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Math 533 Winter 2021, Lecture 11: Polynomial
rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Monoid algebra and polynomials ([DF, Chapter
9])

Let R be a commutative ring. (This will be a standing assumption throughout
this chapter.)

In Lecture 10, we have learned how to define an R-algebra the “slick” way:
Define an R-module first, and then define an R-bilinear map on it, which will
serve as the multiplication of the algebra. Then show that the multiplication
is associative (this is best done “by linearity”, i.e., using the last lemma from
Lecture 10) and has a unity (this can again be simplified using linearity).

I illustrated this method on the example of the ring of quaternions (an R-
algebra).

Now let me apply it to define a more important class of algebras: the monoid
algebras, and, as a particular case, the polynomial rings.

1.1. Monoid algebras

Recall the notion of a monoid: in a nutshell, it is a “group without inverses”.
That is, a monoid is a triple (M, ·, 1), where M is a set, · is an associative binary
operation on M, and 1 is an element of M that is neutral for ·. We will write mn
for m · n whenever m, n ∈ M. We will write M for the monoid (M, ·, 1) if · and
1 are clear from the context. The monoid M is said to be abelian if mn = nm
for all m, n ∈ M. (This generalizes the notion of an abelian group.)

Here is the idea behind the notion of a monoid algebra: The monoid algebra
R [M] is the R-algebra obtained by “adjoining” the monoid M to the ring R,
which means “inserting” the elements of M “into” R. That is, the algebra R [M]
consists of “formal products” rm with r ∈ R and m ∈ M, as well as their formal
sums. These products are multiplied using the multiplications of R and M:

(r1m1) · (r2m2) = (r1r2) · (m1m2) .

Let us formalize this:1

Definition 1.1.1. Let M be a monoid, written multiplicatively (so that · de-
notes its operation, and 1 denotes its neutral element). The monoid al-
gebra of M over R (also known as the monoid ring of M over R) is

1We recall that R is a commutative ring.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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the R-algebra R [M] defined as follows: As an R-module, it is the free R-
module R(M). Its multiplication is defined to be the unique R-bilinear map
µ : R(M) × R(M) → R(M) that satisfies

µ (em, en) = emn for all m, n ∈ M. (1)

Here, (em)m∈M is the standard basis of R(M) (that is, em ∈ R(M) is the family
whose m-th entry is 1 and whose all other entries are 0). The unity of this
R-algebra R [M] is e1.

Theorem 1.1.2. This is indeed a well-defined R-algebra.

Proof. All we need to show is that µ is associative, and that e1 is a unity. I will
only show the first statement, and leave the second to you.

We need to show that µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ R [M].
According to the last lemma from Lecture 10, it suffices to prove that

µ
(
µ (em, en) , ep

)
= µ

(
em, µ

(
en, ep

))
for all m, n, p ∈ M.

Let us do this: If m, n, p ∈ M, then

µ

µ (em, en)︸ ︷︷ ︸
=emn

, ep

 = µ
(
emn, ep

)
= e(mn)p = emnp

and similarly µ
(
em, µ

(
en, ep

))
= emnp, so we indeed have µ

(
µ (em, en) , ep

)
=

µ
(
em, µ

(
en, ep

))
as desired. This completes the proof that µ is associative. Thus,

Theorem 1.1.2 is proven.

Since the bilinear map µ in Definition 1.1.1 is used as the multiplication of
R [M], we can rewrite the equality (1) as follows:

em · en = emn for all m, n ∈ M. (2)

When a monoid M is a group, its monoid algebra R [M] is called a group
algebra (or group ring).

Let me show a few examples.

Example 1.1.3. Consider the order-2 cyclic group C2 = {1, u} with u2 = 1.
This group is better known as Z/2, and its operation is commonly written as
addition, not as multiplication; but we want to write it multiplicatively here,
in order to match the way M is written in Definition 1.1.1.

How does the group algebra Q [C2] look like? As a Q-module (i.e., Q-
vector space), it has a basis (em)m∈C2

= (e1, eu). Thus, any element of Q [C2]
can be written as a e1︸︷︷︸

=1

+beu = a + beu for some unique a, b ∈ Q.
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The multiplication on Q [C2] is Q-bilinear and given on the basis by

e1e1 = e1·1 = e1, e1eu = e1·u = eu,
eue1 = eu·1 = eu, eueu = eu·u = eu2 = e1.

Let us use this to compute some products in Q [C2]:

(3 + 2eu) (1 + 2eu) = 3 · 1 + 3 · 2eu + 2eu · 1 + 2eu · 2eu

= 3 + 6eu + 2eu + 4 eueu︸︷︷︸
=e1=1

= 3 + 6eu + 2eu + 4 = 7 + 8eu;

(1 + eu)
2 = 1 + 2eu + e2

u︸︷︷︸
=eueu=e1=1

= 1 + 2eu + 1 = 2 + 2eu;

(1 − eu) (1 + eu) = 1 − e2
u︸︷︷︸

=eueu=e1=1(
since (1 − x) (1 + x) = 1 − x2 for any x in any ring

)
= 1 − 1 = 0.

The last of these computations shows that Q [C2] is not an integral domain.
In general, for any a, b, c, d ∈ Q, we have

(a + beu) (c + deu) = ac + adeu + b euc︸︷︷︸
=ceu

(since the
multiplication of Q[C2]

is Q-bilinear)

+b eud︸︷︷︸
=deu

(since the
multiplication of Q[C2]

is Q-bilinear)

eu

(3)

= ac + adeu + bceu + bd eueu︸︷︷︸
=e1=1

= ac + adeu + bceu + bd

= (ac + bd) + (ad + bc) eu.

How does Q [C2] “look like”? Meaning, what known Q-algebras is Q [C2]
isomorphic to (if any)?

I claim that

Q [C2] ∼= Q2 = Q × Q (as Q-algebras) . (4)

[Proof of (4): First, we observe that Q [C2] is commutative (this is easy to

check), and that the element z :=
1 + eu

2
of Q [C2] is idempotent (since an

easy computation shows z2 = z). Hence, homework set #1 exercise 3 (d)
shows that the map

f : (zQ [C2])× ((1 − z)Q [C2]) → Q [C2] ,
(a, b) 7→ a + b
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is a ring isomorphism; thus, this map f is invertible. This map f is further-
more Q-linear and thus is a Q-algebra morphism. Hence, f is a Q-algebra
isomorphism (since it is invertible). Now, what are zQ [C2] and (1 − z)Q [C2]
? A general element of Q [C2] has the form a + beu for some a, b ∈ Q. Thus, a
general element of zQ [C2] has the form z (a + beu) for some a, b ∈ Q. Since

z (a + beu) =
1 + eu

2
(a + beu) =

1
2
(1 + eu) (a + beu)︸ ︷︷ ︸
=a+eua+beu+eubeu
=a+aeu+beu+beueu

=
1
2

a + aeu + beu + b eueu︸︷︷︸
=e1=1

 =
1
2
((a + b) + (a + b) eu)

= (a + b)︸ ︷︷ ︸
∈Q

z,

we see that any such element is a scalar multiple of z (that is, an element
of the form λz for some λ ∈ Q, not just a multiple of z in the ring Q [C2]).
In other words, any such element belongs to the Q-submodule (= Q-vector
subspace)

Qz := {λz | λ ∈ Q} of Q [C2] .

Thus, zQ [C2] ⊆ Qz. Since we also have Qz ⊆ zQ [C2] (since Q ⊆ Q [C2]), this
entails zQ [C2] = Qz. Hence, in particular, Qz is a Q-algebra with unity z.
However, the map

Q → Qz, λ 7→ λz

is a Q-algebra morphism (indeed, it is clearly Q-linear; it respects multiplica-
tion since (λz) (µz) = λµ z2︸︷︷︸

=z

= λµz for any λ, µ ∈ Q; its respects the unity

since 1z = z is the unity of Qz), and thus is a Q-algebra isomorphism (since
it is easily seen to be bijective). Thus, Qz ∼= Q as Q-algebras. Combining this
with zQ [C2] = Qz, we obtain zQ [C2] = Qz ∼= Q as Q-algebras. Similarly,
we can prove that (1 − z)Q [C2] ∼= Q (indeed, a simple computation shows

that 1 − z =
1 − eu

2
, and thus we can mostly repeat our above argument

with 1 − z instead of z, with the main difference being that some plus signs
become minus signs).

So the isomorphism f results in

Q [C2] ∼= (zQ [C2])︸ ︷︷ ︸
∼=Q

× ((1 − z)Q [C2])︸ ︷︷ ︸
∼=Q

∼= Q × Q = Q2.

This proves (4).]
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Retracing our proof of (4), we actually get an explicit Q-algebra isomor-
phism

Q2 → Q [C2] ,

(λ, µ) 7→ f (λz, µ (1 − z)) = λz + µ (1 − z) = λ · 1 + eu

2
+ µ · 1 − eu

2

=
λ + µ

2
+

λ − µ

2
eu.

Example 1.1.4. (a) We can easily repeat Example 1.1.3 using the field R (or
C) instead of Q. Everything works just as it did for Q. For example, we get
an R-algebra isomorphism R2 → R [C2].

(b) Now, let us try to repeat Example 1.1.3 using the ring Z instead of Q.
The multiplication rule (3) still holds (but now for a, b, c, d ∈ Z). What about
the isomorphism (4) ? The idempotent z no longer exists (since we had to
divide by 2 to construct it, but we cannot divide by 2 in Z), so our proof of
(4) does not work. And indeed, (4) does not hold for Z. The Z-algebra

Z [C2] = {a + beu | a, b ∈ Z}

is not isomorphic to any direct product of nontrivial Z-algebras. This can
be proved by showing that Z [C2] has no idempotents other than 0 and 1.
(In fact, if a + beu ∈ Z [C2] is an idempotent, then (a + beu)

2 = a + beu.
But (3) yields (a + beu)

2 =
(
a2 + b2)+ 2abeu, so this idempotency results in(

a2 + b2)+ 2abeu = a + beu, and thus a2 + b2 = a and 2ab = b (since e1 = 1
and eu are Z-linearly independent). But the only integer solutions (a, b) of
this system of two equations are (0, 0) and (1, 0) (check this!); thus, the only
idempotents of Z [C2] are 0 + 0eu = 0 and 1 + 0eu = 1.)

Example 1.1.5. Now, let us take the order-3 cyclic group C3 = {1, u, v} with
u3 = 1 and v = u2. (Again, this group is better known as Z/3, but we write

it multiplicatively.) Then, Q [C3] has an idempotent z :=
1 + eu + ev

3
; this

leads to a Q-algebra isomorphism

Q [C3] ∼= Q × S,

where the Q factor is

zQ [C3] = Qz = {a + aeu + aev | a ∈ Q}
and where the S factor is

(1 − z)Q [C3] = {a + beu + cev | a + b + c = 0} .

The Q factor is 1-dimensional (as a Q-vector space), while the S factor is 2-
dimensional. Can S be decomposed further? How does S “look like”? We
will later see.
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Example 1.1.6. Here is a non-example: The ring of quaternions H is not a
monoid algebra. It is pretty close, in that it has a basis (1, i, j, k) (over R)
with the property that the product of any two basis elements is either a basis
element again (for example, ij = k) or the negative of a basis element (for
example, ji = −k). However, for it to be a monoid algebra, it would need
a basis such that the product of any two basis elements is always a basis
element (never the negative of a basis element).2 Such a basis does not exist
for H.

If we remove all the minus signs in the definition of H (that is, we replace
the multiplication rules by i2 = j2 = k2 = 1 and ij = ji = k and jk = kj = i
and ki = ik = j), then we actually do obtain a monoid algebra (namely, the
group algebra of the Klein four-group).

We can find another group algebra closely related to H. Indeed, we define
the quaternion group Q8 to be the subgroup {1, i, j, k,−1,−i,−j,−k} of the
group of units of H. Then, consider the group algebra H′ := R [Q8] of this
group Q8. This group algebra H′ is 8-dimensional as an R-vector space,
whereas H is 4-dimensional; thus, H′ is not quite H (but rather close). The
main difference between H and H′ is that the elements e1 and e−1 of H′

are two different basis elements (thus linearly independent), whereas the
elements 1 and −1 of H are negatives of each other. Even though H′ is not
commutative, we can define a principal ideal (e1 + e−1)H′ of H′ (since the
element e1 + e−1 commutes with every element of H′), and then it is not hard
to show that the quotient ring H′/ (e1 + e−1)H′ is isomorphic to H. Thus,
while H itself is not a group ring, we can obtain H from the group ring
H′ = R [Q8] by “setting e−1 equal to the negative of e1” (that is, quotienting
out the principal ideal generated by e1 + e−1).

Convention 1.1.7. Let R be a commutative ring. Let M be a monoid. The
elements em of the standard basis (em)m∈M of R [M] will often be just denoted
by m (by abuse of notation). Thus, for example, the element a + beu + cev of
Q [C3] (from Example 1.1.5) will be written as a+ bu+ cv. With this notation,
an element of R [M] is (at least notationally) really just a sum of products of
elements of R with elements of M.

Do not use this convention when it causes a danger of confusion! In partic-
ular, do not use it when some elements of M include minus (or plus) signs,
such as the elements −1,−i,−j,−k in Example 1.1.6. (Indeed, in Example
1.1.6, it is crucial that e1 and e−1 are two different basis elements of H′, not
negatives of each other. Denoting them by 1 and −1 would obscure this and
risk confusing the nonzero element e1 + e−1 for the zero sum 1 + (−1) = 0.)

The following properties of monoid algebras are easy:
2In general, you can describe a monoid algebra as an algebra that has a basis that contains the

unity (i.e., the unity of the algebra belongs to the basis) and is closed under multiplication
(i.e., the product of any two basis elements is again a basis element).

https://en.wikipedia.org/wiki/Klein_four-group


Lecture 11, version February 14, 2023 page 7

Proposition 1.1.8. Let M be an abelian monoid. Then, the monoid ring R [M]
is commutative.

Proof. We must prove that ab = ba for all a, b ∈ R [M]. This is a typical linearity
argument (just as the proof of the last lemma of Lecture 10): Since (em)m∈M is
a basis of the R-module R [M], we can write a and b as R-linear combinations
of this family (em)m∈M. That is, there exist scalars am ∈ R and bm ∈ R for all
m ∈ M such that

a = ∑
m∈M

amem and b = ∑
m∈M

bmem

(and such that am = 0 for all but finitely many m ∈ M, and likewise for the bm).
Multiplying these two equalities, we find

ab =

(
∑

m∈M
amem

)(
∑

m∈M
bmem

)
=

(
∑

m∈M
amem

)(
∑

n∈M
bnen

)
(here, we renamed m as n in the second sum)

= ∑
m∈M

∑
n∈M

ambn emen︸︷︷︸
=emn

(by (2))

(since the multiplication of the R-algebra R [M] is R-bilinear)

= ∑
m∈M

∑
n∈M

ambn emn︸︷︷︸
=enm

(since M is abelian,
so that mn=nm)

= ∑
m∈M

∑
n∈M

ambnenm

and (if we multiply them in the opposite order)

ba =

(
∑

m∈M
bmem

)(
∑

m∈M
amem

)
=

(
∑

n∈M
bnen

)(
∑

m∈M
amem

)
(here, we renamed m as n in the first sum)

= ∑
n∈M

∑
m∈M︸ ︷︷ ︸

= ∑
m∈M

∑
n∈M

bnam︸︷︷︸
=ambn

(since R is commutative)

enem︸︷︷︸
=enm

(by (2))

(since the multiplication of the R-algebra R [M] is R-bilinear)

= ∑
m∈M

∑
n∈M

ambnenm.

The right hand sides of these two equalities are equal; thus, so are the left
hand sides. In other words, ab = ba. This completes the proof of Proposition
1.1.8.
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Proposition 1.1.9. Let M be a monoid. The map

R → R [M] ,
r 7→ r · e1

is an injective R-algebra morphism.

Proof. First of all, this map is clearly injective, because the family (em)m∈M is a
basis of R [M] and thus is R-linearly independent (so r · e1 ̸= s · e1 for any two
distinct r, s ∈ R). It remains to prove that this map is an R-algebra morphism.
But this is a particular case of the following general fact: If A is an R-algebra,
then the map

R → A,
r 7→ r · 1A

is an R-algebra morphism. This fact is easy to show (for example, the map
respects multiplication, since any r, s ∈ R satisfy (r · 1A) · (s · 1A) = rs · 1A · 1A =
rs · 1A), and we can apply it to A = R [M] (recalling that 1R[M] = e1) to obtain
precisely the claim we are trying to prove.

Convention 1.1.10. If M is a monoid, then we identify each r ∈ R with r · e1 ∈
R [M]. This identification is harmless3, and turns R into an R-subalgebra of
R [M].

An element of R [M] will be called constant if it lies in this subalgebra
(i.e., if it is of the form r · e1 for some r ∈ R). Thus, we have identified each
constant element of R [M] with the corresponding element of R.

A warning might be in order: In Example 1.1.3, we have seen that Q [C2] ∼=
Q × Q as Q-algebras. Now, in Convention 1.1.10, we have identified Q with a
Q-subalgebra of Q [C2]. But this subalgebra is not one of the two Q factors in
Q [C2] ∼= Q × Q. Indeed, as a Q-subalgebra, it contains the unity of Q [C2], but
none of the two Q factors does.

Proposition 1.1.11. Let M be a monoid. The map

M → R [M] ,
m 7→ em

is a monoid morphism from M to (R [M] , ·, 1).

3Indeed, Proposition 1.1.9 shows that the map R → R [M] sending each r ∈ R to r · e1 is
an injective R-algebra morphism. Thus, this map keeps distinct elements of R distinct in
R [M] (since it is injective), and respects addition and multiplication (since it is an R-algebra
morphism).
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Proof. This map respects multiplication (because of (2)) and sends the neutral
element of M to the unity of R [M] (since e1 is the unity of R [M]). Thus, it is a
monoid morphism.

Note that if we use Convention 1.1.7, then the “m 7→ em” in Proposition 1.1.11
can be rewritten as “m 7→ m”, so the map from Proposition 1.1.11 looks like an
inclusion map. This is merely an artefact of our notation. In truth, the element
m of the monoid M is not literally the same as the corresponding basis element
em of the monoid algebra R [M]; we have just agreed to call both of them m for
brevity. But Proposition 1.1.11 shows that using the same letter for these two
elements is a mostly harmless abuse of notation. The only possible problem it
can cause is when the map in Proposition 1.1.11 fails to be injective, so we might
accidentally equate two distinct elements m, n of M whose corresponding basis
elements em and en are equal. Fortunately, this can only happen if the ring R
is trivial (indeed, for any nontrivial ring R, the basis elements em for m ∈ M
are distinct), and this is not a very interesting case. (This is also an issue that
rarely comes up in practice. The purpose of Convention 1.1.7 is to simplify
computations in R [M], not to “pull” them back into M.)

1.2. Polynomial rings

Now, we can effortlessly define polynomial rings. Recall that R is a commuta-
tive ring. Recall also that N = {0, 1, 2, . . .} (so 0 ∈ N).

Definition 1.2.1. Let C be the free monoid with a single generator x. This is
the monoid whose elements are countably many distinct symbols named

x0, x1, x2, x3, . . . ;

its monoid operation is defined by

xi · xj = xi+j for all i, j ∈ N.

We write this monoid multiplicatively, but of course it is just the well-known
monoid (N,+, 0) in new clothes (we have renamed each i ∈ N as xi; we have
renamed addition as multiplication). Its neutral element is x0. We set x = x1

(so that xi really is the i-th power of x).
The elements of C are called monomials (in the variable x). The specific

element x is called the indeterminate.
Now, the univariate polynomial ring R [x] over R is defined to be the

monoid algebra R [C]. Following Convention 1.1.7, we simply write m for em
when m ∈ C (that is, we write xi for the basis element exi); thus, R [x] is a
free R-module with basis(

x0, x1, x2, x3, . . .
)
=
(

1, x, x2, x3, . . .
)

.
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This means that any p ∈ R [x] can be written as a finite R-linear combination
of powers of x. That is:

p = a0x0 + a1x1 + a2x2 + · · ·+ anxn = a0 + a1x + a2x2 + · · ·+ anxn

for some n ∈ N and some a0, a1, . . . , an ∈ R. This representation is unique
up to trailing zeroes (meaning that we can always add 0xn+1 addends – e.g.,
rewriting 4x0 + 3x1 as 4x0 + 3x1 + 0x2 –, but other than that it is unique).

Elements of R [x] are called polynomials in x over R.

Thus, up to notation, the univariate polynomial ring R [x] is just the monoid
ring R [N] of the abelian monoid N = (N,+, 0). Hence, this ring R [x] is
commutative (by Proposition 1.1.8, since the monoid N is abelian).

Example 1.2.2. (a) Here is an example of a polynomial:

1 + 3x2 + 6x3 = 1ex0 + 3ex2 + 6ex3 ∈ R [x] .

(b) A non-example: The infinite sum 1 + x + x2 + x3 + · · · is not in R [x].
Indeed, polynomials are linear combinations of powers of x, and linear com-
binations are finite (by definition); even if you write them as infinite sums,
they are de-facto finite because all but finitely many addends are 0. Infinite
sums 1 + x + x2 + x3 + · · · are thus not polynomials; they are known as for-
mal power series. There is a way to define an R-algebra of formal power
series, too, but we won’t do so now.

So we have defined univariate polynomial rings (i.e., polynomial rings in a
single variable). Likewise, we can define multivariate polynomial rings – i.e.,
polynomial rings in several variables. For simplicity, let me restrict myself to
finitely many variables:

Definition 1.2.3. Let n ∈ N. Let C(n) be the free abelian monoid with n
generators x1, x2, . . . , xn. This is the monoid whose elements are the distinct
symbols

xa1
1 xa2

2 · · · xan
n with (a1, a2, . . . , an) ∈ Nn;

its monoid operation is defined by(
xa1

1 xa2
2 · · · xan

n
)
·
(

xb1
1 xb2

2 · · · xbn
n

)
= xa1+b1

1 xa2+b2
2 · · · xan+bn

n

for all (a1, a2, . . . , an) ∈ Nn and (b1, b2, . . . , bn) ∈ Nn.

We write it multiplicatively, but of course this is just the monoid Nn =
(Nn,+, 0) in disguise (where the addition on Nn that we are calling “+”
here is entrywise, and 0 means the n-tuple (0, 0, . . . , 0)), with each ele-
ment (a1, a2, . . . , an) renamed as xa1

1 xa2
2 · · · xan

n and with addition renamed
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as multiplication. The elements of C(n) are called monomials. For each
i ∈ {1, 2, . . . , n}, we define a monomial xi by

xi = x0
1x0

2 · · · x0
i−1x1

i x0
i+1x0

i+2 · · · x0
n.

These specific elements x1, x2, . . . , xn are called the indeterminates. It is easy
to see that any monomial xa1

1 xa2
2 · · · xan

n ∈ C(n) is indeed the product of the
powers xa1

1 , xa2
2 , . . . , xan

n , just as the notation suggests.
Now, the R-algebra R [x1, x2, . . . , xn] is defined to be the monoid alge-

bra R
[
C(n)

]
. It is commonly called the polynomial ring in n variables

x1, x2, . . . , xn over R. Following Convention 1.1.7, we simply write m for
em whenever m ∈ C(n); thus, R [x1, x2, . . . , xn] is a free R-module with basis(

xa1
1 xa2

2 · · · xan
n
)
(a1,a2,...,an)∈Nn .

This means that any p ∈ R [x1, x2, . . . , xn] can be uniquely written as an R-
linear combination

p = ∑
(a1,a2,...,an)∈Nn

pa1,a2,...,an xa1
1 xa2

2 · · · xan
n

with pa1,a2,...,an ∈ R (where all but finitely many of these coefficients pa1,a2,...,an

are 0).
Elements of R [x1, x2, . . . , xn] are called polynomials in x1, x2, . . . , xn.

Thus, up to notation, the multivariate polynomial ring R [x1, x2, . . . , xn] is just
the monoid algebra R [Nn] of the abelian monoid Nn = (Nn,+, 0).

The multivariate polynomial ring R [x1, x2, . . . , xn] is commutative (by Propo-
sition 1.1.8, since the monoid Nn is abelian).

The univariate polynomial ring R [x] can be viewed as a particular case of
the multivariate polynomial ring R [x1, x2, . . . , xn] (obtained by taking n = 1
and renaming x1 as x).

Polynomials as formal linear combinations are already useful and nice. But
they become a much stronger tool once you learn how to evaluate them, i.e.,
substitute things into them. Unlike a function, a univariate polynomial over R
does not have a fixed domain; you can substitute an element of R into it, but
also a square matrix over R or even another polynomial, and more generally,
any element of an R-algebra:

Definition 1.2.4. Let p ∈ R [x] be a univariate polynomial. Let A be any
R-algebra. Let a ∈ A.

We define the element p (a) ∈ A as follows: Write p as

p = ∑
i∈N

pixi
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with pi ∈ R (where pi = 0 for all but finitely many i ∈ N), and set

p (a) = ∑
i∈N

piai.

This element p (a) is called the evaluation of p at a; we say that it is ob-
tained by substituting a for x in p.

Sometimes I will denote it by p [a] instead of p (a) (for reasons explained
below).

Note that the pi ∈ R in Definition 1.2.4 are unique, since
(
x0, x1, x2, . . .

)
is a

basis of the R-module R [x].
As I said, A can be any R-algebra in Definition 1.2.4: for example, R itself, or

a matrix ring Rn×n, or the polynomial ring R [x]. In particular, we can substitute
x for x in p, obtaining p (x) = p.

Warning: The notation p (a) in Definition 1.2.4 has potential for confusion:
Is p (p + 1) the evaluation of p at p + 1 or the product of p with p + 1 ? This
is why I prefer the notation p [a] instead of p (a). I also recommend using ·
for products whenever such confusion could arise (thus, write p · (p + 1) if you
mean the product of p with p + 1). When reading algebra literature, be aware
that you will sometimes have to look at the context and make sanity checks.

Example 1.2.5. Let R = Z/2, and let p be the polynomial x2 + x = x ·(
x + 1

)
∈ R [x]. Let us evaluate p at elements of R:

p
(
0
)
= 02

+ 0 = 0;

p
(
1
)
= 12

+ 1 = 1 + 1 = 2 = 0.

Thus, the polynomial p gives 0 when evaluated at any element of Z/2, even
though p is not zero as a polynomial. If you want a nonzero evaluation of p,
one thing you can do is to evaluate it on a square matrix:

p

(
0 1
1 0

)
=

(
0 1
1 0

)2

+

(
0 1
1 0

)
=

(
1 1
1 1

)
̸= 02×2.

(Or you can evaluate it at x, getting p (x) = p ̸= 0.)

Theorem 1.2.6. Let A be an R-algebra. Let a ∈ A. Then, the map

R [x] → A,
p 7→ p [a]

is an R-algebra morphism. In particular, for any two polynomials p, q ∈ R [x],
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we have

(pq) [a] = p [a] · q [a] ;
(p + q) [a] = p [a] + q [a] .

The proof of this theorem will be easiest to do after showing the following
simple lemma (compare with the last lemma of Lecture 10):

Lemma 1.2.7. Let R be a commutative ring. Let A and B be two R-algebras.
Let f : A → B be an R-linear map. Let (mi)i∈I be a family of vectors in A
that spans A. If we have

f
(
mimj

)
= f (mi) f

(
mj
)

for all i, j ∈ I, (5)

then we have
f (ab) = f (a) f (b) for all a, b ∈ A. (6)

Proof of Lemma 1.2.7. Let a, b ∈ A. Since the family (mi)i∈I spans A, we can
write the two vectors a and b as

a = ∑
i∈I

aimi and b = ∑
j∈I

bjmj (7)

for some coefficients ai and bj in R. Consider these coefficients. Hence,

ab =

(
∑
i∈I

aimi

)(
∑
j∈I

bjmj

)
= ∑

i∈I
∑
j∈I

aibjmimj

(since the multiplication of A is R-bilinear) and thus

f (ab) = f

(
∑
i∈I

∑
j∈I

aibjmimj

)
= ∑

i∈I
∑
j∈I

aibj f
(
mimj

)︸ ︷︷ ︸
= f (mi) f (mj)

(by (5))

(since f is R-linear)

= ∑
i∈I

∑
j∈I

aibj f (mi) f
(
mj
)
=

(
∑
i∈I

ai f (mi)

)(
∑
j∈I

bj f
(
mj
))

.

Comparing this with

f (a) f (b) = f

(
∑
i∈I

aimi

)
f

(
∑
j∈I

bjmj

)
(by (7))

=

(
∑
i∈I

ai f (mi)

)(
∑
j∈I

bj f
(
mj
))

(since f is R-linear) ,

we obtain f (ab) = f (a) f (b). But this is precisely what we wanted to prove.
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Proof of Theorem 1.2.6. Let f be the map

R [x] → A,
p 7→ p [a] .

We must show that f is an R-algebra morphism. It is easy to see that f is
R-linear. (For example, in order to show that it respects addition, you need
to check that (p + q) [a] = p [a] + q [a] for any p, q ∈ R [x]. But this is done
exactly as you would think: Write p and q as p = ∑

i∈N

pixi and q = ∑
i∈N

qixi, and

conclude that

p + q = ∑
i∈N

pixi + ∑
i∈N

qixi = ∑
i∈N

(
pixi + qixi

)
= ∑

i∈N

(pi + qi) xi,

so that

(p + q) [a] = ∑
i∈N

(pi + qi) ai (by the definition of (p + q) [a])

= ∑
i∈N

piai + ∑
i∈N

qiai;

but it is just as easy to see that p [a] + q [a] gives the same result.)
It is furthermore clear that the map f respects the unity; indeed, f (1) =

1 [a] = 1 (since substituting a for x in the polynomial 1 = 1x0 + 0x1 + 0x2 + · · ·
results in 1a0 + 0a1 + 0a2 + · · · = 1). All that now remains is to show that
f respects multiplication. In other words, it remains to show that f (pq) =
f (p) f (q) for all p, q ∈ R [x]. Lemma 1.2.7 gives us a shortcut to proving this:
Since the family

(
xi)

i∈N
is a basis of the R-module R [x] (and thus spans this

R-module), and since we already know that f is R-linear, it suffices to show
that

f
(

xixj
)
= f

(
xi
)

f
(

xj
)

for all i, j ∈ N (8)

(because if we can show this, then Lemma 1.2.7 will yield that f (pq) = f (p) f (q)
for all p, q ∈ R [x]).

So let us prove (8). Fix i, j ∈ N. Then, xi [a] = ai (because substituting a
for x in the polynomial xi = 0x0 + 0x1 + · · ·+ 0xi−1 + 1xi + 0xi+1 + 0xi+2 + · · ·
results in 0a0 + 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + 0ai+2 + · · · = ai) and similarly
xj [a] = aj and xi+j [a] = ai+j. But xixj = xi+j, so that

f
(

xixj
)
= f

(
xi+j

)
= xi+j [a] (by the definition of f )

= ai+j = ai︸︷︷︸
=xi[a]
= f (xi)

(by the definition of f )

aj︸︷︷︸
=xj[a]
= f (xj)

(by the definition of f )

= f
(

xi
)

f
(

xj
)

.

This proves (8), and thus concludes the proof of Theorem 1.2.6.
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Likewise, we can substitute multiple elements into a multivariate polynomial,
as long as these elements commute:

Definition 1.2.8. Let n ∈ N. Let p ∈ R [x1, x2, . . . , xn] be a multivariate poly-
nomial. Let A be any R-algebra. Let a1, a2, . . . , an ∈ A be n elements of A that
mutually commute (i.e., that satisfy aiaj = ajai for each i, j ∈ {1, 2, . . . , n}).

We define the element p (a1, a2, . . . , an) ∈ A as follows: Write the polyno-
mial p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

with pi1,i2,...,in ∈ R (where pi1,i2,...,in = 0 for all but finitely many
(i1, i2, . . . , in) ∈ Nn), and set

p (a1, a2, . . . , an) = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in ai1
1 ai2

2 · · · ain
n .

This element p (a1, a2, . . . , an) is called the evaluation of p at a1, a2, . . . , an;
we say that it is obtained by substituting a1, a2, . . . , an for x1, x2, . . . , xn in p.

The analogue to Theorem 1.2.6 now is the following:

Theorem 1.2.9. Let n ∈ N. Let A be an R-algebra. Let a1, a2, . . . , an ∈ A be n
elements of A that mutually commute. Then, the map

R [x1, x2, . . . , xn] → A,
p 7→ p (a1, a2, . . . , an)

is an R-algebra morphism.

Proof. Similar to the proof of Theorem 1.2.6, but a bit more notationally sophis-
ticated due to the presence of multiple variables.

Finally, a few more pieces of notation. We recall the notion of a constant
element of a monoid ring (Convention 1.1.10). Since a polynomial ring is a
monoid ring, we can apply it to polynomial rings, and obtain the following:

Convention 1.2.10. Let n ∈ N. Then, we identify each r ∈ R with r · 1 ∈
R [x1, x2, . . . , xn] (where 1 means the monomial x0

1x0
2 · · · x0

n, which is the unity
of R [x1, x2, . . . , xn]). This identification is harmless, and turns R into an R-
subalgebra of R [x1, x2, . . . , xn].

A polynomial p ∈ R [x1, x2, . . . , xn] is said to be constant if it lies in this
subalgebra (i.e., if it satisfies p = r · 1 for some r ∈ R).
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Example 1.2.11. The polynomial 3 = 3x0 ∈ R [x] is constant, but the polyno-
mial 3x = 3x1 is not.

Definition 1.2.12. Let p ∈ R [x1, x2, . . . , xn] be a polynomial. Let m =
xa1

1 xa2
2 · · · xan

n be a monomial. Then, the coefficient of m in p is the element
[m] p of R defined as follows: If we write p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

with pi1,i2,...,in ∈ R, then
[m] p = pa1,a2,...,an .

Example 1.2.13. (a) For univariate polynomials, we have[
x3
] (

(1 + x)5
)
= 10 and

[
x7
] (

(1 + x)5
)
= 0

(since (1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5).
(b) For multivariate polynomials, we have[

x2
1x3

2

] (
(x1 + x2)

5
)
= 10 and [x1]

(
(x1 + x2)

5
)
= 0

(since (x1 + x2)
5 = x5

1 + 5x4
1x2 + 10x3

1x2
2 + 10x2

1x3
2 + 5x1x4

2 + x5
2).

Often we will want to use symbols other than x1, x2, . . . , xn for indetermi-
nates. For example, we can rename the indeterminates x1 and x2 of the poly-
nomial ring R [x1, x2] as x and y, so that the equations in Example 1.2.13 (b)
become [

x2y3
] (

(x + y)5
)
= 10 and [x]

(
(x + y)5

)
= 0.

When we do this, of course, we need to also rename the ring R [x1, x2] as R [x, y].
More generally, we can have polynomial rings in any set of indeterminates;
these are written by putting the names of these indeterminates into the square
brackets. For example, R [a, b, x, y] means a polynomial ring in four indetermi-
nates named a, b, x, y.

It is actually helpful to think of polynomial rings with differently named
indeterminates as distinct – e.g., the rings R [x] and R [y] are distinct (but iso-
morphic). This allows us to view them both as subrings of R [x, y] without
actually equating x with y.
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1.3. Univariate polynomials

1.3.1. Degrees and coefficients

Let us now take a closer look at univariate polynomials (which are the best-
behaved among the polynomials).

Definition 1.3.1. Let p ∈ R [x] be a univariate polynomial.
(a) If p ̸= 0, then the degree of p is defined to be the largest i ∈ N such

that
[
xi] p ̸= 0. The degree of the zero polynomial 0 ∈ R [x] is defined to

be −∞ (a symbol subject to the rules −∞ < m and −∞ + m = −∞ for any
m ∈ Z).

The degree of p is denoted by deg p.
(b) If p ̸= 0, then the leading coefficient of p is defined to be the coefficient[

xdeg p] p ∈ R.
(c) The polynomial p is said to be monic (or, as some say, normalized) if

its leading coefficient is 1.

For example, the polynomial

5x3 + 2x + 1 ∈ Q [x]

has degree 3 and leading coefficient 5 and is not monic (since 5 ̸= 1). The
polynomial

5x3 + 2x + 1 ∈ (Z/n) [x]

has

• degree 3 if n > 5;

• degree 1 if n = 5 (because if n = 5, then the 5x3 = 0x3 term disappears);

• degree 3 if n = 2, 3, 4; and

• degree −∞ if n = 1.

(Degrees are somewhat unstable for trivial rings.)
The polynomial (1 + x)3 = 1 + 3x + 3x2 + x3 is monic (i.e., has leading coef-

ficient 1) and has degree 3.
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