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Math 533 Winter 2021, Lecture 10: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Modules ([DF, Chapter 10])

1.1. The universal property of a free module ([DF, §10.3])

As before, we fix a ring R. Recall the last theorem from Lecture 9:

Theorem 1.1.1. Let M be a left R-module. Let (mi)i∈I be any family of vectors
in M. Consider the map

f : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

Then:
(a) This map f is always a left R-module morphism.
(b) The map f is injective if and only if the family (mi)i∈I is linearly inde-

pendent.
(c) The map f is surjective if and only if the family (mi)i∈I spans M.
(d) The map f is an isomorphism if and only if the family (mi)i∈I is a basis

of M.

The map f in Theorem 1.1.1 takes a family (ri)i∈I of scalars, and uses it to
build a linear combination of (mi)i∈I .

The next proposition shows that linear maps respect linear combinations (in
the sense that if you apply a linear map to a linear combination of some vectors,
then you get the same linear combination of their images):

Proposition 1.1.2. Let M and P be two left R-modules. Let f : M → P be an
R-linear map. Let (mi)i∈I be any family of vectors in M, and let (ri)i∈I be a
family of scalars in R with the property that

all but finitely many i ∈ I satisfy ri = 0. (1)

Then,

f

(
∑
i∈I

rimi

)
= ∑

i∈I
ri f (mi) .

Proof of Proposition 1.1.2. We give a proof by example: We assume that I =
{1, 2, 3}. Thus, the claim we need to prove is saying that

f (r1m1 + r2m2 + r3m3) = r1 f (m1) + r2 f (m2) + r3 f (m3) .

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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But this is a consequence of the linearity of f (applied several times):

f (r1m1 + r2m2 + r3m3)

= f (r1m1 + r2m2) + f (r3m3) (since f respects addition)
= f (r1m1) + f (r2m2) + f (r3m3) (since f respects addition)
= r1 f (m1) + r2 f (m2) + r3 f (m3) (since f respects scaling) .

The same reasoning applies to an arbitrary finite set I. (To be fully rigorous,
this is a proof by induction on |I|.)

The case when I is infinite can be reduced to the case when I is finite using
the assumption (1). Indeed, because of (1), there is a finite subset J of I such
that all i ∈ I \ J satisfy ri = 0. Choosing such a J, we then have

∑
i∈I

rimi = ∑
i∈J

rimi and ∑
i∈I

ri f (mi) = ∑
i∈J

ri f (mi) , (2)

since vanishing addends in a sum can be discarded. But since we have already
proved Proposition 1.1.2 in the case of a finite set I, we can apply Proposition

1.1.2 to J, and thus obtain f

(
∑
i∈J

rimi

)
= ∑

i∈J
ri f (mi). In view of (2), this rewrites

as f
(

∑
i∈I

rimi

)
= ∑

i∈I
ri f (mi), so we are done.

One useful feature of bases is that they make it easy to define linear maps
out of a module: Namely, if M is a module with a basis (mi)i∈I , and you want
to define a linear map f out of M, then it suffices to specify the values f (mi) of
the map on each vector of the basis. These values can be specified arbitrarily;
each possible specification yields a unique linear map f . Here is the theorem
that underlies this strategy:

Theorem 1.1.3 (Universal property of free modules). Let M be a free left R-
module with basis (mi)i∈I . Let P be a further left R-module (not necessarily
free). Let pi ∈ P be a vector for each i ∈ I. Then, there exists a unique
R-linear map f : M → P such that

each i ∈ I satisfies f (mi) = pi. (3)

Proof. Uniqueness: If f : M → P is an R-linear map satisfying (3), then any
R-linear combination ∑

i∈I
aimi of (mi)i∈I (with ai ∈ R and with all but finitely

many i ∈ I satisfy ai = 0) satisfies

f

(
∑
i∈I

aimi

)
= ∑

i∈I
ai f (mi)︸ ︷︷ ︸

=pi
(by (3))

(by Proposition 1.1.2)

= ∑
i∈I

ai pi. (4)
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This equality uniquely determines the value of f on each R-linear combination
of (mi)i∈I . But each element of M can be written as an R-linear combination of
(mi)i∈I (since (mi)i∈I is a basis of M and thus spans M). Thus, the equality (4)
uniquely determines the value of f on each element of M. In other words, it
uniquely determines f . Hence, the R-linear map f satisfying (3) is unique.

Existence: Consider the map

g : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

This is the map we called f in Theorem 1.1.1 (of course, we cannot call it f
right now, since we need the letter for something else). Theorem 1.1.1 (d) yields
that the map g is an isomorphism (since the family (mi)i∈I is a basis of M). In
particular, this means that g is bijective. Hence, any element of M can be written
as an R-linear combination ∑

i∈I
rimi of (mi)i∈I for a unique family (ri)i∈I ∈ R(I).

Thanks to this, we can define a map

f : M → P,

∑
i∈I

rimi 7→ ∑
i∈I

ri pi

(
with (ri)i∈I ∈ R(I)

)
.

Now, it is easy to see that this map f is R-linear and satisfies (3). Hence, the
R-linear map f satisfying (3) exists.

Having proved both existence and uniqueness, we are now done proving
Theorem 1.1.3.

In the proof of the “Uniqueness” part above, we have not used the assump-
tion that the family (mi)i∈I is a basis of M; we have only used that it spans
M. Thus, the uniqueness of f holds even under this weaker condition. Let us
isolate this into a separate theorem:

Theorem 1.1.4 (Linear maps are determined on a spanning set). Let M be a
left R-module. Let (mi)i∈I be a family of vectors in M that spans M. Let P
be a further left R-module. Let f , g : M → P be two R-linear maps such that

each i ∈ I satisfies f (mi) = g (mi) .

Then, f = g.

This theorem is often used to prove that two linear maps are equal.

1.2. Bilinear maps

When R is a commutative ring, the addition map

add : R × R → R, (a, b) 7→ a + b
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is R-linear (where the domain is the direct product of two copies of the left
R-module R). In fact, if (a, b) ∈ R × R and (c, d) ∈ R × R are any two pairs,
then

add

(a, b) + (c, d)︸ ︷︷ ︸
=(a+c,b+d)

 = add ((a + c, b + d)) = (a + c) + (b + d) and

add ((a, b)) + add ((c, d)) = (a + b) + (c + d) = (a + c) + (b + d)

are clearly the same thing. (This just shows that add respects addition; but the
other axioms are just as easy.)

However, the multiplication map

mul : R × R → R, (a, b) 7→ ab

is not R-linear. However, it is linear in the first argument if we fix the second.
In other words, for any given b ∈ R, the map

R → R, a 7→ ab

is R-linear. Likewise, the multiplication map mul : R × R → R is linear in the
second argument if we fix the first. Such maps have a name:

Definition 1.2.1. Let R be a commutative ring. Let M, N and P be three
R-modules. A map f : M × N → P is said to be R-bilinear (or just bilinear)
if it satisfies the following two conditions:

• For any n ∈ N, the map

M → P,
m 7→ f (m, n)

is R-linear. That is, we have

f (m1 + m2, n) = f (m1, n) + f (m2, n) for all m1, m2 ∈ M and n ∈ N;
f (rm, n) = r f (m, n) for all r ∈ R, m ∈ M and n ∈ N;

f (0, n) = 0 for all n ∈ N.

This is called linearity in the first argument.

• For any m ∈ M, the map

N → P,
n 7→ f (m, n)

is R-linear. That is, we have

f (m, n1 + n2) = f (m, n1) + f (m, n2) for all m ∈ M and n1, n2 ∈ N;
f (m, rn) = r f (m, n) for all r ∈ R, m ∈ M and n ∈ N;
f (m, 0) = 0 for all m ∈ M.

This is called linearity in the second argument.
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Here are some examples of bilinear maps:1

• As I said, the multiplication map R × R → R, (a, b) 7→ ab is R-bilinear.

• For any n ∈ N, the standard scalar product (also known as the dot prod-
uct)

Rn × Rn → R,
((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

is R-bilinear.

• Consider the field C of complex numbers. For any n ∈ N, the standard
inner product

Cn × Cn → C,

((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

(where z denotes the complex conjugate of a z ∈ C) is R-bilinear but not
C-bilinear (since it is antilinear rather than linear in the second argument).
However, it becomes C-bilinear if you view it as a map Cn ×C

n → C (with
C being the “twisted” C-module C from Lecture 9).

• The determinant map

det : R2 × R2 → R,
((a, b) , (c, d)) 7→ ad − bc

is R-bilinear. (This is called the determinant map because it sends a 2× 2-
matrix – encoded as pair of pairs – to its determinant.)

• Matrix multiplication is bilinear. That is: For any m, n, p ∈ N, the map

Rm×n × Rn×p → Rm×p,
(A, B) 7→ AB

is R-bilinear.

• The cross product map

R3 × R3 → R3,
((a, b, c) , (d, e, f )) 7→ (b f − ce, cd − a f , ae − bd)

is R-bilinear.

1In all these examples, R is assumed to be commutative.
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• For any R-module M, the action map

R × M → M,
(r, m) 7→ rm

is R-bilinear. In fact, it is linear in its first argument since

(r1 + r2)m = r1m + r2m for all r1, r2 ∈ R and m ∈ M;
(rs)m = r (sm) for all r, s ∈ R and m ∈ M;
0R · m = 0M for all m ∈ M;

and it is linear in its second argument since

r (m1 + m2) = rm1 + rm2 for all r ∈ R and m1, m2 ∈ M;
r (sm) = s (rm) for all r, s ∈ R and m ∈ M;
r · 0M = 0M for all r ∈ R.

(Here, the equality r (sm) = s (rm) follows from r (sm) = (rs)︸︷︷︸
=sr

m =

(sr)m = s (rm). Note how we relied on the commutativity of R here!)

We have always been assuming that R is commutative in this section. Non-
commutative rings R would be a distraction at this point, but will appear later
on.

Theorem 1.1.3 gave us a way to construct linear maps out of a free module
by specifying their values on a basis. We can do the same for bilinear maps:

Theorem 1.2.2 (Universal property of free modules wrt bilinear maps). Let
R be a commutative ring. Let M be a free R-module with basis (mi)i∈I . Let
N be a free R-module with basis

(
nj
)

j∈J . Let P be a further R-module (not
necessarily free). Let pi,j ∈ P be a vector for each pair (i, j) ∈ I × J. Then,
there exists a unique R-bilinear map f : M × N → P such that

each (i, j) ∈ I × J satisfies f
(
mi, nj

)
= pi,j.

Proof. Similar to the proof of Theorem 1.1.3.

1.3. Multilinear maps

Linear and bilinear maps are the first two links in a chain of notions. Here is
the general case:
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Definition 1.3.1. Let R be a commutative ring. Let M1, M2, . . . , Mn be finitely
many R-modules. Let P be any R-module. A map f : M1 × M2 × · · · × Mn →
P is said to be R-multilinear (or just multilinear) if it satisfies the following
condition:

• For any i ∈ {1, 2, . . . , n} and any m1, m2, . . . , mi−1, mi+1, mi+2, . . . , mn in
the respective modules (meaning that mk ∈ Mk for each k ̸= i), the map

Mi → P,
mi 7→ f (m1, m2, . . . , mn)

is R-linear. That is, if we fix all arguments of f other than the i-th
argument, then f is R-linear as a function of the i-th argument. This is
called linearity in the i-th argument.

Thus, “bilinear” is just “multilinear for n = 2”, whereas “linear” is “multi-
linear for n = 1”.

The most famous example of a multilinear map is the determinant function

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R,

(v1, v2, . . . , vn) 7→ det (v1, v2, . . . , vn) ,

where det (v1, v2, . . . , vn) means the determinant of the n × n-matrix whose
columns are v1, v2, . . . , vn.

There is a universal property of free modules with respect to multilinear
maps (extending Theorem 1.1.3 and Theorem 1.2.2), which says that a mul-
tilinear map from a product of free R-modules can be defined by specifying
its values on all combinations of basis elements (i.e., on all n-tuples whose all
entries belong to the respective bases). I leave it to you to state and prove it.

1.4. Algebras over commutative rings ([DF, §10.1])

In this section, we fix a commutative ring R.
The notion of an R-algebra combines the notions of a ring and of an R-

module, as well as connecting them by an extra axiom:

Definition 1.4.1. An R-algebra is a set A that is endowed with

• two binary operations (i.e., maps from A × A to A) that are called ad-
dition and multiplication and denoted by + and ·,

• a map · from R × A to A that is called action of R on A (and should
not be confused with the multiplication map, which is also denoted by
·), and
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• two elements of A that are called zero and unity and denoted by 0 and
1,

such that the following properties (the “algebra axioms”) hold:

• The addition, the multiplication, the zero and the unity satisfy all the
ring axioms (so that A becomes a ring when equipped with them).

• The addition, the action and the zero satisfy all the module axioms (so
that A becomes an R-module when equipped with them).

• Scale-invariance of multiplication: We have

r (ab) = (ra) b = a (rb) for all r ∈ R and a, b ∈ A.

Here (and in the following), we omit the · signs for multiplication and
action (so “ab” means “a · b”, and “r (ab)” means “r · (ab)”).

Thus, an R-algebra is an R-module that is also a ring at the same time, with
the same addition (i.e., the addition of the R-module must be identical with the
addition of the ring) and the same zero, and satisfying the “scale-invariance”
axiom. In other words, you get the definition of an R-algebra by throwing
the definitions of an R-module and a ring together (without duplicating the
addition and the zero) and requiring that the multiplication plays nice with the
scaling (in the sense that scaling a product is equivalent to scaling one of its
factors). Hence, in order to specify an R-algebra, it is enough to provide a set
with both a ring structure and an R-module structure and show that it satisfies
the “scale-invariance” axiom.

The “scale-invariance” axiom can also be restated as “the multiplication map
A × A → A is R-bilinear”. More precisely, requiring that the multiplication
map A × A → A is R-bilinear includes both the scale-invariance axiom and
some of the ring and module axioms.

Examples of R-algebras include the following:

• The commutative ring R itself is an R-algebra (with both multiplication
and action being the usual multiplication of R).

• The zero ring {0} is an R-algebra.

• The matrix ring Rn×n is an R-algebra for any n ∈ N.

• The ring C is an R-algebra.

• The ring R is a Q-algebra.
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• More generally: If a commutative ring R is a subring of a commutative
ring S, then S becomes an R-algebra in a natural way. In fact, we already
know from Lecture 8 that S becomes an R-module, and it is easy to see
that this R-module can be combined with the ring structure on S to form
an R-algebra.

• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then S becomes an R-algebra in a natural way.
In fact, we already know from Lecture 8 that S becomes an R-module
(this is the R-module structure on S induced by f ), and it is easy to see
that this R-module can be combined with the ring structure on S to form
an R-algebra. This R-algebra structure on S is said to be induced by the
morphism f .

• Yet more generally: If R and S are two commutative rings, and if f : R →
S is a ring morphism, then any S-algebra A becomes an R-algebra in a
natural way. In fact, we already know from Lecture 8 that A becomes an
R-module (this is the R-module obtained by restricting the S-module A to
R), and it is easy to see that this R-module can be combined with the ring
structure on A to form an R-algebra. This is called the R-algebra obtained
by restricting the S-algebra A to R.

For example, the matrix ring C2×2 is a C-algebra, and thus becomes an
R-algebra (since the inclusion map R → C is a ring morphism).

• The quaternion ring H is an R-algebra. But it is not a C-algebra, even
though it contains C as a subring. Indeed, the “scale-invariance” axiom
for H to be a C-algebra would say that

r (ab) = (ra) b = a (rb) for all r ∈ C and a, b ∈ H;

but this is not true in general since ji ̸= ij.

• The polynomial ring R [x] (to be defined soon) is an R-algebra.

Particularly common are the Z-algebras: In fact, every ring is a Z-algebra in
a natural way:

Proposition 1.4.2. Let R be any ring. Then, R is an abelian group (with
respect to addition), so R becomes a Z-module (since we have seen in Lecture
8 that every abelian group naturally becomes a Z-module). This Z-module
structure can be combined with the ring structure on R, turning R into a
Z-algebra.

Proof. You have to check “scale-invariance”. This is easy and LTTR.
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Thus, every ring becomes a Z-algebra (similarly to how any abelian group
becomes a Z-module). This allows us to equate rings with Z-algebras. We shall
do this whenever convenient.

Every R-algebra A has an underlying ring (i.e., the ring obtained from A by
forgetting the action) and an underlying R-module (i.e., the R-module obtained
from A by forgetting the multiplication and the unity); we will refer to these
simply as the “ring A” and the “R-module A”. So, for example, if A and B
are two R-algebras, then the “ring morphisms from A to B” will simply mean
the ring morphisms from the underlying ring of A to the underlying ring of B.
Similarly the “R-module morphisms from A to B” are to be understood.

Definition 1.4.3. Let A and B be two R-algebras. An R-algebra morphism
(or, short, algebra morphism) from A to B means a map f : A → B that is
both a ring morphism and an R-module morphism (i.e., that respects addi-
tion, multiplication, zero, unity and scaling).

An R-algebra is said to be commutative if its underlying ring is commutative
(i.e., if its multiplication is commutative).

Algebras have subalgebras; they are defined exactly as you would expect:

Definition 1.4.4. Let A be an R-algebra. An R-subalgebra of A means a
subset of A that is simultaneously a subring and an R-submodule of A.

In pedestrian terms, this means that an R-subalgebra of A is a subset of A that
is closed under addition, multiplication and scaling and contains the zero and
the unity. Such an R-subalgebra of A clearly becomes an R-algebra in its own
right (since we can restrict all relevant operations from A to this subalgebra).

The direct product of several R-algebras is defined just as you would ex-
pect: addition, multiplication and scaling are all entrywise. Just for the sake of
completeness, let me give its precise definition:

Proposition 1.4.5. Let I be any set. Let (Ai)i∈I be any family of R-algebras.
Then, their Cartesian product ∏

i∈I
Ai becomes an R-algebra if we endow it

with the entrywise addition (i.e., we set (mi)i∈I + (ni)i∈I = (mi + ni)i∈I
for any two families (mi)i∈I , (ni)i∈I ∈ ∏

i∈I
Ai) and the entrywise multi-

plication (i.e., we set (mi)i∈I · (ni)i∈I = (mi · ni)i∈I for any two families
(mi)i∈I , (ni)i∈I ∈ ∏

i∈I
Ai) and the entrywise scaling (i.e., we set r (mi)i∈I =

(rmi)i∈I for any r ∈ R and any family (mi)i∈I ∈ ∏
i∈I

Ai) and with the zero

(0)i∈I and the unity (1)i∈I . The underlying ring of this R-algebra ∏
i∈I

Ai is

the direct product of the rings Ai, whereas the underlying R-module of this
R-algebra ∏

i∈I
Ai is the direct product of the R-modules Ai.
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Definition 1.4.6. This R-algebra is denoted by ∏
i∈I

Ai and called the direct

product of the R-algebras Ai.
The usual notations apply to these direct products: For example, if I =

{1, 2, . . . , n} for some n ∈ N, then the direct product ∏
i∈I

Ai is also denoted by

A1 × A2 × · · · × An; we further set AI = ∏
i∈I

A and An = A{1,2,...,n} for each

n ∈ N.

1.5. Defining algebras: the case of H

An R-algebra carries more information than a ring (namely, it has the extra
structure of an action). But often it is easier to define the whole R-algebra
than just to define the underlying ring, because this extra structure can serve
as scaffolding! Let us see an example.

Recall the ring H of quaternions, which were “defined” to be “numbers” of
the form a + bi + cj + dk with a, b, c, d ∈ R and with the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

It is clear how to calculate in H using these rules. But why does this ring H

exist?
Here is a cautionary tale to show why this is a question: Let’s replace k2 = −1

by k2 = 1 in our above “definition” of H. Then, j2 k2︸︷︷︸
=1

= j2 = −1, so that

−1 = j2k2 = j jk︸︷︷︸
=i

k = j ik︸︷︷︸
=−j

(since −ik=j)

= j (−j) = − j2︸︷︷︸
=−1

= − (−1) = 1.

Adding 1 to this equality, we find 0 = 2, so that 0 = 1 (upon division by 2).
Therefore, the ring is trivial – i.e., all its elements are 0.

Ouch. We tried to expand our number system by introducing new “numbers”
i, j, k, but instead we ended up collapsing it (making all numbers equal to 0).

It should not surprise you that this can happen; after all, the same happens if

you introduce the “number” ∞ :=
1
0

and start doing algebra with it. But why
doesn’t it happen with the quaternions? Why is H actually an extension of our
number system rather than a collapsed version of it?

The simplest way to answer this question is to throw away the wishy-washy
definition of H we gave above (what does “numbers of the form a+ bi+ cj+ dk”
really mean?), and redefine H rigorously.

We want H to be an R-algebra. First, we introduce its underlying R-module
(i.e., R-vector space) structure. This underlying R-module will be a 4-dimensional
R-vector space, i.e., a free R-module of rank 4. So let me define H to be R4 as
an R-module. Let me denote its standard basis by (e, i, j, k). These four basis
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vectors e, i, j, k will later become the quaternions 1, i, j, k, but I’m being cautious
for now and avoiding any names that might be too suggestive. The basis vector
e will be the unity of H. Next, we define the multiplication of H to be the
R-bilinear map µ : H × H → H that satisfies2

µ (e, e) = e, µ (e, i) = i, µ (e, j) = j, µ (e, k) = k,
µ (i, e) = i, µ (i, i) = −e, µ (i, j) = k, µ (i, k) = −j,
µ (j, e) = j, µ (j, i) = −k, µ (j, j) = −e, µ (j, k) = i,

µ (k, e) = k, µ (k, i) = j, µ (k, j) = −i, µ (k, k) = −e.

Theorem 1.2.2 guarantees that there is a unique such bilinear map µ. We set
ab = µ (a, b) for all a, b ∈ H.

Why is this a ring? All but two of the ring axioms are obvious (they follow
either from the bilinearity of µ or from the module axioms for the R-module
H = R4). The two axioms that are not obvious are the following:

1. Associativity of multiplication.

2. Neutrality of 1 (i.e., the claim that a · e = e · a = a for each a ∈ H).

Fortunately, the bilinearity of µ will make both of these axioms straightforward
to check. Indeed, let me explain how to check the associativity of multiplication.
In other words, let me prove that the map µ is associative – i.e., that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ H. (5)

The trick to this is that when a map like µ is bilinear, its associativity can be
checked on a basis – or, more generally, on a spanning set:

Lemma 1.5.1. Let R be a commutative ring. Let M be an R-module. Let
(mi)i∈I be a family of vectors in M that spans M. Let f : M × M → M be an
R-bilinear map. If we have

f
(

f
(
mi, mj

)
, mk

)
= f

(
mi, f

(
mj, mk

))
for all i, j, k ∈ I, (6)

then we have

f ( f (a, b) , c) = f (a, f (b, c)) for all a, b, c ∈ M. (7)

2These equations are not chosen at random, of course; they are simply the equations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

(as well as the equations 1 · 1 = 1, 1i = i, 1j = j, 1k = k, i · 1 = i, j · 1 = j and k · 1 = k), with
1, i, j, k renamed as e, i, j, k.
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Proof of Lemma 1.5.1. Let a, b, c ∈ M. Since the family (mi)i∈I spans M, we can
write the three vectors a, b, c as

a = ∑
i∈I

aimi, b = ∑
j∈I

bjmj, c = ∑
k∈I

ckmk

for some coefficients ai, bj, ck ∈ R. Consider these coefficients. Then,3

f ( f (a, b) , c) = f

(
f

(
∑
i∈I

aimi, ∑
j∈I

bjmj

)
, ∑

k∈I
ckmk

)

= ∑
k∈I

ck f

(
f

(
∑
i∈I

aimi, ∑
j∈I

bjmj

)
, mk

)
(since f is linear in its second argument)

= ∑
k∈I

ck f

(
∑
i∈I

ai f

(
mi, ∑

j∈I
bjmj

)
, mk

)
(since f is linear in its first argument)

= ∑
k∈I

ck f

(
∑
i∈I

ai ∑
j∈I

bj f
(
mi, mj

)
, mk

)
(since f is linear in its second argument)

= ∑
k∈I

ck ∑
i∈I

ai ∑
j∈I

bj f
(

f
(
mi, mj

)
, mk

)
(since f is linear in its first argument)

= ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(

f
(
mi, mj

)
, mk

)
and similarly

f (a, f (b, c)) = ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(
mi, f

(
mj, mk

))
.

The right hand sides of these two equalities are equal by our assumption
(6). Hence, the left hand sides are equal. In other words, f ( f (a, b) , c) =
f (a, f (b, c)). This proves Lemma 1.5.1.

Let us now return to H. We want to prove that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ H.

By Lemma 1.5.1 (applied to R = R, M = H, (mi)i∈I = (e, i, j, k) and f = µ), it
suffices to show that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ {e, i, j, k} .

3We will use Proposition 1.1.2 multiple times in this computation.
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This is a finite computation: There are only 64 triples (a, b, c) with a, b, c ∈
{e, i, j, k}, and we can check the equality µ (µ (a, b) , c) = µ (a, µ (b, c)) for each
of these triples directly by computation (using the definition of µ).

A computer could do this in the blink of an eye, but we can also do this
by hand. There are some tricks that reduce our work. The first is to notice
that µ (µ (a, b) , c) = µ (a, µ (b, c)) is obvious when one of a, b, c is e (because
µ (x, e) = µ (e, x) = x for each x ∈ {e, i, j, k}). Thus, it suffices to prove the
equality µ (µ (a, b) , c) = µ (a, µ (b, c)) in the case when a, b, c ∈ {i, j, k}. This
leaves 27 triples (a, b, c) to check.

The next trick is to observe a cyclic symmetry. Indeed, the definition of
µ is invariant under cyclic rotation of i, j, k, in the sense that if we replace
i, j, k by j, k, i (respectively), then the definition remains unchanged (for ex-
ample, µ (j, i) = −k becomes µ (k, j) = −i). Thus, when we are proving
µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ {i, j, k}, we can WLOG assume
that a = i (since otherwise, we can achieve this by rotating all of a, b, c until a
becomes i). This leaves 9 triples (a, b, c) to check.

Let me just check one of them: namely, (a, b, c) = (i, k, k). In this case, we
have

µ (µ (a, b) , c) = µ

µ (i, k)︸ ︷︷ ︸
=−j

, k

 = µ (−j, k) = − µ (j, k)︸ ︷︷ ︸
=i

(since µ is bilinear)

= −i

and

µ (a, µ (b, c)) = µ

i, µ (k, k)︸ ︷︷ ︸
=−e

 = µ (i,−e) = − µ (i, e)︸ ︷︷ ︸
=i

(since µ is bilinear)

= −i.

Thus, µ (µ (a, b) , c) = µ (a, µ (b, c)) is proved for this triple. Similarly, the re-
maining 9 − 1 = 8 triples can be checked. Thus, associativity of multiplication
is proved for H.

It remains to prove the neutrality of 1. In other words, it remains to prove that
a · e = e · a = a for each a ∈ H. Once again, the bilinearity of the multiplication
of H can be used to reduce this to the case when a ∈ {e, i, j, k} (here we need
to use Theorem 1.1.4 instead of Lemma 1.5.1); but in this case, the claim follows
from our definition of µ. The details are LTTR.
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