition[I.1.1](d)), and also contains “a copy of R”, in the sense
that there is an injective ring morphism from R to R [x] /b (namely, the one we
constructed in Theorem [1.1.3](c)). If we replace this copy of R by the original R
(by replacing each 7 € R [x] /b with the corresponding r € R), then we obtain
a ring that contains R as a subring but also contains a root of b. This proves
Theorem [1.1.3](d). O

Let us summarize: We have generalized the construction of C. Namely, we
have found a way to “adjoin” a root of a polynomial b € R [x] to a commuta-
tive ring R by forming the quotient ring R [x] /b. This latter ring is always a
commutative ring and an R-algebra. Moreover, if b is “nice” (that is, we have
degb > 0, and the leading coefficient of b is a unit), then this latter ring R [x] /b
will contain R as a subring (by Theorem (c)) and also will be a free R-
module of rank deg b (by Theorem (b)). If b is not as “nice”, then the ring
R [x] /b may fail to contain R as a subring (even though it still is an R-algebra),
and may be smaller than R or even trivial.

1.2. Field extensions from adjoining roots

Let F be a field. Then, any non-constant univariate polynomial b € F [x] is
“nice” in the sense of the preceding paragraph, so that F [x] /b is a commutative
ring that contains F as a subring and that contains a root of b. When will this
ring F [x] /b be a field?

We first state a simple fact about the units of F [x]:

Proposition 1.2.1. The units of the polynomial ring F [x]| are precisely the
nonzero constant polynomials.
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Proof. Any nonzero constant polynomial is a unit of F [x] (since it is a unit of
F). Conversely, any unit of F [x] must be a nonzero constant polynomia]ﬂ O

Recall (from Lecture 12) that F [x] is a Euclidean domain, hence a PID (by
Lecture 6), hence a UFD (by Lecture 7). Furthermore, an element p € F [x] is
primeﬁ if and only if it is irreducible (by one of the results in Lecture 6, since
F[x] is a PID). The notion of “irreducible” in F [x] is precisely the classical
concept of an irreducible polynomial:

Proposition 1.2.2. Let p € F[x]. Then, p is irreducible if and only if p is
non-constant and cannot be written as a product of two non-constant poly-
nomials.

Proof. The definition of “irreducible” says that p is irreducible if and only if p is
nonzero and not a unit and has the property that whenever a,b € F [x]| satisfy
ab = p, at least one of a and b must be a unit.

In view of Proposition this can be rewritten as follows: p is irreducible
if and only if p is nonzero and not a nonzero constant polynomial and has the
property that whenever a,b € F [x] satisfy ab = p, at least one of a and b must
be a nonzero constant polynomial.

We can declutter this statement (e.g., “nonzero and not a nonzero constant
polynomial” can be shortened to “non-constant”), and thus obtain the follow-
ing: p is irreducible if and only if p is non-constant and has the property that
whenever a,b € F [x] satisfy ab = p, at least one of 4 and b must be constant.
In other words, p is irreducible if and only if p is non-constant and cannot be
written as a product of two non-constant polynomials. O

Now, we can characterize when a quotient ring of the form F [x] / p is a field:

Theorem 1.2.3. Let p € F [x|. Then, the ring F [x]| /p is a field if and only if p
is irreducible.

For example, the irreducible polynomial x> + 1 over R yields the field R [x] / (x? + 1)
(which is & C), but the non-irreducible polynomial x> — 1 over R yields the
non-field R [x] / (x> —=1) 2R x R.

Theorem is analogous to the fact that Z/n is a field (for a positive
integer n) if and only if 7 is prime. Just like the latter fact, it is a particular case
of the following general property of PIDs:

4Proof. Let u be a unit of F [x]. We must show that u is a nonzero constant polynomial.

We know that u is a unit of F [x]; hence, there exists some v € F [x] satisfying uv = 1.
Consider this v. From uv = 1 # 0, we obtain u # 0, so that u is nonzero. Hence, deg (1v) =
degu + degv (by a proposition from Lecture 12, since F is an integral domain). Moreover,
from uv = 1, we obtain deg (uv) = deg1 = 0, so that 0 = deg (uv) = degu +degv > degu,

=
which entails that u is constant. Thus, u is a nonzero constant polynomial, qed.
5See Lecture 6 for the definitions of prime and irreducible elements of an integral domain.
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Theorem 1.2.4. Let R be a PID. Let p € R. Then, the ring R/p is a field if
and only if p is irreducible.

Proof. =>: LTTR.

<: Assume that p is irreducible. We must show that R/p is a field.

First of all, p is not a unit (since p is irreducible), so that 1 is not a multiple
of p. Hence, 1 # 0 in R/p. In other words, the ring R/p is not trivial. This ring
is furthermore commutative (since R is commutative).

Now, let « € R/p be a nonzero. We shall prove that « is a unit.

Write « as a for some a € R. Then, 72 = a # 0 in R/p (since « is nonzero), so
that p 1 a.

Now, recall that R is a PID, so that any ideal of R is principal. In particular,
this entails that the ideal aR + pR is principal. In other words, there exists some
g € R such that aR + pR = gR. Consider this g. According to Lecture 6, we can
conclude from aR + pR = gR that g is a gcd of a and p. Thus, g |aand g | p.

However, p is irreducible; hence, every divisor of p is either a unit or asso-
ciate to p (indeed, this is easily seen to be a consequence of the definition of
”irreducible’ﬁ). Thus, g is either a unit or associate to p (since g | p). However,
g cannot be associate to p (because if ¢ was associate to p, then we would have
p | g | a, which would contradict p 1 a). Hence, ¢ must be a unit. So it has an
inverse ¢~ 1.

But g = ¢-1 € ¢gR = aR + pR. In other words, there exist two elements u,v
R such that ¢ = au 4 pv. Consider these u,v. Then, § = au + pv = ua + pv, so
that

g=ua+pv=rua (since pv € pR)

But this equality shows that ¢~ lu is an inverse of 7 in the ring R/ p (because we

know that R/p is commutative, so that we don’t need to check 7 - g_lu =1as
well). Thus, 7 is a unit. In other words, « is a unit (since & = 7).

Forget that we fixed a. We thus have shown that any nonzero « € R/p is
a unit. In other words, R/p is a field (since R/p is a nontrivial commutative
ring). O

As a consequence of Theorem we can now “adjoin” a root of an irre-
ducible polynomial to a field without destroying its field-ness: Namely, if we
have a field F and some irreducible polynomial b € F [x], then the quotient ring
F[x] /b will be a field that contains F as a subring and that contains a root of

®Indeed: If d is a divisor of p, then there exists an e € R such that p = de. Consider this e.
From p = de, we conclude that d or e is a unit (since p is irreducible). In the first case, d is a
unit; in the second case, d is associate to p.
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b. This generalizes Cardano’s definition of C, but can also be applied to adjoin
roots to fields other than IR.

Example 1.2.5. The polynomial x?> + 1 € (Z/3) [x] is irreducible. (Indeed,
Z./3 being a finite field, we could verify this by going through all nonconstant
polynomials of degree < 2 and checking that none of them divides x? + 1.)

Thus, Theorem yields that (Z/3) [x] / (x> + 1) is a field. This field is
a free Z /3-module of rank 2 (by Theorem (b)), and thus is isomorphic
to (Z/3)* = (Z/3) x (Z/3) as a Z/3-module (but not as a ring, of course).
Hence, the size of this field is ‘(2/3)2‘ = |Z/3*=32=9.

Thus, we have found a finite field of size 9. We have obtained it from Z /3
in the same way as C was obtained from R: by adjoining a square root of
-1.

Incidentally, this field can also be constructed as Z [i] /3.

2. Finite fields

2.1. Basics

Example may make you wonder: what finite fields can we find? We know
that for each prime p, the quotient ring Z/p is a field of size p; thus, we know
a finite field of any prime size. Now we have found a finite field of size 9, too.
What other finite fields exist?

Let’s first grab the low-hanging fruit:

Proposition 2.1.1. Let p be a prime number. Then:

(a) There exists an irreducible polynomial b € (Z/p) [x] of degree 2 over
Z/p.

(b) There exists a finite field of size p?.

Proof. We write F for Z/p. Thus, F is a field and satisfies |F| = |Z/p| = p.

(a) If p = 2, then we can take b = X2+ x+1;itis easy to check that this b is
irreducible.

Thus, WLOG assume that p # 2. Hence, p > 2. Thus, 1 # —1in Z/p. In
other words, 1 # —1 in F (since Z/p = F). The map

F — F,
a— a?

is not injective (since 7= T but1 # —1), and thus cannot be surjective
(by the pigeonhole principle). Thus, there exists some u € F that is not in the
image of this map. In other words, there exists some u € F that is not a square.
Consider such a u. Then, the polynomial x> — u has no roots in F.
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Now it is not hard to prove that the polynomial x? — u is irreducibleﬂ This
proves Proposition (a) (since x2 — u € (Z/p) [x] is an irreducible polyno-
mial of degree 2).

(b) Proposition (a) yields that there exists an irreducible polynomial
b € F|[x] of degree 2 over F (since Z/p = F). Consider this b. Theorem
(applied to b instead of p) then yields that the ring F[x] /b is a field.
Moreover, F [x] /b is a free F-module of rank 2 (by Theorem [1.1.3 (b)), and thus

is isomorphic to F2 as a F-module, and therefore has size |F?| = |F |2 = p? (since
|F| = p). Hence, F [x] /b is a finite field of size p®. This proves Proposition [2.1.1]
(b). O

By more complicated but somewhat similar argument we can also see that
there exists a finite field of size p® for any prime p. This suggests generalizing to
p™; but this is much harder. Indeed, a nonconstant polynomial over F of degree
< 3 will always be irreducible if it has no roots in F (check this!); however, for
polynomials of degree > 4, this is no longer the case (fun exercise: prove that
the polynomial x* + 4 € Q[x] is not irreducible, despite of course not having
any roots over Q). Thus, our trick for finding irreducible polynomials will no
longer work for degrees > 3. We can still find a field of size p* by applying our
trick twice (first get a finite field of size p?, then proceed to find an irreducible

7 Proof. Assume that we have written x2 — u as a product of two non-constant polynomials
p 8 polyn

f,g € F[x]. We shall derive a contradiction.

Indeed, we have assumed that x> — u = fg; hence, deg (x> — u) = deg(fg) = degf +
deg g (since F is an integral domain). Thus, deg f + deg g = deg (x2 —u) = 2. Since deg f
and degg are positive integers (because f and g are non-constant), this entails that deg f
and deg ¢ must equal 1 (since the only pair of positive integers that add up to 2 is (1,1)).
Thus, in particular, deg f = 1. Hence, f = ax + b for some a,b € F with a # 0. Consider
these a,b. From f = ax + b, we obtain f {ab] =a- 717 -+ b = 0. Thus, the polynomial f

has a root in F (namely, 717). Hence, the polynomial x> — u has a root in F as well (indeed,

f| fg§ = x*> — u, so that every root of f is also a root of x? — u). This contradicts the fact that

the polynomial x?> — u has no roots in F.

Thus, we have found a contradiction stemming from our assumption that x> — u is a
product fg of two non-constant polynomials f,¢ € F [x]. Hence, x> — u cannot be written
as such a product. In other words, x2 — y is irreducible (since x2 — u is a non-constant
polynomial). Qed.

8Not too similar! It is not true that the map

F — F,

ar—a

is always non-surjective when F = Z/p for p > 3. Instead, you have to argue the existence
of an irreducible polynomial b € (Z/p) [x] of degree 3 over Z/p by a counting argument:
Show that the total number of monic degree-3 polynomials in (Z/p) [x] is p3, whereas the
total number of monic degree-3 polynomials in (Z/p) [x] that can be written as a product of
a degree-1 and a degree-2 polynomial is smaller than p?; thus, at least one monic degree-3
polynomial cannot be written as such a product.
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polynomial of degree 2 over that field), and by induction we can find fields of
sizes p®, p'®, p*2,.... But we don’t get a field of size p° this way.
So do such fields exist?

2.2. The characteristic of a field

Leaving prime powers aside for a moment, what about fields of size 6 ? It
turns out that such fields don’t exist, for a fairly simple reason. Fields have an
important invariant, the so-called characteristic:

Definition 2.2.1. Let F be a field. The characteristic of F is an integer called
char F, which is defined as follows:

o If there exists a positive integer n such that n-1r = 0, then char F is
defined to be the smallest such .

e If such an n does not exist, then char F is defined to be 0.

Roughly speaking, char F is “how often you have to add 1r to itself to obtain
0” (with the caveat that we define it to be 0 if you never obtain 0 by adding 1r
to itself). Here are some examples:

* We have charQ = 0, since there exists no positive integer n such that
n-1g = 0. For the same reason, char R = 0 and charC = 0.

e For any prime p, we have char (Z/p) = p. Indeed, p-1z/, = p-1 =

1 =7 =01in Z/p, but every positive integer n < p satisfies n - 1 /p =

1=n-1=n#0inZ/p.

e For our fields F of size p? or p3, we also have char F = p, since they
contain Z/p as subrings.
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