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Math 533 Winter 2021, Lecture 9: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Modules ([DF, Chapter 10])

1.1. Module morphisms ([DF, §10.2]) (cont’d)

In the previous lecture, we have defined module morphisms, and discussed a
few examples. Let me give one more, slightly confusing example of module
morphisms. Namely, I claim that any ring morphism is a module morphism,
as long as the module structures are defined correctly (warning: these are often
not the module structures you expect!). To wit:

• Let R and S be two rings. Let f : R → S be a ring morphism. As we
have seen in Lecture 8, the ring S then becomes a left R-module, with the
action of R on S being defined by

rs = f (r) s for all r ∈ R and s ∈ S.

This action is called the action on S induced by f . It is now easy to see
that f is a left R-module morphism from R to S.

Here is an example. There is a ring morphism f : C → C that sends
each complex number z = a + bi (with a, b ∈ R) to its complex conjugate
z = a − bi. Thus, from the previous paragraph, we can conclude that this
morphism f is a C-module morphism from C to C. But this is only true
if the C-module structure on the target (but not on the domain) is the one
induced by f (so it is given by rs = f (r) s = rs for all r ∈ C and s ∈ C),
which is of course a rather nonstandard choice of a C-module structure
on C. So f is indeed a C-module morphism from C to C, but these are
two different C-modules C !

Of course, writing things like this is just inviting confusion. To avoid
this confusion, you need to introduce a new notation for the nonstandard
C-module C (the one induced by f ). Namely, let us denote this new
C-module by C, while the unadorned symbol C will always mean the
old, obvious C-module structure on C (in which the action is just the
multiplication). Thus, what we said in the previous paragraph can be
restated as follows: The map f is a C-module morphism from C to C.
Actually, it is easy to see that f is a C-module isomorphism from C to
C. Thus, the C-modules C and C are isomorphic (but still should not be
identified to prevent confusion).

More generally, since f : C → C is a ring morphism, we can restrict any
C-module M to C using f . This means the following: If M is a C-module,

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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then we define a new C-module structure on M by

rm = f (r)m = rm for all r ∈ C and m ∈ M

(where the “rm” on the left hand side refers to the new C-module struc-
ture, whereas the “ f (r)m” and “rm” refer to the old one). This new
C-module is called M (since calling it M would be asking for trouble). It
is a “twisted version” of M: It is identical to M as an abelian group, but
the action of C on it has been “twisted” (in the sense that scaling by z on
M is the same as scaling by z on M).

Here is a nice thing about these twisted C-modules: If V and W are two C-
modules (i.e., C-vector spaces), then a C-module morphism f : V → W is
what is known as an antilinear map from V to W in linear algebra. Thus,
antilinear maps are “secretly” just linear maps, once you have twisted the
vector space structure on the target.

We shall now state a bunch of general facts about module morphisms that
are analogous to some facts we have previously stated for ring morphisms. I
won’t distract you with the proofs, as they are all straightforward.

As before, we fix a ring R.

Proposition 1.1.1. Let M and N be two left R-modules. Let f : M → N be an
invertible left R-module morphism. Then, f is a left R-module isomorphism.

Proposition 1.1.2. Let M, N and P be three left R-modules. Let f : N → P
and g : M → N be two left R-module morphisms. Then, f ◦ g : M → P is a
left R-module morphism.

Proposition 1.1.3. Let M, N and P be three left R-modules. Let f : N → P
and g : M → N be two left R-module isomorphisms. Then, f ◦ g : M → P is
a left R-module isomorphism.

Proposition 1.1.4. Let M and N be two left R-modules. Let f : M → N
be a left R-module isomorphism. Then, f−1 : N → M is a left R-module
isomorphism.

Corollary 1.1.5. The relation ∼= for left R-modules is an equivalence relation.

Left R-module isomorphisms preserve all “intrinsic” properties of left R-
modules (just like as morphisms do for properties of rings). For example, if M
and N are two isomorphic left R-modules, then M has as many R-submodules
as N does (and there is a one-to-one correspondence between the R-submodules
of M and those of N).

All of this holds just as well for right R-modules; by now this is so obvious
that we don’t even need to say it. (Besides, as you have seen from exercise 2 (d)
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on homework set #2, right R-modules can be transformed into left Rop-modules
for a certain ring Rop. This can also be done in reverse, and thus provides a
dictionary between left modules and right modules, which can always be used
to translate a statement about one kind of modules into a statement about the
other. Module morphisms behave as one would expect under this dictionary:
When we use this dictionary to turn two right R-modules M and N into left
Rop-modules, the right R-module morphisms from M to N become the left Rop-
module morphisms from M to N. This gives you all excuses you might ever
need to ignore right R-modules and only work with left R-modules, until you
actually need certain “hybrid” modules with both left and right structures.)

Next, we shall study kernels and images of module morphisms.

Definition 1.1.6. Let M and N be two left R-modules. Let f : M → N be a
left R-module morphism. Then, the kernel of f (denoted ker f or Ker f ) is
defined to be the subset

Ker f := {a ∈ M | f (a) = 0N}

of M.

Some examples:

• Let R be a commutative ring. Let b ∈ R be nonzero. Then, the map
R → R, r 7→ br is an R-module morphism (check this!). The kernel of this
map is

{r ∈ R | br = 0} .

Thus, this kernel is {0} if and only if b is not a zero divisor.

• Both Z3 and Z × (Z/2) are Z-modules (since we have seen in Lecture 8
that every additive group is a Z-module). The map

Z3 → Z × (Z/2) ,

(a, b, c) 7→
(

a − b, b − c
)

is a Z-module morphism. Its kernel is{
(a, b, c) ∈ Z3 |

(
a − b, b − c

)
= 0Z×(Z/2)

}
=

{
(a, b, c) ∈ Z3 | a − b = 0 and b − c = 0

}
=

{
(a, b, c) ∈ Z3 | a − b = 0 and b − c ≡ 0 mod 2

}
=

{
(a, b, c) ∈ Z3 | a = b and b ≡ c mod 2

}
.

Kernels are a standard concept in linear algebra, where they are also called
nullspaces. The following facts should be familiar from abstract linear algebra:
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Theorem 1.1.7. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then, the kernel Ker f of f is an left R-submodule of
M, whereas the image Im f = f (M) of f is a left R-submodule of N.

Lemma 1.1.8. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then, f is injective if and only if Ker f = {0M}.

We can now define quotient modules of left R-modules, in more or less the
same way as we defined quotient rings of rings (but this time we need to estab-
lish an action instead of a multiplication on the quotient):

Definition 1.1.9. Let I be a left R-submodule of a left R-module M. Thus, I is
a subgroup of the additive group (M,+, 0), hence a normal subgroup (since
(M,+, 0) is abelian). Therefore, the quotient group M/I itself becomes an
abelian group. Its elements are the cosets r + I of I in M.

Note that the addition on M/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ M.

We now define an action of R on M/I by setting

r (a + I) = ra + I for all r ∈ R and a ∈ M.

(See below for a proof that this is well-defined.)
The set M/I, equipped with the addition and the action we just defined

and with the element 0 + I as zero vector, is a left R-module. This left R-
module is called the quotient left R-module of M by the submodule I; it
is also pronounced “M modulo I”. It is denoted M/I (so when you hear
“the left R-module M/I”, it always means the set M/I equipped with the
structure just mentioned).

The cosets r + I are called residue classes modulo I, and are often denoted
r mod I or [r]I or [r] or r. (The last two notations are used when I is clear
from the context.)

Theorem 1.1.10. Let M and I be as in Definition 1.1.9. Then, the action of R
on M/I is well-defined, and M/I does indeed become a left R-module when
endowed with the operations and elements just described.

Theorem 1.1.11. Let I be a left R-submodule of a left R-module M. Consider
the map

π : M → M/I, a 7→ a + I.

Then, π is a surjective module morphism with kernel I. This morphism π is
called the canonical projection from M onto M/I.
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Theorem 1.1.12 (Universal property of quotient modules). Let M be a left
R-module. Let I be a left R-submodule of M.

Let N be a left R-module. Let f : M → N be a left R-module morphism.
Assume that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all
a ∈ I). Consider the canonical projection π : M → M/I. Then, there is a
unique left R-module morphism f ′ : M/I → N satisfying f = f ′ ◦ π.

Just to unravel the abstract definition: This morphism f ′ sends each coset (=
residue class) a + I ∈ M/I to f (a).

Theorem 1.1.13 (First isomorphism theorem for modules). Let M and N be
two left R-modules. Let f : M → N be a left R-module morphism. Recall that
Ker f is an R-submodule of M, and that Im f = f (M) is an R-submodule of
N. We have

M/ Ker f ∼= f (M) .

More precisely, the universal property of quotient modules (applied to I =
Ker f ) yields a left R-module morphism f ′ : M/ Ker f → N, which (if we
restrict its target to its actual image f (M)) is a left R-module isomorphism
from M/ Ker f to f (M).

Just to unravel this abstract definition: This isomorphism sends each coset (=
residue class) a + Ker f ∈ M/ Ker f to f (a). So you can reword the conclusion
of Theorem 1.1.13 as follows: The map

M/ Ker f → f (M) ,
a + Ker f 7→ f (a)

is well-defined and is a left R-module isomorphism.
All results we have stated so far about modules are analogues of known

results about rings. So are their proofs (which is why we are omitting them
all). The Second and the Third isomorphism theorem for rings (which you
have seen on homework set #2) also have analogues for modules.

Remark 1.1.14. If you have done some abstract linear algebra, the formula
M/ Ker f ∼= f (M) in Theorem 1.1.13 might remind you of something.

Indeed, let R be a field. Thus, R-modules are R-vector spaces. Let M and
N be two finite-dimensional R-vector spaces. Let f : M → N be a linear map.
Thus, Theorem 1.1.13 yields that M/ Ker f ∼= f (M) as R-modules (i.e., as R-
vector spaces). However, isomorphic vector spaces have equal dimension.
Hence, from M/ Ker f ∼= f (M), we obtain

dim (M/ Ker f ) = dim ( f (M)) . (1)

However, it is not hard to see (we will see it soon) that dim (M/I) =
dim M − dim I whenever I is a vector subspace of M. (The idea behind this
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formula is that when you pass from M to M/I, you are “collapsing” the
“dimensions” contained in I (since you are equating any vector in I with
0), and thus the dimension of the vector space should go down by dim I.
Formally speaking, this can be shown using bases. We will do so below.)

As a consequence of the dim (M/I) = dim M − dim I formula, we have

dim (M/ Ker f ) = dim M − dim (Ker f ) .

Hence,

dim M − dim (Ker f ) = dim (M/ Ker f ) = dim ( f (M)) (by (1)) .

This is the rank-nullity formula from linear algebra (indeed, dim (Ker f ) is
called the nullity of f , whereas dim ( f (M)) is called the rank of f ).

1.2. Spanning, linear independence, bases and free modules
([DF, §10.3])

We shall now generalize some classical notions from linear algebra (spanning,
linear independence and bases) to arbitrary R-modules.

Let us still fix a ring R.

Definition 1.2.1. Let M be a left R-module. Let m1, m2, . . . , mn be finitely
many vectors in M.

(a) A linear combination of m1, m2, . . . , mn means a vector of the form

r1m1 + r2m2 + · · ·+ rnmn with r1, r2, . . . , rn ∈ R.

(b) The set of all linear combinations of m1, m2, . . . , mn is called the span
of (m1, m2, . . . , mn), and is denoted by span (m1, m2, . . . , mn). (Note that [DF]
calls it R {m1, m2, . . . , mn}.)

(c) If the span of (m1, m2, . . . , mn) is M, then we say that the vectors
m1, m2, . . . , mn span M (or generate M).

(d) We say that the vectors m1, m2, . . . , mn are linearly independent if the
following holds: If r1, r2, . . . , rn ∈ R satisfy

r1m1 + r2m2 + · · ·+ rnmn = 0,

then r1 = r2 = · · · = rn = 0. (In other words, the vectors m1, m2, . . . , mn
are said to be linearly independent if the only way to write 0 as a linear
combination of them is 0 = 0m1 + 0m2 + · · ·+ 0mn.)

(e) We say that the n-tuple (m1, m2, . . . , mn) is a basis of the R-module M
if m1, m2, . . . , mn are linearly independent and span M.

(f) All of this terminology depends on R. Thus, if R is not clear from the
context, we will clarify it by saying “R-linear combination” (or “linear com-
bination over R”) instead of just “linear combination”, and likewise saying
“R-span” or “R-linearly independent” or “R-basis”.



Lecture 9, version May 29, 2023 page 7

Fine print: The property of n vectors m1, m2, . . . , mn to span M is a joint
property (i.e., it is a property of the list (m1, m2, . . . , mn), not of each single
vector). The same applies to linear independence. Sometimes, we do say that
a single vector m spans M (for example, the vector 1 ∈ Z spans the Z-module
Z); this means that the one-element list (m) spans M.

Definition 1.2.1 was tailored to finite lists of vectors, but we can extend it to
arbitrary (possibly infinite) families of vectors:

Definition 1.2.2. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set).

(a) A linear combination of (mi)i∈I means a vector of the form

∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for some choice of ri ∈ R for each i ∈ I)
with the property that

all but finitely many i ∈ I satisfy ri = 0. (2)

Here, the sum ∑
i∈I

rimi is an infinite sum, but all but finitely many of its

addends are zero (thanks to the condition (2)). Such a sum is simply defined
to be the sum of the nonzero addends. For example, 3+ 2+ 0+ 0+ 0+ · · · =
3 + 2 = 5.

(b) The set of all linear combinations of (mi)i∈I is called the span of (mi)i∈I ,
and is denoted by span (mi)i∈I . (Note that [DF] calls it R {mi | i ∈ I}.)

(c) If the span of (mi)i∈I is M, then we say that the family (mi)i∈I spans M
(or generates M).

(d) We say that the family (mi)i∈I is linearly independent if the following
holds: If ri ∈ R satisfy

all but finitely many i ∈ I satisfy ri = 0 (3)

and
∑
i∈I

rimi = 0,

then ri = 0 for all i ∈ I.
(e) We say that the family (mi)i∈I is a basis of the R-module M if (mi)i∈I

is linearly independent and spans M.
(f) All of this terminology depends on R. Thus, if R is not clear from

the context, we will clarify it by saying “R-linear combination” (or “linear
combination over R”) instead of just “linear combination”, etc..

The infinite sums in this definition are a bit of a distraction, but a necessary
one. Fortunately, when studying these notions, it is often sufficient to work with
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finite families (i.e., finite sets I), since they are in some sense representative of
the general case. To wit:

Proposition 1.2.3. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set).

(a) Any linear combination of (mi)i∈I is already a linear combination of
some finite subfamily of (mi)i∈I . (That is: If m is a linear combination of
(mi)i∈I , then there exists some finite subset J of I such that m is a linear
combination of (mi)i∈J .)

(b) The family (mi)i∈I is linearly independent if and only if all its finite
subfamilies (i.e., all families of the form (mi)i∈J with J being a finite subset
of I) are linearly independent.

Proof. (a) Let m be a linear combination of (mi)i∈I . Thus, m has the form

m = ∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for some choice of ri ∈ R for each i ∈ I)
with the property that

all but finitely many i ∈ I satisfy ri = 0.

The latter property can be rewritten as follows: There exists a finite subset J of
I such that all i ∈ I \ J satisfy ri = 0. Consider this J. Then, in the sum ∑

i∈I
rimi,

all the addends with i /∈ J are 0 (since these addends satisfy i /∈ J, thus i ∈ I \ J,
hence ri = 0 and therefore rimi = 0mi = 0). Hence, we can throw these addends
away and are left with the finite sum ∑

i∈J
rimi. Therefore, ∑

i∈I
rimi = ∑

i∈J
rimi, so

that m = ∑
i∈I

rimi = ∑
i∈J

rimi. This shows that m is a linear combination of the

finite subfamily (mi)i∈J of our original family (mi)i∈I . This proves Proposition
1.2.3 (a).

(b) This is similar to part (a). The details are left to the reader. (Again, the
key is that the condition (3) allows us to restrict ourselves to a finite subset of
I.)

Next, we show that the span of a family of vectors is always a submodule:

Proposition 1.2.4. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M. Then, the span of this family is an R-submodule of M.

Proof. You have to show the following three statements:

1. The sum of two linear combinations of (mi)i∈I is a linear combination of
(mi)i∈I .
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2. Scaling a linear combination of (mi)i∈I by an r ∈ R gives a linear combi-
nation of (mi)i∈I .

3. The zero vector is a linear combination of (mi)i∈I .

All three of these statements are easy. For example, let me show the first
statement: Let v and w be two linear combinations of (mi)i∈I . Thus, we can
write v and w as

v = ∑
i∈I

aimi and w = ∑
i∈I

bimi (4)

for some two families (ai)i∈I and (bi)i∈I of scalars (i.e., for some choices of
ai ∈ R and bi ∈ R for each i ∈ I) with the property that

all but finitely many i ∈ I satisfy ai = 0 (5)

and that
all but finitely many i ∈ I satisfy bi = 0. (6)

Now, adding the two equalities in (4) together, we obtain

v + w = ∑
i∈I

aimi + ∑
i∈I

bimi = ∑
i∈I

(aimi + bimi)

= ∑
i∈I

(ai + bi)mi. (7)

Moreover, combining (5) with (6), we see that all but finitely many i ∈ I satisfy
ai + bi = 0 (since the union of two finite sets is still a finite set). Hence, (7)
shows that v + w is a linear combination of (mi)i∈I . This proves Statement 1
above. The proofs of Statements 2 and 3 are even easier.

Definition 1.2.5. (a) A left R-module is said to be free if it has a basis.
(b) Let n ∈ N. A left R-module is said to be free of rank n if it has a basis

of size n (i.e., a basis consisting of n vectors).

Let us see some examples of modules that are free and modules that aren’t.
You might want to look at Q-modules at first; but they make for boring

examples, because of the following fact:

Theorem 1.2.6. If F is a field, then every F-module (= F-vector space) is free.

Proof. This is just the famous fact from linear algebra that every vector space has
a basis. In the most important case (which is when the vector space admits a fi-
nite spanning set – i.e., there is a finite list (m1, m2, . . . , mn) of vectors that spans
it1), this has fairly neat elementary proofs (see, e.g., Theorem 2.1 in Keith Con-
rad’s https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
). In the general case, the proof is tricky and requires the Axiom of Choice (see
Theorem 4.1 in Keith Conrad’s https://kconrad.math.uconn.edu/blurbs/zorn1.
pdf ).

1Such vector spaces are called finite-dimensional.

https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/zorn1.pdf
https://kconrad.math.uconn.edu/blurbs/zorn1.pdf


Lecture 9, version May 29, 2023 page 10

For example, Theorem 1.2.6 shows that the Q-vector space R is free, i.e., has a
basis. Such bases are called Hamel bases and theoretically exist (if you believe
in the Axiom of Choice). Practically, there is no way to construct one.

To find more interesting examples, we need to consider rings that are not
fields. First of all, let us discuss a family of examples that exists for an arbitrary
ring R:

• Consider the left R-module

R2 = {(a, b) | a ∈ R and b ∈ R} .

This R-module R2 is free of rank 2, since the list ((1, 0) , (0, 1)) is a basis
of it. Indeed:

– The vectors (1, 0) , (0, 1) span R2 (because any vector (a, b) can be
written as a (1, 0)+ b (0, 1), and thus is a linear combination of (1, 0) , (0, 1)).

– The vectors (1, 0) , (0, 1) are linearly independent, since a (1, 0) +
b (0, 1) = (a, b) can only be 0 if a = b = 0.

• Likewise, the left R-module R3 has basis ((1, 0, 0) , (0, 1, 0) , (0, 0, 1)).

• More generally: If n ∈ N, then the left R-module Rn has basis

((1, 0, 0, . . . , 0) ,
(0, 1, 0, . . . , 0) ,
(0, 0, 1, . . . , 0) ,

. . . ,
(0, 0, 0, . . . , 1)).

This basis is called the standard basis of Rn, and its n vectors are called
e1, e2, . . . , en (in this order). To make this more rigorous: For each i ∈
{1, 2, . . . , n}, we define ei to be the vector in Rn whose i-th entry is 1 and
whose all remaining entries are 0 (it is an n-tuple, like any vector in Rn).
Then, the list (e1, e2, . . . , en) is a basis of the left R-module Rn. Thus, the
R-module Rn is free of rank n.

• As a particular case, the left R-module R1 is free of rank 1. Note that
R1 ∼= R, because the map R → R1, r 7→ (r) (which merely wraps each
scalar into a list to turn it into a vector) is an R-module isomorphism.
Hence, the left R-module R is free of rank 1. Of course, you can see this
directly as well: The one-element list (1) is a basis of it.

Likewise, the left R-module R0 is free of rank 0. Note that R0 is a trivial
R-module (it consists of just the zero vector); the empty list is a basis
for it (since the only vector in R0 is the zero vector and thus is a linear
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combination of nothing). Some authors (e.g., Keith Conrad in the above-
mentioned references) avoid trivial R-modules2, but there is no natural
reason to do so except for the slight weirdness of dealing with empty lists
and empty sums.

• More generally: If I is a set, then R(I) =
⊕
i∈I

R is a free R-module. It

has a standard basis (ei)i∈I , where each ej is a family that has a 1 in its
j-th position and 0s in all other positions. (That is, ej =

(
δi,j

)
i∈I , where

δi,j =

{
1, if i = j;
0, if i ̸= j

.)

In general, the R-module RI = ∏
i∈I

R is not free. (For example, the Z-

module ZN is not free. This is actually not easy to prove! A proof is
sketched in [DF, §10.3, Exercise 24]. It is easy to see that the standard basis
(ei)i∈N of Z(N) is not a basis of ZN, since (e.g.) the vector (1, 1, 1, 1, . . .)
is not a linear combination of this family3. But it is much harder to show
that there is no basis at all.)

Let us now look at Z-modules. Recall that Z-modules are the same as abelian
groups, so free Z-modules are also known as free abelian groups (this is not
the same as free groups).

• Consider the Z-submodule

U :=
{
(a, b, c) ∈ Z3 | a + b + c = 0

}
of Z3.

Is U free? Can we find a basis for U ?

So we are trying to find a basis for a submodule of Z3 that is determined
by a set of linear equations (in our case, only one linear equation – namely,
a+ b+ c = 0). If we were using a field (e.g., Q or R) instead of Z, then this
would be a familiar problem (equivalent to solving a system of homoge-
neous linear equations), which can be solved by Gaussian elimination. If
we try to perform Gaussian elimination over Z, we might run into trouble:
Denominators may appear; as a result, we might not actually get vectors
with integer entries. However, for the U above, this does not happen, and
we get the basis

((−1, 0, 1) , (0,−1, 1)) .

2A trivial R-module means an R-module that consists only of the zero vector.
3Of course, you could write

(1, 1, 1, 1, . . .) = 1e0 + 1e1 + 1e2 + 1e3 + 1e4 + · · · ;

however, the sum on the right is properly infinite (with infinitely many nonzero coefficients)
and thus does not count as a linear combination (as it fails the condition (2) from Definition
1.2.2).
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So U is indeed free.

What if we have a more complicated submodule and we do run into de-
nominators? Thus, we do not get a basis using Gaussian elimination.
Does this mean that no basis exists, or does it mean we have to try some-
thing else? We will soon see.

• The Z-module Z/2 is not free (i.e., does not have a basis). Indeed, if it
had a basis, then this basis would contain at least one vector (since Z/2
is not trivial), but this vector would not be linearly independent, since
scaling it by 2 would give 0.

• The Z-module Q is not free (i.e., does not have a basis).

Proof. Assume the contrary. Thus, there exists a Z-basis (mi)i∈I of Q. The
set I must be nonempty (since Q is not trivial); thus, we are in one of the
following two cases:

– Case 1: We have |I| = 1. In this case, I is a 1-element set, so we can
rewrite our basis (mi)i∈I as a list (m) that consists of a single rational
number m. This single rational number m must span the entire Z-
module Q. In other words, every element of Q must be a Z-multiple
of m. But this is absurd (indeed, if m = 0, then 1 is not a Z-multiple

of m; but otherwise,
1
2

m is not a Z-multiple of m).

– Case 2: We have |I| > 1. In this case, there are at least two vec-
tors mu and mv in this basis (mi)i∈I . However, two rational numbers
are never Z-linearly independent4. Thus, a fortiori, the whole fam-
ily (mi)i∈I cannot be Z-linearly independent (since a subfamily of a
linearly independent family of vectors must always be linearly inde-
pendent). This contradicts the assumption that this family is a basis.

Thus, in each case, we have found a contradiction, and our proof is com-
plete.

• Now, consider the Z-submodule

V :=
{
(a, b) ∈ Z2 | a ≡ b mod 2

}
of Z2.

4Indeed, let p and q be two rational numbers. We claim that there exist integers a, b ∈ Z that
are not both 0 but still satisfy ap + bq = 0. (This will clearly prove that p and q are not
Z-linearly independent.)

Indeed, if p = 0, then we set a = 1 and b = 0 and are done. Something similar works if

q = 0. So we WLOG assume that p ̸= 0 and q ̸= 0. Write p and q as p =
n
d

and q =
m
e

for
some nonzero integers n, d, m, e (we can do this, since p and q are nonzero rational numbers).
Then, dmp + (−en) q = 0 (check this!), so we have found our a and b (namely, a = dm and
b = −en).
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This Z-submodule V contains the vectors (0, 2) and (1, 1) and (1,−1) and
(4,−2) and many others. Is V free? Can we find a basis for V ?

Let’s try the pair ((2, 0) , (0, 2)). Is this pair a basis for V ? Its span is

span ((2, 0) , (0, 2)) = {c (2, 0) + d (0, 2) | c, d ∈ Z}
= {(2c, 2d) | a, b ∈ Z}

=
{
(a, b) ∈ Z2 | a ≡ b ≡ 0 mod 2

}
.

This is a Z-submodule of V, but not the entire V, since (for example) (1, 1)
belongs to V but not to span ((2, 0) , (0, 2)). So we have “undershot” our
V (by finding a linearly independent family that does not span V).

Let’s try the triple ((2, 0) , (0, 2) , (1, 1)). This triple does span V (check
this!), but is not linearly independent, since

1 · (2, 0) + 1 · (0, 2) + (−2) · (1, 1) = 0.

So we have “overshot” V now (by finding a family that spans V but is not
linearly independent).

Let us try to correct this by throwing away (0, 2). So we are left with the
pair ((2, 0) , (1, 1)). And this pair is indeed a basis of V, as can easily
be checked. Indeed, it is linearly independent (you can check this using
linear algebra, since it clearly suffices to prove its Q-linear independence),
and furthermore spans V because each (a, b) ∈ V can be written as a
linear combination of (2, 0) , (1, 1) as follows:

(a, b) =
a − b

2︸ ︷︷ ︸
∈Z

(since a≡b mod 2)

· (2, 0) + b · (1, 1) .

Another basis for V is the pair ((1, 1) , (1,−1)). Indeed, this pair is lin-
early independent (check this!), and it spans V, because each (a, b) ∈ V
can be written as

(a, b) =
a + b

2︸ ︷︷ ︸
∈Z

· (1, 1) +
a − b

2︸ ︷︷ ︸
∈Z

· (1,−1) ∈ span ((1, 1) , (1,−1)) .

Let us now return to the general case to state a few theorems:

Theorem 1.2.7. Let M be a left R-module. Let n ∈ N. The left R-module M
is free of rank n if and only if M ∼= Rn (as left R-modules).

More concretely:
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Theorem 1.2.8. Let M be a left R-module. Let m1, m2, . . . , mn be n vectors in
M. Consider the map

f : Rn → M,
(r1, r2, . . . , rn) 7→ r1m1 + r2m2 + · · ·+ rnmn.

Then:
(a) This map f is always a left R-module morphism.
(b) The map f is injective if and only if m1, m2, . . . , mn are linearly inde-

pendent.
(c) The map f is surjective if and only if m1, m2, . . . , mn span M.
(d) The map f is an isomorphism5 if and only if (m1, m2, . . . , mn) is a basis

of M.

Note that the map f in Theorem 1.2.8 takes an n-tuple (r1, r2, . . . , rn) of
scalars, and uses these scalars as coefficients to form a linear combination of
m1, m2, . . . , mn. Thus, the values of f are precisely the linear combinations of
m1, m2, . . . , mn.

Proof of Theorem 1.2.8. This is commonly done in linear algebra texts (albeit usu-
ally under the assumption that R is a field, but the proof is the same); thus I
will be brief.

(a) We must prove that f respects addition, respects scaling and respects the
zero. I will only show that it respects addition, since the other two statements
are analogous.

So we must prove that f (a + b) = f (a) + f (b) for all a, b ∈ Rn. Indeed, let
a, b ∈ Rn. Write a and b as

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) .

Then, the definition of Rn (as the direct product R × R × · · · × R︸ ︷︷ ︸
n times

) yields a+ b =

(a1 + b1, a2 + b2, . . . , an + bn). Hence, the definition of f yields

f (a + b) = (a1 + b1)m1 + (a2 + b2)m2 + · · ·+ (an + bn)mn

= (a1m1 + b1m1) + (a2m2 + b2m2) + · · ·+ (anmn + bnmn)

(by right distributivity)
= (a1m1 + a2m2 + · · ·+ anmn)︸ ︷︷ ︸

= f (a)
(by the definition of f , since a=(a1,a2,...,an))

+ (b1m1 + b2m2 + · · ·+ bnmn)︸ ︷︷ ︸
= f (b)

(by the definition of f , since b=(b1,b2,...,bn))

= f (a) + f (b) ,

which is what we wanted to show.

5Of course, “isomorphism” means “left R-module isomorphism” here.
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(b) The map f is an R-module morphism (by part (a)). Thus, it is injective
if and only if Ker f = {0Rn} (by Lemma 1.1.8). Hence, we have the following
chain of logical equivalences:

( f is injective)
⇐⇒ (Ker f = {0Rn})
⇐⇒ (Ker f ⊆ {0Rn}) (since {0Rn} is clearly a subset of Ker f )
⇐⇒ ({a ∈ Rn | f (a) = 0} ⊆ {0Rn})

(since Ker f = {a ∈ Rn | f (a) = 0} by the definition of Ker f )
⇐⇒ (the only a ∈ Rn satisfying f (a) = 0 is 0Rn)

⇐⇒
(

the only (a1, a2, . . . , an) ∈ Rn satisfying f (a1, a2, . . . , an) = 0
is (0, 0, . . . , 0)

)
(

since any a ∈ Rn can be written in the form (a1, a2, . . . , an) ,
and since 0Rn = (0, 0, . . . , 0)

)
⇐⇒

(
the only (a1, a2, . . . , an) ∈ Rn satisfying a1m1 + a2m2 + · · ·+ anmn = 0

is (0, 0, . . . , 0)

)
(

since f (a1, a2, . . . , an) = a1m1 + a2m2 + · · ·+ anmn
for any (a1, a2, . . . , an) ∈ Rn

)
⇐⇒

(
if a1, a2, . . . , an ∈ R satisfy a1m1 + a2m2 + · · ·+ anmn = 0,

then a1 = a2 = · · · = an = 0

)
⇐⇒ (m1, m2, . . . , mn are linearly independent)

(by the definition of linear independence). This proves part (b) of the theorem.
(c) We have the following chain of logical equivalences:

( f is surjective)
⇐⇒ (each m ∈ M can be written as f (a) for some a ∈ Rn)

⇐⇒
(

each m ∈ M can be written as f (a1, a2, . . . , an)
for some (a1, a2, . . . , an) ∈ Rn

)
(since any a ∈ Rn can be written in the form (a1, a2, . . . , an))

⇐⇒
(

each m ∈ M can be written as a1m1 + a2m2 + · · ·+ anmn
for some (a1, a2, . . . , an) ∈ Rn

)
(

since f (a1, a2, . . . , an) = a1m1 + a2m2 + · · ·+ anmn
for any (a1, a2, . . . , an) ∈ Rn

)
⇐⇒ (each m ∈ M is a linear combination of m1, m2, . . . , mn)

(by the definition of a linear combination)
⇐⇒ (m1, m2, . . . , mn span M) .

This proves part (c) of the theorem.
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(d) We have the following chain of logical equivalences:

( f is an R-module isomorphism)

⇐⇒ ( f is invertible)(
since we know from Proposition 1.1.1 that any

invertible R-module morphism is an isomorphism

)
⇐⇒ ( f is bijective)
⇐⇒ ( f is injective)︸ ︷︷ ︸

⇐⇒ (m1,m2,...,mn are linearly independent)
(by part (b))

∧ ( f is surjective)︸ ︷︷ ︸
⇐⇒ (m1,m2,...,mn span M)

(by part (c))

⇐⇒ (m1, m2, . . . , mn are linearly independent) ∧ (m1, m2, . . . , mn span M)

⇐⇒ ((m1, m2, . . . , mn) is a basis of M)

(by the definition of a basis). This proves part (d) of the theorem.

Proof of Theorem 1.2.7. =⇒: Assume that M is free of rank n. That is, M has
a basis (m1, m2, . . . , mn) of size n. Consider this basis. Consider the map f :
Rn → M defined in Theorem 1.2.8. Thus, Theorem 1.2.8 (d) yields that f is an
isomorphism. Hence, Rn ∼= M as left R-modules. In other words, M ∼= Rn as
left R-modules. This proves the “=⇒” direction of Theorem 1.2.7.
⇐=: Assume that M ∼= Rn as left R-modules. But the left R-module Rn is free

of rank n (as we have seen above). Hence, I claim that the left R-module M is
also free of rank n, since M ∼= Rn. Indeed, this follows from the “meta-theorem”
that says that module isomorphisms preserve all “intrinsic” properties of mod-
ules (in this case, this property is “being free of rank n”).

Here is a more pedestrian way to get to the same conclusion: We have M ∼=
Rn, thus Rn ∼= M. In other words, there exists a left R-module isomorphism
g : Rn → M. Consider this g. Now, consider the standard basis (e1, e2, . . . , en)
of the left R-module Rn. Applying g to each vector in this basis, we obtain a
list (g (e1) , g (e2) , . . . , g (en)) of vectors in M. It is straightforward to see that
this new list is a basis of M (indeed, when we apply g to a linear combination
a1e1 + a2e2 + · · ·+ anen of the standard basis (e1, e2, . . . , en) in Rn, then we obtain

g (a1e1 + a2e2 + · · ·+ anen) = a1g (e1) + a2g (e2) + · · ·+ ang (en)

(since g is R-linear) ,

which is the corresponding linear combination of (g (e1) , g (e2) , . . . , g (en));
thus, linear independence of (e1, e2, . . . , en) translates into linear independence
of (g (e1) , g (e2) , . . . , g (en)) (since g sends only 0 to 0), and the same holds for
spanning (since g is bijective)). Hence, M has a basis of size n. In other words,
M is free of rank n.

Either way, the “⇐=” direction of Theorem 1.2.7 is now proved.

Theorem 1.2.8 can be generalized to bases of arbitrary size:
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Theorem 1.2.9. Let M be a left R-module. Let (mi)i∈I be any family of vectors
in M. Consider the map

f : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

(This is well-defined, since any (ri)i∈I ∈ R(I) automatically satisfies the con-
dition (2) because of the definition of R(I).)

Then:
(a) This map f is always a left R-module morphism.
(b) The map f is injective if and only if the family (mi)i∈I is linearly inde-

pendent.
(c) The map f is surjective if and only if the family (mi)i∈I spans M.
(d) The map f is an isomorphism if and only if the family (mi)i∈I is a basis

of M.

Note that the map f here has domain R(I), not RI , since the infinite sum
∑
i∈I

rimi is well-defined for all (ri)i∈I ∈ R(I) but not (in general) for all (ri)i∈I ∈

RI .

Proof of Theorem 1.2.9. Analogous to Theorem 1.2.8, with the usual allowance
for infinite sums.

Remark 1.2.10. As you will have noticed by now, “free module of rank n” is
a generalization of “vector space of dimension n” to arbitrary rings.

We have been careful to speak of “free modules of rank n”, but never of
“the rank of a free module”. This is due to the somewhat perverse-sounding
fact that there can be modules that are free of several ranks simultaneously
(i.e., modules that have bases of different sizes). One way to get such mod-
ules is by taking R to be a trivial ring (in which case, any R-module is trivial
and is free of every rank simultaneously – seriously). If this was the only
example, one could discount the issue as a formality, but there are less trivial
(pardon) examples as well: [DF, §10.3, exercise 27] constructs a ring R over
which Rn ∼= R as left R-modules for each n ∈ {1, 2, 3, . . .} (so R itself is a free
R-module of rank n for each n ∈ {1, 2, 3, . . .}).

If R is a nontrivial commutative ring, then things are nice: The R-modules
R0, R1, R2, . . . are mutually non-isomorphic, so a free R-module can never
have two different ranks at the same time. This is not obvious (see [DF, §10.3,
exercise 2]). We can actually say more: If R is a nontrivial commutative ring,
then an R-module morphism Rm → Rn cannot be injective unless m ≤ n
(see, e.g., https://math.stackexchange.com/questions/106786 ), and can-
not be surjective unless m ≥ n (see, e.g., https://math.stackexchange.com/
questions/20178 ). These facts are in line with the intuition you should

https://math.stackexchange.com/questions/106786
https://math.stackexchange.com/questions/20178
https://math.stackexchange.com/questions/20178
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have from linear algebra (injective maps cannot quash dimensions; surjec-
tive maps cannot create dimensions) and also with the Pigeonhole Principles
from combinatorics (a map between two finite sets M and N cannot be in-
jective unless |M| ≤ |N|, and cannot be surjective unless |M| ≥ |N|). But
actually proving them takes real work!


	Modules ([DF, Chapter 10])
	Module morphisms ([DF, §10.2]) (cont'd)
	Spanning, linear independence, bases and free modules ([DF, §10.3])


