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Math 533 Winter 2021, Lecture 12: Polynomial
rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Monoid algebra and polynomials ([DF, Chapter
9]) (cont’d)

1.1. Univariate polynomials (cont’d)

1.1.1. Degrees and coefficients (cont’d)

Reminder: R denotes a fixed commutative ring.1

Let me recall that the zero polynomial 0 = 0x0 + 0x1 + 0x2 + · · · has degree
−∞ by definition. This −∞ is not a number, but we agree that −∞ is smaller
than any integer and does not change if you add an integer to it (i.e., we have
(−∞) + m = −∞ for any m ∈ Z).

Remark 1.1.1. Let n ∈ N. Then,

{ f ∈ R [x] | deg f ≤ n}

=
{

f ∈ R [x] | f = a0x0 + a1x1 + · · ·+ anxn for some a0, a1, . . . , an ∈ R
}

= span
(

x0, x1, . . . , xn
)

.

This is clearly an R-submodule of R [x].

Corollary 1.1.2. Let p, q ∈ R [x]. Then,

deg (p + q) ≤ max {deg p, deg q} and (1)
deg (p − q) ≤ max {deg p, deg q} (2)

Proof. Let n = max {deg p, deg q}. Let N denote the subset { f ∈ R [x] | deg f ≤ n}
of R [x]. Then, we know from Remark 1.1.1 that N is an R-submodule of R [x].
Moreover, the definition of n shows that deg p ≤ n, so that p ∈ N. Similarly,

1By the way, it absolutely is possible to define polynomials over a noncommutative ring, if
you are sufficiently careful. (In particular, this includes polynomials over matrix rings; these
are rather useful in linear algebra. The indeterminates in such polynomials commute with
all elements of R.) We have defined the notion of an R-algebra only for commutative rings
R, but there are ways to adapt it to the general setup; alternatively, it is possible to redo the
construction of the polynomial ring by hand without using R-algebras. See [ChaLoi21, §1.3]
for the latter approach.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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q ∈ N. Hence, p + q ∈ N (since N is an R-submodule of R [x]); in other words,
deg (p + q) ≤ n. In other words, deg (p + q) ≤ max {deg p, deg q} (since n =
max {deg p, deg q}). Similarly, we can find deg (p − q) ≤ max {deg p, deg q}.
This proves Corollary 1.1.2.

Remark 1.1.3. The polynomials of degree ≤ 0 are precisely the constant poly-
nomials – i.e., the elements of R (embedded into R [x] as explained in Lecture
11).

The following proposition collects some properties of products of univariate
polynomials:

Proposition 1.1.4. Let p, q ∈ R [x].
(a) We have deg (pq) ≤ deg p + deg q.
(b) We have deg (pq) = deg p + deg q if p ̸= 0 and the leading coefficient

of p is a unit.
(c) We have deg (pq) = deg p + deg q if R is an integral domain.
(d) If n, m ∈ N satisfy n ≥ deg p and m ≥ deg q, then[

xn+m] (pq) = [xn] (p) · [xm] (q) .

(e) If pq = 0 and p ̸= 0 and if the leading coefficient of p is a unit, then
q = 0.

Corollary 1.1.5. If R is an integral domain, then the polynomial ring R [x] is
an integral domain.

Proof of Proposition 1.1.4. We will give an informal “proof by example”. Rigor-
ous arguments can be found in various places2.

Let p and q be two polynomials of degrees deg p = 2 and deg q = 3. Write p
and q as p = ax2 + bx + c and q = dx3 + ex2 + f x + g (with a, b, c, . . . , g ∈ R).
Then,

pq =
(

ax2 + bx + c
) (

dx3 + ex2 + f x + g
)

= adx5 + (lower powers of x) . (3)

Thus, deg (pq) ≤ 5 = 2 + 3 = deg p + deg q. This proves Proposition 1.1.4 (a).
Moreover, a ̸= 0 (since deg p = 2) and d ̸= 0 (since deg q = 3). If R is an

integral domain, then this entails ad ̸= 0 and therefore deg (pq) = 5 (by (3)).

2Can they? I’m not so sure any more; apparently everyone just handwaves them away or
leaves them to the reader (e.g., Bourbaki writes about part (a) that “the proof is immediate”).
A while ago I have written up proofs for parts (a) and (d) in [Grinbe19] (where they appear
as parts (a) and (b) of Lemma 3.12), albeit only in the particular case when p is monic (but
the proofs can easily be generalized). A generalization of parts (b) and (c) also appears in
[ChaLoi21, Proposition (1.3.12)].
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This proves Proposition 1.1.4 (c). On the other hand, if a is a unit, then we also
have ad ̸= 0 (because otherwise, we would have ad = 0 and thus a−1 ad︸︷︷︸

=0

= 0,

which would contradict a−1ad = d ̸= 0) and therefore deg (pq) = 5 (by (3)).
This proves Proposition 1.1.4 (b) (since a is the leading coefficient of p).

The equality (3) shows that the coefficient of x5 in pq is ad, and no higher
powers of x than x5 appear in pq. That is, we have

[
x5] (pq) = a︸︷︷︸

=[x2](p)

d︸︷︷︸
=[x3](q)

=

[
x2] (p) ·

[
x3] (q), and we have

[
xi] (pq) = 0 for all i > 5. This quickly yields

Proposition 1.1.4 (d).
To prove Proposition 1.1.4 (e), we assume the contrary. Thus, pq = 0 and

p ̸= 0 and the leading coefficient of p is a unit, but q ̸= 0. Then, Proposition
1.1.4 (b) yields deg (pq) = deg p︸ ︷︷ ︸

≥0

+deg q︸ ︷︷ ︸
≥0

≥ 0. However, pq = 0, so deg (pq) =

deg 0 = −∞ < 0. These two inequalities clearly contradict each other, and our
proof of Proposition 1.1.4 (e) is complete.

Proof of Corollary 1.1.5. Assume that R is an integral domain. Let p, q ∈ R [x] be
nonzero. Then, Proposition 1.1.4 (c) yields deg (pq) = deg p︸ ︷︷ ︸

≥0

+deg q︸ ︷︷ ︸
≥0

≥ 0, and

thus pq ̸= 0 (since pq = 0 would yield deg (pq) = deg 0 = −∞ < 0). Thus, we
have shown that pq ̸= 0 for any nonzero p, q ∈ R [x]. In other words, R [x] is an
integral domain.

If R is not an integral domain, then polynomials over R can behave rather
strangely. For example, over Z/4, we have(

1 + 2x
)2

= 1 + 4x + 4x2 = 1
(
since 4 = 0

)
.

So the degree of a polynomial can decrease when it is squared!

1.1.2. Division with remainder

The most important feature of univariate polynomials is division with remain-
der:

Theorem 1.1.6 (Division-with-remainder theorem for polynomials). Let b ∈
R [x] be a nonzero polynomial whose leading coefficient is a unit. Let a ∈
R [x] be any polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.
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The polynomials q and r in Theorem 1.1.6 are called the quotient and the
remainder obtained when dividing a by b. Note that if deg a < deg b, then the
quotient q is 0 whereas the remainder r is a. The quotient and the remainder
become interesting when deg a ≥ deg b.

Example 1.1.7. Let us first give a non-example: Let R = Z and b = 2 (a
constant polynomial) and a = x. The leading coefficient of b is not a unit
(since 2 is not a unit in Z), so we don’t expect the theorem to hold. And
indeed: we cannot write a = qb + r with deg r < deg b. Indeed, this would
mean x = q · 2 + r with deg r < 0 (since the constant polynomial 2 has
degree deg 2 = 0); but this is impossible, since this would entail x = q · 2,
which would contradict the fact that x is not divisible by 2.

Proof of Theorem 1.1.6. (a) Again, we shall give a proof by example. (For a rigor-
ous proof, see [Grinbe19, Theorem 3.16 and Lemma 3.19] or [Ford21, Theorem
3.6.4] or [ChaLoi21, Theorem (1.3.15)] or [Knapp16, Proposition 1.12] or [DF,
§9.2, Thm 3]. Note that some of these sources assume that b is monic, and
others assume that R is a field; however, the proofs easily adapt to our general
case.)

Let u be the leading coefficient of b. Then, u is a unit (by assumption), so
it has an inverse u−1. Scaling the polynomial b by u−1 results in a monic
polynomial u−1b (since its leading coefficient u gets multiplied by u−1). Thus,
we can replace b by the monic polynomial u−1b without changing much (the
degree of b remains the same, and the required equality a = qb + r becomes
a = qu ·

(
u−1b

)
+ r, so that we have to multiply the q in the desired pair (q, r)

by u). Hence, we WLOG assume that b is monic.
We are doing a proof by example, so let us assume that deg a = 3 and deg b =

2. Thus, we can write a and b as a = cx3 + dx2 + ex + f and b = x2 + gx + h for
some c, d, e, f , g, h ∈ R (since b is monic).

We now repeatedly subtract appropriate multiples of b from a in order to
decrease its degree:

a = cx3 + dx2 + ex + f

=⇒ a − (cx) b = (d − cg) x2 + (e − ch) x + f(
here, we have subtracted (cx) b to kill off the cx3 term

)
=⇒ a − (cx) b − (d − cg) b = (e − ch − (d − cg) g) x + ( f − (d − cg) h)(

here, we have subtracted (d − cg) b to kill off the (d − cg) x2 term
)

.

Thus,

a = (cx) b + (d − cg) b + (e − ch − (d − cg) g) x + ( f − (d − cg) h)
= (cx + (d − cg)) b + (e − ch − (d − cg) g) x + ( f − (d − cg) h) .
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Setting q := cx + (d − cg) and r := (e − ch − (d − cg) g) x + ( f − (d − cg) h), we
can rewrite this as

a = qb + r.

Note that deg r < deg b (since any polynomial of degree ≥ deg b could still be
reduced further by subtracting a multiple of b from it).

Thus we have found a pair (q, r) of polynomials satisfying

a = qb + r and deg r < deg b.

It remains to prove its uniqueness. In other words, we have to prove that if
(q1, r1) and (q2, r2) are two pairs of polynomials satisfying

a = q1b + r1 and deg r1 < deg b and
a = q2b + r2 and deg r2 < deg b,

then (q1, r1) = (q2, r2). To prove this, we fix two such pairs (q1, r1) and (q2, r2).
Then, we have

q1b + r1 = a = q2b + r2,

so that q1b − q2b = r2 − r1. In other words, (q1 − q2) b = r2 − r1. Hence,

deg ((q1 − q2) b) = deg (r2 − r1) ≤ max {deg r2, deg r1} (by (2))
< deg b (since deg r2 < deg b and deg r1 < deg b) .

However, recall that the leading coefficient of b is a unit. Hence, if the polyno-
mial q1 − q2 was nonzero, then Proposition 1.1.4 (b) would entail

deg ((q1 − q2) b) = deg (q1 − q2)︸ ︷︷ ︸
≥0

+deg b ≥ deg b,

which would contradict deg ((q1 − q2) b) < deg b. So q1 − q2 must be zero; i.e.,
we have q1 = q2. Using (q1 − q2) b = r2 − r1, we furthermore obtain r2 − r1 =
(q1 − q2)︸ ︷︷ ︸

=0

b = 0, so that r1 = r2. Hence, (q1, r1) = (q2, r2). This completes the

proof of the uniqueness of (q, r). Thus, Theorem 1.1.6 (a) is proved.
(b) You can obtain Theorem 1.1.6 (b) by a careful analysis of the construction

of the pair (q, r) in our proof of part (a). Indeed, each of the terms of q was
originally a factor that we multiplied to b in order to reduce a; however, the
highest power of x in a was xdeg a, so the factors we used did not contain any
powers of x higher than xdeg a−deg b.

Alternatively, you can prove Theorem 1.1.6 (b) independently of part (a): Let
(q, r) be a pair of polynomials in R [x] such that

a = qb + r and deg r < deg b.

We must prove that deg q ≤ deg a − deg b. Assume the contrary. Thus, deg q >
deg a − deg b. Therefore, in particular, q ̸= 0 (since q = 0 would entail deg q =
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deg 0 = −∞ ≤ deg a − deg b), so that deg q ≥ 0. However, the leading coeffi-
cient of b is a unit; thus, Proposition 1.1.4 (b) yields that

deg (bq) = deg b + deg q > deg a (since deg q > deg a − deg b) .

Also,

deg (bq) = deg b + deg q︸ ︷︷ ︸
≥0

≥ deg b > deg r (since deg r < deg b) .

Combining these two inequalities, we obtain

deg (bq) > max {deg a, deg r} .

But from a = qb + r, we obtain a − r = qb = bq, so that bq = a − r. Hence,

deg (bq) = deg (a − r) ≤ max {deg a, deg r} (by (2)) ,

which contradicts deg (bq) > max {deg a, deg r}. This contradiction shows that
our assumption was wrong; thus, Theorem 1.1.6 (b) is proven.

We record two automatic corollaries of Theorem 1.1.6:

Corollary 1.1.8. Let b ∈ R [x] be a monic polynomial. Let a ∈ R [x] be any
polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. The polynomial b is monic; thus, its leading coefficient is a unit (since 1
is a unit). Hence, Theorem 1.1.6 applies.

Corollary 1.1.9. Let F be a field. Let b ∈ F [x] be any nonzero polynomial.
Let a ∈ F [x] be any polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in F [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. The polynomial b is nonzero; thus, its leading coefficient is a unit (since
any nonzero element of the field F is a unit). Hence, Theorem 1.1.6 applies.

The following simple proposition is the polynomial analogue of the classical
fact that a positive integer b divides an integer a if and only if the remainder a
leaves when divided by b is 0:
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Proposition 1.1.10. Let b ∈ R [x] be a nonzero polynomial whose leading
coefficient is a unit. Let a ∈ R [x] be any polynomial. Let q and r be the
quotient and the remainder obtained when dividing a by b. Then, we have
the logical equivalence (r = 0) ⇐⇒ (b | a in R [x]).

Proof. The definition of quotient and remainder yields a = qb + r. Hence, if
r = 0, then a = qb + r︸︷︷︸

=0

= qb and thus b | a in R [x]. This proves the

“=⇒” direction of the required equivalence. It thus remains to prove the “⇐=”
direction.

So we assume that b | a in R [x]. We need to show that r = 0.
We have assumed b | a in R [x]. In other words, there exists a c ∈ R [x] such

that a = cb. Consider this c. We have a = cb = bc = bc + 0 and deg 0 = −∞ <
deg b. Thus, (c, 0) is a pair (q̃, r̃) of polynomials in F [x] such that a = q̃b+ r̃ and
deg r̃ < deg b. But (q, r) is also such a pair (by the definition of quotient and
remainder). However, Corollary 1.1.8 shows that there is a unique such pair.
In particular, any two such pairs must be identical. Thus, the two pairs (q, r)
and (c, 0) must be identical. That is, we have q = c and r = 0. In particular,
r = 0; this completes the proof of the “⇐=” direction. Proposition 1.1.10 is thus
proven.

1.1.3. Roots

Let’s now talk about roots of polynomials.

Definition 1.1.11. Let A be an R-algebra. Let p ∈ R [x]. An element a ∈ A is
said to be a root of p if p (a) = 0.

This is a rather wide notion of roots. For example, the matrix
(

0 1
0 0

)
∈

Q2×2 is a root of the polynomial x2 ∈ Q [x], since the square of this matrix is 0.

Proposition 1.1.12. Let p be a polynomial in R [x]. Let a ∈ R. Then, we have
the following logical equivalence:

(a is a root of p) ⇐⇒ (x − a | p in R [x]) .

Before we prove this proposition, let us repeat a theorem from Lecture 11
that will be used in the proof:

Theorem 1.1.13. Let A be an R-algebra. Let a ∈ A. Then, the map

R [x] → A,
p 7→ p [a]
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is an R-algebra morphism. In particular, for any two polynomials p, q ∈ R [x],
we have

(pq) [a] = p [a] · q [a] ; (4)
(p + q) [a] = p [a] + q [a] . (5)

Proof of Proposition 1.1.12. The polynomial x − a is monic. Hence, Corollary
1.1.8 (a) (applied to p and x − a instead of a and b) shows that there is a unique
pair (q, r) of polynomials in R [x] such that

p = q · (x − a) + r and deg r < deg (x − a) .

Consider this pair (q, r). From deg r < deg (x − a) = 1, we see that deg r ≤ 0,
which means that r is a constant. In other words, r ∈ R.

Now, let us substitute a for x on both sides of the equality p = q · (x − a) + r.
Thus we get

p [a] = q [a] · (a − a) + r [a] . (6)

It is worth going through this equality in some more detail. Namely, we have
p = q · (x − a) + r, so that

p [a] = (q · (x − a) + r) [a] = (q · (x − a)) [a] + r [a](
by (5), applied to R, q · (x − a) and r

instead of A, p and q

)
= q [a] · (x − a) [a]︸ ︷︷ ︸

=a−a
(by the definition
of an evaluation)

+r [a]

(
by (4), applied to R, q and x − a

instead of A, p and q

)
= q [a] · (a − a) + r [a] .

Thus, (6) has been proven in detail.
Now, (6) becomes

p [a] = q [a] · (a − a)︸ ︷︷ ︸
=0

+r [a] = r [a] = r (since r is a constant) .

Now, we have the following chain of equivalences:

(a is a root of p) ⇐⇒ (p [a] = 0) (by the definition of a root)
⇐⇒ (r = 0) (since p [a] = r)
⇐⇒ (x − a | p in R [x])

(by Proposition 1.1.10, applied to x − a and p instead of b and a). This proves
Proposition 1.1.12.
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The following theorem is often known as the easy half of the FTA (Funda-
mental Theorem of Algebra):

Theorem 1.1.14. Let R be an integral domain. Let n ∈ N. Then, any nonzero
polynomial p ∈ R [x] of degree ≤ n has at most n roots in R. (We are not
counting the roots with multiplicity here.)

Proof. We induct on n. The base case (n = 0) is obvious (indeed, a nonzero
polynomial of degree ≤ 0 must be constant, and thus cannot have any roots to
begin with).

Induction step: Let m be a positive integer. Assume (as the induction hypoth-
esis) that Theorem 1.1.14 holds for n = m − 1. We must prove that Theorem
1.1.14 holds for n = m.

So let p ∈ R [x] be a nonzero polynomial of degree ≤ m. We must prove that
p has at most m roots in R.

Indeed, assume the contrary. Thus, p has m + 1 distinct roots a1, a2, . . . , am+1
in R (and possibly more, but we will only need these m + 1).

In particular, am+1 is a root of p, so that we have x − am+1 | p in R [x] (by
Proposition 1.1.12, applied to a = am+1). That is, there exists a polynomial
q ∈ R [x] such that p = (x − am+1) · q. Consider this q. Now, it is easy to see
that a1, a2, . . . , am are roots of q (indeed, this uses the fact that a1, a2, . . . , am+1 are
distinct roots of p and that R is an integral domain3). Hence, the polynomial
q has at least m roots in R (since these m roots a1, a2, . . . , am are distinct). Also,
the polynomial q is nonzero (since otherwise, we would have q = 0 and thus
p = (x − am+1) · q︸︷︷︸

=0

= 0, contradicting the fact that p is nonzero).

However, Proposition 1.1.4 (c) (or Proposition 1.1.4 (b), if you wish) yields

deg ((x − am+1) · q) = deg (x − am+1)︸ ︷︷ ︸
=1

+deg q = 1 + deg q,

3Here is the proof in detail: Let i ∈ {1, 2, . . . , m}. We must show that ai is a root of q. Note that
i ̸= m + 1 (since i ∈ {1, 2, . . . , m}) and thus ai ̸= am+1 (since a1, a2, . . . , am+1 are distinct).
Substituting ai for x in the equality p = (x − am+1) · q, we find

p [ai] = (ai − am+1) · q [ai]

(formally speaking, this relies on a similar argument as we used to prove (6)). Hence,

(ai − am+1) · q [ai] = p [ai] = 0 (since ai is a root of p) .

Since R is an integral domain, this entails that we have ai − am+1 = 0 or q [ai] = 0. Since
ai − am+1 = 0 is impossible (because ai ̸= am+1), we thus conclude that q [ai] = 0. In other
words, ai is a root of q. Qed.
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so that

deg q = deg

(x − am+1) · q︸ ︷︷ ︸
=p

− 1 = deg p︸ ︷︷ ︸
≤m

(since p has degree ≤m)

−1 ≤ m − 1.

In other words, the polynomial q has degree ≤ m − 1. Hence, by the induction
hypothesis, we can apply Theorem 1.1.14 to q and m − 1 instead of p and n. We
thus conclude that q has at most m − 1 roots in R. This contradicts the fact that
q has at least m roots in R (which we have shown above). This contradiction
completes the induction step, and so we are done proving Theorem 1.1.14.

1.1.4. Application to Z/p

Let me show an application of this theorem to finite fields. We will need the
following fact:

Theorem 1.1.15 (Fermat’s little theorem, short FℓT). Let p be a prime number.
Let a ∈ Z. Then, ap ≡ a mod p.

Proof. If a ≡ 0 mod p, then this is clear (since we have ap ≡ 0p ≡ 0 ≡ a mod p in
this case). So let us WLOG assume that a ̸≡ 0 mod p. Hence, the residue class
a ∈ Z/p is nonzero. Therefore, a is a unit of the ring Z/p (since Z/p is a field,
so that every nonzero element of Z/p is a unit). In other words, a ∈ (Z/p)×.

However, the units of the ring Z/p are 1, 2, . . . , p − 1 (again because every
nonzero element of Z/p is a unit). Thus, in particular, there are p − 1 of them.
This shows that the group (Z/p)× has order p − 1. Hence, Lagrange’s theorem
(from group theory)4 shows that up−1 = 1 for each u ∈ (Z/p)×. Applying this
to u = a, we obtain ap−1 = 1. Hence, ap = ap = ap−1︸︷︷︸

=1

·a = a. In other words,

ap ≡ a mod p. Theorem 1.1.15 is thus proven.

Now, let us reword this theorem in the language of polynomials. First, we
consider the polynomial

xp − x ∈ (Z/p) [x] .

Theorem 1.1.15 yields that all evaluations of this polynomial at elements of Z/p
are 0 (in fact, for each a ∈ Z, we have (xp − x) [a] = ap − a = ap − a = 0, since
Theorem 1.1.15 yields ap ≡ a mod p). The polynomial itself is not zero, and
this is no surprise: It is a degree-p polynomial, so it can afford to have p roots
in Z/p without being forced by Theorem 1.1.14 to be the zero polynomial.
However, it is “dangerously close”; if its degree was even a little bit smaller

4Recall that this theorem says the following: If G is a finite group of order m (for some m ∈ N),
then um = 1 for each u ∈ G (where we are writing G multiplicatively, so that 1 denotes the
neutral element of G).
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than p, then we would obtain a contradiction. We can exploit this to extract a
nice corollary. To this end, we define the more sophisticated polynomial

f := (xp − x)− ∏
u∈Z/p

(x − u)︸ ︷︷ ︸
=(x−0)(x−1)···(x−(p−1))

∈ (Z/p) [x] .

This polynomial f has degree ≤ p − 1 (check this!5). But it still has (at least)
p roots in Z/p; indeed, the p elements 0, 1, . . . , p − 1 are roots of f , since each
a ∈ {0, 1, . . . , p − 1} satisfies

f [a] = (ap − a)︸ ︷︷ ︸
=0

(by Theorem 1.1.15)

− ∏
u∈Z/p

(a − u)︸ ︷︷ ︸
=0

(since one of the factors
in this product is a−a=0)

= 0 − 0 = 0.

If the polynomial f was nonzero, then this would contradict Theorem 1.1.14
(since Z/p is a field and thus an integral domain). Hence, f must be zero. Since
we defined f to be the difference xp − x − ∏

u∈Z/p
(x − u), we thus conclude that

xp − x = ∏
u∈Z/p

(x − u). Let us state this as a proposition:

Proposition 1.1.16. Let p be a prime number. Then,

xp − x = ∏
u∈Z/p

(x − u) in the polynomial ring (Z/p) [x] .

Now, let us milk this for consequences. We have

∏
u∈Z/p

(x − u) =
(
x − 0

) (
x − 1

)
· · ·

(
x − (p − 1)

)
= x

(
x − 1

) (
x − 2

)
· · ·

(
x − (p − 1)

)
︸ ︷︷ ︸

=(−1)(−2)···(−(p−1))·x0+(higher powers of x)
(here, “higher powers of x” means “any powers of x higher than x0”)

= x
((

−1
) (

−2
)
· · ·

(
−(p − 1)

)
· x0 + (higher powers of x)

)
=

(
−1

) (
−2

)
· · ·

(
−(p − 1)

)
· x1 + (higher powers of x) .

5Proof. Both polynomials xp − x and ∏
u∈Z/p

(x − u) have degree p and leading coefficient 1.

Thus, when you subtract the polynomial ∏
u∈Z/p

(x − u) from xp − x, the xp terms of both

polynomials cancel, and what remains is a linear combination of x0, x1, . . . , xp−1 – that is, a
polynomial of degree ≤ p − 1.
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Thus, the coefficient of x1 in the polynomial ∏
u∈Z/p

(x − u) is

(
−1

) (
−2

)
· · ·

(
−(p − 1)

)
= (−1)p−1 · (1 · 2 · · · · · (p − 1))

= (−1)p−1 · (p − 1)!.

On the other hand, the coefficient of x1 in the polynomial xp − x is −1 (since p >
1). But these two coefficients must be equal (since Proposition 1.1.16 says that

the polynomials ∏
u∈Z/p

(x − u) and xp − x are equal). Hence, (−1)p−1 · (p − 1)! =

−1. In other words,

(−1)p−1 · (p − 1)! ≡ −1 mod p.

If we multiply this congruence by (−1)p−1, then the left hand side becomes
(p − 1)! (since (−1)p−1 · (−1)p−1 = 1), and thus we get

(p − 1)! ≡ (−1)p−1 · (−1) = (−1)p ≡ −1 mod p

(by Theorem 1.1.15, applied to a = −1). Thus, we have proved Wilson’s theo-
rem (from Lecture 7) again!

1.1.5. F [x] is a Euclidean domain

Let us go back to the case of polynomials over a general field. I next record an
abstract consequence of Corollary 1.1.9 (a):

Theorem 1.1.17. Let F be a field. Then, the polynomial ring F [x] is a Eu-
clidean domain (with the Euclidean norm N : F [x] → N being “almost” the
degree function, in the sense that N (p) = max {deg p, 0} for any p ∈ F [x]),
thus a PID, thus a UFD.

Proof. Define a map N : F [x] → N by

N (p) = max {deg p, 0} for any p ∈ F [x] .

Then, Corollary 1.1.9 (a) shows that N is a Euclidean norm on the ring F [x].
Hence, F [x] is a Euclidean domain (since Corollary 1.1.5 shows that F [x] is an
integral domain). Thus, F [x] is a PID (since we know from Lecture 6 that every
Euclidean domain is a PID) and a UFD (since we know from Lecture 7 that
every PID is a UFD).

Note that the “UFD” part of Theorem 1.1.17 is not a very constructive re-
sult; there is no general algorithm for actually finding a prime factorization
of a polynomial (i.e., for factoring a polynomial into irreducible polynomials)
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that works over any field. There are reasonably good algorithms for prime
factorization in Q [x], however.

Theorem 1.1.17 entails, in particular, that univariate polynomials over a field
have gcds and lcms. Moreover, the analogue of Bezout’s theorem holds:

Theorem 1.1.18 (Bezout’s theorem for polynomials). Let F be a field. Let
a, b ∈ F [x] be two polynomials. Then, for any choice of gcd (a, b), there exist
two polynomials u, v ∈ F [x] such that ua + vb = gcd (a, b).

Proof. This is a general fact that holds in every PID (but not in every UFD). To
wit, let us set R = F [x], and recall that R is a PID (by Theorem 1.1.17). Recall
how we proved the existence of a gcd (in Lecture 6): Namely, we argued that
there exists a c ∈ R satisfying aR + bR = cR (since R is a PID, so that the ideal
aR + bR of R must be principal), and then we proved that this c is a gcd of a
and b. Now, assume that we have chosen some gcd of a and b, and denoted
it by gcd (a, b). This gcd (a, b) is not necessarily identical to c, but it is clearly
associate to c, since we have shown (in Lecture 6) that any two gcds of a and b
are associate. Thus, gcd (a, b) = cu for some unit u of R. Consider this u. Now,

gcd (a, b) = c u︸︷︷︸
∈R

∈ cR = aR + bR.

In other words, there exist some u, v ∈ R such that gcd (a, b) = au + bv. In
other words, there exist some u, v ∈ R such that gcd (a, b) = ua + vb. This
proves Theorem 1.1.18.

Warning: Multivariate polynomial rings (like Q [x, y]) are not PIDs (and thus
not Euclidean domains either). For example, the ideal xQ [x, y] + yQ [x, y] is
not principal. (Check this! This ideal is easily seen to consist of all polynomials
whose constant term (= coefficient of x0y0) is 0, but these polynomials are not
the multiples of a single polynomial.) However, multivariate polynomial rings
over fields (and, more generally, over UFDs) are still UFDs. This is a deeper
result than the ones we have proved above (see, e.g., [DF, §9.3, Corollary 8] or
[Ford21, Theorem 3.7.4] or [ChaLoi21, Corollary (2.6.7)] or [Knapp16, Corollary
8.21 and Remark after it] for proofs). As a consequence, polynomials over
a field (or a UFD) have gcds; however, they don’t generally satisfy Bezout’s
theorem unless the polynomials are univariate polynomials over a field.

Univariate polynomial rings over non-fields (like Z [x]) behave similarly:
They are not PIDs, but they are UFDs when the base ring is a UFD. (That
is, if R is a UFD, then so is R [x].)

1.2. Intermezzo: quotients of R-algebras

In preparation for the next section, let me quickly introduce quotients of R-
algebras. I have previously defined quotients of rings modulo ideals, and quo-
tients of R-modules modulo submodules. These two concepts can be combined
to obtain quotients of R-algebras modulo ideals:
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Theorem 1.2.1. Let A be an R-algebra. Let I be an ideal of A. Then:
(a) The ideal I is also an R-submodule of A.
(b) The quotient ring A/I and the quotient R-module A/I fit together to

form an R-algebra.
(c) The canonical projection A → A/I (which sends each a ∈ A to its

residue class a = a + I) is an R-algebra morphism (from the original R-
algebra A to the R-algebra A/I that we just constructed in part (b)).

Proof. (a) We already know that I is closed under addition and contains zero
(since I is an ideal). So we must only show that I is closed under scaling. In
other words, we must show that ri ∈ I for each r ∈ R and i ∈ I. But this is
easy: If r ∈ R and i ∈ I, then

r i︸︷︷︸
=1A·i

= r · 1A · i = (r · 1A)︸ ︷︷ ︸
∈A

· i︸︷︷︸
∈I

∈ I

(since I is an ideal of A).
(b) LTTR. (You just need to verify the “scale-invariance of multiplication”

axiom, but this is straightforward.)
(c) We already know that this canonical projection is a ring morphism and an

R-module morphism; thus, it is an R-algebra morphism.

Let us next recall the universal property of quotient rings (Lecture 3), which
is the tool of choice from constructing ring morphisms out of a quotient ring:

Theorem 1.2.2 (Universal property of quotient rings). Let R be a ring. Let I
be an ideal of R.

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(this is shorthand for saying that f (a) = 0 for all a ∈ I). Consider the
canonical projection π : R → R/I. Then, there is a unique ring morphism
f ′ : R/I → S satisfying f = f ′ ◦ π.

We can adapt this theorem to R-algebras with just trivial modifications (alas,
we have to rename R and S as A and B, since R already means something
different):

Theorem 1.2.3 (Universal property of quotient algebras). Let A be an R-
algebra. Let I be an ideal of A.

Let B be an R-algebra. Let f : A → B be an R-algebra morphism. Assume
that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all a ∈ I).
Consider the canonical projection π : A → A/I. Then, there is a unique
R-algebra morphism f ′ : A/I → B satisfying f = f ′ ◦ π.

Proof. Adapt the argument that we used to prove Theorem 1.2.2. The only
new thing we need to check is that the map f ′ constructed in the proof is R-
linear; but this is just as straightforward as showing that this map is a ring
morphism.
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1.3. Adjoining roots

1.3.1. Examples

Remember how the complex numbers were first introduced by Cardano (back
in the 16th century). Nowadays we define them as pairs of real numbers; this is
a straightforward process (first you define addition and multiplication and zero
and unity; then you show that the ring axioms hold). But this is the modern
definition; the original vision was different: Cardano essentially proposed to
imagine that there is a new number called i that satisfies i2 = −1 but other-
wise behaves like the numbers we know. So you’re allowed to form arbitrary
polynomials in i, but you have to equate i2 to −1, so you never end up get-
ting anything more complicated than numbers of the form a + bi with a, b ∈ R

(since any higher power of i can be reduced to ±1 or ±i using the i2 = −1 rule).
Thus, it makes sense to encode complex numbers as pairs, but this is merely
one way of encoding them.

Of course, Cardano’s original vision is not a rigorous definition; just as easily
you could introduce a number j satisfying 0j = 1, and thus collapse the entire
number system (since this new number would let you argue that 1 = 0j =
(0 + 0) j = 0j + 0j = 1 + 1 = 2). So, if we want to make Cardano’s definition
rigorous, we have to rewrite it algebraically. One way to do this is to define C

as the quotient ring
R [x] /

(
x2 + 1

)
R [x] .

In fact, we start with R [x] because our complex numbers should be polyno-
mials in a single symbol i (which will be represented by the indeterminate x
in R [x]); but then we quotient out the ideal

(
x2 + 1

)
R [x] since we want i2 + 1

(and thus also each multiple of i2 + 1) to be 0 in our complex numbers.
To be on the safe side, let us show that this quotient ring R [x] /

(
x2 + 1

)
R [x]

is isomorphic to the complex numbers C as we know them (i.e., defined in the
modern way, as pairs of real numbers).

First of all, we introduce a shorthand:

Convention 1.3.1. If R is a commutative ring, and if a ∈ R, then the quotient
ring R/aR will be abbreviated as R/a. We are already using a particular case
of this notation, as we are writing Z/n for Z/nZ when n is an integer.

So we want to prove that R [x] /
(
x2 + 1

) ∼= C as rings – and even better, as
R-algebras. Let’s be a little bit more precise:

Proposition 1.3.2. We have R [x] /
(
x2 + 1

) ∼= C as R-algebras. More con-
cretely: There is an R-algebra isomorphism

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .
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Proof. We already know that C is an R-algebra. Thus, Theorem 1.1.13 (applied
to R = R and A = C and a = i) yields that the map

f : R [x] → C,
p 7→ p [i]

is an R-algebra morphism. This map f sends the principal ideal
(
x2 + 1

)
R [x]

to 0, because for each q ∈ R [x], we have

f
((

x2 + 1
)
· q
)
=

((
x2 + 1

)
· q
)
[i] =

(
i2 + 1

)
︸ ︷︷ ︸

=0

·q [i] = 0.

Hence, Theorem 1.2.3 (applied to R = R, A = R [x], I =
(
x2 + 1

)
R [x] and

B = C) shows there is a unique R-algebra morphism

f ′ : R [x] /
(

x2 + 1
)
→ C

satisfying f = f ′ ◦ π, where π : R [x] → R [x] /
(
x2 + 1

)
is the canonical pro-

jection. Consider this f ′. The equality f = f ′ ◦ π means that each p ∈ R [x]
satisfies

f (p) =
(

f ′ ◦ π
)
(p) = f ′

π (p)︸ ︷︷ ︸
=p

 = f ′ (p) ,

so that
f ′ (p) = f (p) = p [i] (by the definition of f ) . (7)

Now, why is f ′ an isomorphism?
It’s not hard to see that f ′ is surjective: Indeed, any z ∈ C can be written as

z = a + bi for some a, b ∈ R, and then we have z = a + bi = f ′
(

a + bx
)

(since

(7) yields f ′
(

a + bx
)
= (a + bx) [i] = a + bi).

Now, how can we prove that f ′ is injective? Since f ′ is R-linear, it suffices to
show that Ker ( f ′) = {0} (by a lemma in Lecture 9).

Let u ∈ Ker ( f ′). Thus, u ∈ R [x] /
(
x2 + 1

)
, so that u = p for some p ∈ R [x].

Consider this p.
However, Theorem 1.1.6 (a) (applied to R = R, b = x2 + 1 and a = p) yields

that there is a unique pair (q, r) of polynomials in R [x] such that

p = q ·
(

x2 + 1
)
+ r and deg r < deg

(
x2 + 1

)
.

Consider this pair (q, r). From deg r < deg
(
x2 + 1

)
= 2, we see that the poly-

nomial r can be written as a + bx for some a, b ∈ R. Consider these a, b. From
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p = q ·
(
x2 + 1

)
+ r, we obtain p − r = q ·

(
x2 + 1

)
∈

(
x2 + 1

)
R [x]; thus, p = r

in the quotient ring R [x] /
(
x2 + 1

)
. Now,

u = p = r = a + bx (since r = a + bx) , so that

f ′ (u) = f ′
(

a + bx
)
= (a + bx) [i] (by (7))

= a + bi.

Hence, a + bi = f ′ (u) = 0 (since u ∈ Ker ( f ′)). Since a, b ∈ R, this entails
a = b = 0 (since the complex numbers 1 and i are R-linearly independent).
Thus, u = a + bx rewrites as u = 0 + 0x = 0 ∈ {0}.

Forget that we fixed u. We thus have shown that u ∈ {0} for each u ∈
Ker ( f ′). In other words, Ker ( f ′) ⊆ {0}. Since the reverse inclusion {0} ⊆
Ker ( f ′) is obvious, we thus conclude that Ker ( f ′) = {0}. As we have said, this
entails that f ′ is injective.

Now we know that the map f ′ is injective and surjective. Hence, f ′ is bijec-
tive, i.e., invertible. Since every invertible R-algebra morphism is an R-algebra
isomorphism6, we thus conclude that f ′ is an R-algebra isomorphism. This
proves Proposition 1.3.2.

Note the use of polynomial division (with remainder) in our above proof of
Proposition 1.3.2. It has a natural usefulness in the study of quotient rings of
R [x], just as integer division (with remainder) is crucial to the study of quotient
rings of Z.

Similarly to Proposition 1.3.2, we can reveal further quotient rings of polyno-
mial rings as certain rings we know:

Proposition 1.3.3. (a) Recall the ring Z [i] of Gaussian integers. We have
Z [x] /

(
x2 + 1

) ∼= Z [i] as Z-algebras. More concretely: There is a Z-algebra
isomorphism

Z [x] /
(

x2 + 1
)
→ Z [i] ,

p 7→ p [i] .

(b) Recall the ring S = Q
[√

5
]
=

{
a + b

√
5 | a, b ∈ Q

}
(a subring of R).

We have Q [x] /
(
x2 − 5

) ∼= S as Q-algebras. More concretely: There is a
Q-algebra isomorphism

Q [x] /
(

x2 − 5
)
→ S,

p 7→ p
[√

5
]

.

6This is proved in the same way as we showed that every invertible ring morphism is a ring
isomorphism.
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Proof. (a) Analogous to the proof of Proposition 1.3.2.
(b) Analogous to the proof of Proposition 1.3.2.

Proposition 1.3.2 and Proposition 1.3.3 suggest that when we start with a ring
R and a polynomial b ∈ R [x], then the quotient ring R [x] /b is (in some way)
an “extension” of R by a root of b, in the sense that it contains R as a subring
(at least up to isomorphism) but also contains a root of b (namely, x). Thus, we
can hope that by taking the quotient ring R [x] /b, we can “adjoin” a root of b
to the ring R even if b has no root over R (just as Cardano defined the complex
numbers by “adjoining” a root of x2 + 1 to R).

The following example (in which we take a quotient of Z [x] by a constant
polynomial) dashes some cold water on this hope, at least in its general form:

Proposition 1.3.4. (a) We have (Z [x]) /m ∼= (Z/m) [x] as Z-algebras (i.e., as
rings) for any integer m.

(b) The ring (Z [x]) /1 is trivial.

Proof sketch. (a) Let m be an integer. Then, the principal ideal mZ [x] of Z [x]
consists of all polynomials whose all coefficients are multiples of m. Thus, it is
easy to see that the map

f : (Z [x]) /m → (Z/m) [x] ,

a0x0 + a1x1 + a2x2 + · · · 7→ a0x0 + a1x1 + a2x2 + · · ·

is well-defined and is a Z-algebra isomorphism. This proves Proposition 1.3.4
(a).

(b) More generally: If R is any ring, then the ring R/1 is trivial. This is
because the principal ideal 1R of R is the whole ring R, so there is only one
coset modulo this ideal.

Proposition 1.3.4 (a) (applied to m = 2) shows that if we take the quotient
ring of Z [x] modulo (the principal ideal generated by) the constant polynomial
2, then we don’t get an “extension” of Z; what we instead get is the polynomial
ring (Z/2) [x], in which (unlike in Z) we have 1 + 1 = 0 (so it certainly cannot
contain a copy of Z as a subring). But if you think about this carefully, you will
realize that this perfectly agrees with the idea of “adjoining a root”. Indeed,
to “adjoin” a root of the constant polynomial 2 to Z means to introduce a
new “number” x satisfying 2 = 0. The equation 2 = 0 tells us nothing about
the number x (so it remains completely unconstrained), but collapses all even
integers to 0, thus leaving us with the ring (Z/2) [x]. This is precisely what
Proposition 1.3.4 (a) told us. Likewise, “adjoining” a root of 1 to Z causes
1 = 0, which renders the ring trivial (since any element of a ring is a multiple
of 1); this agrees with Proposition 1.3.4 (b).

The examples so far have taught us that – yes – we can “adjoin” a root of a
polynomial to a commutative ring R, but we don’t always get an extension of
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R (although we do always get an R-algebra). In the next lecture we will see a
(sufficient) criterion for when we do.

Here is another natural question: What happens if we “adjoin” a root of
a polynomial b that already has a root in R ? For example, let us take the
polynomial x2 − 1 over Q (which has 1 and −1 as roots). It turns out that the
resulting quotient ring Q [x] /

(
x2 − 1

)
is a good friend of ours by now:

Proposition 1.3.5. Recall the group algebra Q [C2] of the cyclic group C2 from
Lecture 11. Then,

Q [x] /
(

x2 − 1
)
∼= Q [C2] ∼= Q × Q as Q-algebras.

Proof. In Lecture 11, we have seen that the group algebra Q [C2] has a basis
(e1, eu) (as a Q-module). By one of our conventions, we can write 1 and u for e1
and eu, so that this basis becomes (1, u). We also know (from Lecture 11) that
Q [C2] ∼= Q × Q as Q-algebras. It thus remains to prove that Q [x] /

(
x2 − 1

) ∼=
Q [C2].

Note the similarity between Q [C2] and C:

• The Q-module Q [C2] has basis (1, u), with u2 = 1.

• The R-module C has basis (1, i), with i2 = −1.

This suggests that we just copypaste our above proof of Proposition 1.3.2,
replacing R, C and i by Q, Q [C2] and u and occasionally flipping signs. This is
precisely what we are now going to do (but in a smaller font, to avoid wasting
paper).

Theorem 1.1.13 (applied to R = Q and A = Q [C2] and a = u) yields that the map

f : Q [x] → Q [C2] ,
p 7→ p [u]

is a Q-algebra morphism. This map f sends the principal ideal
(
x2 − 1

)
Q [x] to 0,

because for each q ∈ Q [x], we have

f
((

x2 − 1
)
· q
)
=

((
x2 − 1

)
· q
)
[u] =

(
u2 − 1

)︸ ︷︷ ︸
=0

(since u2=1)

·q [u] = 0.

Hence, Theorem 1.2.3 (applied to R = Q, A = Q [x], I =
(
x2 − 1

)
Q [x] and B = Q [C2])

shows there is a unique Q-algebra morphism

f ′ : Q [x] /
(
x2 − 1

)
→ Q [C2]

satisfying f = f ′ ◦ π, where π : Q [x] → Q [x] /
(
x2 − 1

)
is the canonical projection.

Consider this f ′. The equality f = f ′ ◦ π means that each p ∈ Q [x] satisfies

f (p) =
(

f ′ ◦ π
)
(p) = f ′

π (p)︸ ︷︷ ︸
=p

 = f ′ (p) ,
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so that
f ′ (p) = f (p) = p [u] (by the definition of f ) . (8)

Now, why is f ′ an isomorphism?
It’s not hard to see that f ′ is surjective: Indeed, any z ∈ Q [C2] can be written as

z = a + bu for some a, b ∈ Q, and then we have z = a + bu = f ′
(

a + bx
)

(since (8)

yields f ′
(

a + bx
)
= (a + bx) [u] = a + bu).

Now, how can we prove that f ′ is injective? Since f ′ is Q-linear, it suffices to show
that Ker ( f ′) = {0} (by a lemma in Lecture 9).

Let u ∈ Ker ( f ′). Thus, u ∈ Q [x] /
(
x2 − 1

)
, so that u = p for some p ∈ Q [x].

Consider this p.
However, Theorem 1.1.6 (a) (applied to R = Q, b = x2 − 1 and a = p) yields that

there is a unique pair (q, r) of polynomials in Q [x] such that

p = q ·
(

x2 − 1
)
+ r and deg r < deg

(
x2 − 1

)
.

Consider this pair (q, r). From deg r < deg
(
x2 − 1

)
= 2, we see that the polynomial r

can be written as a + bx for some a, b ∈ Q. Consider these a, b. From p = q ·
(
x2 − 1

)
+

r, we obtain p − r = q ·
(
x2 − 1

)
∈

(
x2 − 1

)
Q [x]; thus, p = r in the quotient ring

Q [x] /
(
x2 − 1

)
. Now,

u = p = r = a + bx (since r = a + bx) , so that

f ′ (u) = f ′
(

a + bx
)
= (a + bx) [u] (by (8))

= a + bu.

Hence, a + bu = f ′ (u) = 0 (since u ∈ Ker ( f ′)). Since a, b ∈ Q, this entails a = b = 0
(since the vectors 1 and u in Q [C2] are Q-linearly independent). Thus, u = a + bx
rewrites as u = 0 + 0x = 0 ∈ {0}.

Forget that we fixed u. We thus have shown that u ∈ {0} for each u ∈ Ker ( f ′). In
other words, Ker ( f ′) ⊆ {0}. Since the reverse inclusion {0} ⊆ Ker ( f ′) is obvious, we
thus conclude that Ker ( f ′) = {0}. As we have said, this entails that f ′ is injective.

Now we know that the map f ′ is injective and surjective. Hence, f ′ is bijective, i.e.,
invertible. Since every invertible Q-algebra morphism is a Q-algebra isomorphism7, we
thus conclude that f ′ is an Q-algebra isomorphism. Hence, Q [x] /

(
x2 − 1

) ∼= Q [C2].
As we said, this proves Proposition 1.3.5.

In our proofs of Proposition 1.3.2, 1.3.5 and 1.3.3 (even though I left the latter
to the reader), we used that the leading coefficients of the polynomials we were
quotienting out were units. Indeed, this is what allowed us to apply Theorem
1.1.6 (a), which was a crucial step in proving that f ′ is injective. Describing
quotient rings becomes much more complicated when the leading coefficient
of the polynomial is not a unit. Sometimes it is nevertheless possible. Here is a
particularly well-behaved example:

7This is proved in the same way as we showed that every invertible ring morphism is a ring
isomorphism.
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Proposition 1.3.6. Fix a nonzero integer m. Define the ring Rm as in exercise
1 on homework set #1; that is, Rm is the subring{

r ∈ Z | there exists an m ∈ N satisfying mkr ∈ Z
}

of Q. Then,

Z [x] / (mx − 1) ∼= Rm as Z-algebras (i.e., as rings).

More concretely: There is a Z-algebra isomorphism

Z [x] / (mx − 1) → Rm,

p 7→ p
[

1
m

]
.

Proof sketch. Intuitively, this should be exactly what you expect: According to
our “adjoining roots” philosophy, the ring Z [x] / (mx − 1) is what you get if
you “adjoin” a root of the polynomial mx − 1 to Z. But such a root would

behave like the rational number
1
m

; so it is no surprise that the resulting ring
would be isomorphic to Rm (since Rm is really just “the numbers you can get if

you start with the integers and also allow multiplying by
1
m

”). This, of course,
is not a proof.

An actual proof can be done along the following lines:

1. Show that a Z-algebra morphism

α : Z [x] / (mx − 1) → Rm,

p 7→ p
[

1
m

]
exists. This is similar to the corresponding part of the proof of Proposition
1.3.2 (where we called the corresponding morphism f ′ rather than α); the
main roles are played by Theorem 1.1.13 and Theorem 1.2.3.

2. (Optional:) Show that this morphism α is surjective. (In fact, each element
of Rm has the form

a
mk for some a ∈ Z and some k ∈ N, and thus equals

α
(

axk
)

.)

3. Don’t waste your time trying to show that α is injective; there is no quick
way to prove this directly.
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4. Show that there is a map

β : Rm → Z [x] / (mx − 1) ,
a

mk 7→ axk (where a ∈ Z and k ∈ N) .

(You need to show that this is well-defined – i.e., that if an element of Rm

has been written in the form
a

mk in two different ways, then the resulting

residue classes axk will be equal.)

5. Show that β is a Z-algebra morphism. (This is an exercise in bringing
fractions to a common denominator.)

6. Show that β ◦ α = id. (Indeed, β ◦ α is a Z-algebra morphism, since β and
α are Z-algebra morphisms. Moreover, it is easy to show that (β ◦ α) (x) =

x. Hence, (β ◦ α)

(
n
∑

i=0
cixi

)
=

n
∑

i=0
cixi for each n ∈ N and any coefficients

c0, c1, . . . , cn ∈ Z (since β ◦ α is a Z-algebra morphism). But this is saying
that β ◦ α = id, since every element of Z [x] / (mx − 1) can be written as

n
∑

i=0
cixi for some n ∈ N and some coefficients c0, c1, . . . , cn ∈ Z.)

7. Show that α ◦ β = id. (Indeed, if you have done Step 2, then this follows
from β ◦ α = id. Otherwise, show it directly.)

8. Conclude from Steps 6 and 7 that the maps α and β are mutually inverse,
and thus α is invertible. Since α is a Z-algebra morphism, this entails that
α is a Z-algebra isomorphism, and you are done.
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