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Math 533 Winter 2021, Lecture 8: Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Modules ([DF, Chapter 10])

1.1. Definition and examples ([DF, §10.1]) (cont’d)

Fix a ring R. Last time, we have defined left R-modules (to remind: these are
essentially additive groups whose elements can be scaled by elements of R),
and I have started giving examples of them. Let me briefly repeat the two
examples I gave:

• The ring R itself becomes a left R-module: Just define the action to be
the multiplication of R. This is called the natural left R-module R. The
R-submodules of this R-module are the left ideals of R. (Every ideal of R
is a left ideal of R, but usually not vice versa.)

• For any n ∈ N, the set

Rn = {(a1, a2, . . . , an) | all ai belong to R}

is a left R-module, with addition and action being entrywise1 and with
the zero vector (0, 0, . . . , 0). This generalizes the Euclidean space Rn from
linear algebra, and many of its analogues.

Here are some more examples:

• The left R-modules Rn (with n ∈ N) tend to have many R-submodules.
When R is a field, this is well-known from linear algebra (where R-
submodules are called R-vector subspaces); in particular, the solution set
of any given system of homogeneous linear equations in n variables is
an R-submodule of Rn. The same applies to any commutative ring R,
but here we have even more freedom: Besides equations, our system can
contain congruences too (as long as they are congruent). For instance, for
R = Z, the set{

(x, y, z, w) ∈ Z4 | x ≡ y mod 2 and x + y + z + w ≡ 0 mod 3

and x − y + z − w = 0
}

1e.g., the action is defined by

r · (a1, a2, . . . , an) = (ra1, ra2, . . . , ran) for all r ∈ R and a1, a2, . . . , an ∈ R.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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is a Z-submodule of Z4. To prove this, you need to check the axioms
(“closed under addition”, “closed under scaling” and “contains the zero
vector”). With a bit of practice, you can do this all in your head.

If R is noncommutative, you have to be somewhat careful with the side
on which the coefficients stand in your system. If the coefficients are on
the right of the variables, then the solution set is a left R-module (so,
e.g., if a and b are two elements of R, then

{
(x, y) ∈ R2 | xa + yb = 0

}
is a left R-module); on the other hand, if the coefficients are on the left
of the variables, then the solution set is a right R-module. (Again, this
is not hard to check: e.g., the set

{
(x, y) ∈ R2 | xa + yb = 0

}
is closed

under the scaling maps of a left R-module because xa + yb = 0 implies
rxa + ryb = r (xa + yb)︸ ︷︷ ︸

=0

= 0. Meanwhile, in general, this set is not closed

under the scaling maps of a right R-module, since xa + yb = 0 does not
imply xra + yrb = 0.)

• Just as we defined the left R-module Rn consisting of all n-tuples, we
can define a left R-module “R∞” consisting of all infinite sequences. It
is commonly denoted by RN (since there are different kinds of infinity).
Explicitly, we define the left R-module RN by

RN := {(a0, a1, a2, . . .) | all ai belong to R} ,

where addition and action are defined entrywise.

This left R-module RN has an R-submodule

R(N) :=
{
(a0, a1, a2, . . .) ∈ RN | only finitely many i ∈ N satisfy ai ̸= 0

}
.

You can check that this is indeed an R-submodule of RN. (For instance,
it is closed under addition, because if only finitely many i ∈ N satisfy
ai ̸= 0 and only finitely many i ∈ N satisfy bi ̸= 0, then only finitely
many i ∈ N satisfy ai + bi ̸= 0.)

For example, if R = Q, then

(1, 1, 1, . . .) ∈ RN \ R(N)

and (0, 0, 0, . . .) ∈ R(N)

and (1, 0, 0, 0, . . .) ∈ R(N)

and

1, 0, 4, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 ∈ R(N)

and

 1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
ones and zeroes in turn

 ∈ RN \ R(N).
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• Generalizing Rn, here is a way to build modules out of other modules:

Let n ∈ N, and let M1, M2, . . . , Mn be any n left R-modules. Then, the
Cartesian product M1 × M2 × · · · × Mn becomes a left R-module itself,
where addition and action are defined entrywise: e.g., the action is de-
fined by

r · (m1, m2, . . . , mn) = (rm1, rm2, . . . , rmn) for all r ∈ R and mi ∈ Mi.

This left R-module M1 × M2 × · · · × Mn is called the direct product of
M1, M2, . . . , Mn. If all of M1, M2, . . . , Mn are the natural left R-module R,
then this direct product is precisely the left R-module Rn defined above.

This direct product M1 × M2 × · · · × Mn can be generalized further, allowing
products of infinitely many modules, too. Just as for rings, the best setting for
this is using families, not lists:2

Proposition 1.1.1. Let I be any set. Let (Mi)i∈I be any family of left R-
modules. Then, the Cartesian product

∏
i∈I

Mi =
{

all families (mi)i∈I with mi ∈ Mi for all i ∈ I
}

becomes a left R-module if we endow it with the entrywise addition (i.e.,
we set (mi)i∈I + (ni)i∈I = (mi + ni)i∈I for any two families (mi)i∈I , (ni)i∈I ∈
∏
i∈I

Mi) and the entrywise scaling (i.e., we set r (mi)i∈I = (rmi)i∈I for any

r ∈ R and any family (mi)i∈I ∈ ∏
i∈I

Mi) and with the zero vector (0)i∈I .

Definition 1.1.2. This left R-module is denoted by ∏
i∈I

Mi and called the direct

product of the left R-modules Mi.
If I = {1, 2, . . . , n} for some n ∈ N, then this left R-module is also denoted

by M1 × M2 × · · · × Mn, and we identify a family (mi)i∈I = (mi)i∈{1,2,...,n}
with the n-tuple (m1, m2, . . . , mn). (Thus, M1 × M2 × · · · × Mn is precisely
the direct product M1 × M2 × · · · × Mn we defined above.)

If all the left R-modules Mi are equal to some left R-module M, then their
direct product ∏

i∈I
Mi = ∏

i∈I
M is also denoted MI . Note that this generalizes

the RN defined above.
We set Mn = M{1,2,...,n} for each n ∈ N and any left R-module M. This

generalizes the left R-module Rn for n ∈ N discussed above.

This was quite predictable; but there is more. Indeed, we can generalize not
just RN but also its submodule R(N), and the result is at least as important:3

2The proof of Proposition 1.1.1 is easy and LTTR.
3The proof of Proposition 1.1.3 is easy and LTTR.
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Proposition 1.1.3. Let I be any set. Let (Mi)i∈I be any family of left R-
modules. Define

⊕
i∈I

Mi to be the subset

{
(mi)i∈I ∈ ∏

i∈I
Mi | only finitely many i ∈ I satisfy mi ̸= 0

}

of ∏
i∈I

Mi. Then,
⊕
i∈I

Mi is a left R-submodule of ∏
i∈I

Mi, and thus becomes a

left R-module itself.

Definition 1.1.4. This left R-module
⊕
i∈I

Mi is called the direct sum of the

R-modules Mi.
If I = {1, 2, . . . , n} for some n ∈ N, then this left R-module is also denoted

by M1 ⊕ M2 ⊕ · · · ⊕ Mn.

The last part of this definition might raise some eyebrows. In fact, if the set
I is finite, then

⊕
i∈I

Mi = ∏
i∈I

Mi (since the condition “only finitely many i ∈ I

satisfy mi ̸= 0” is automatically satisfied for any family (mi)i∈I when I is finite).
Thus, in particular,

M1 ⊕ M2 ⊕ · · · ⊕ Mn = M1 × M2 × · · · × Mn

for any left R-modules M1, M2, . . . , Mn. So we have introduced two notations
for the same thing. Nevertheless, both are in use.

For I = N and Mi = R, the direct sum
⊕
i∈I

Mi =
⊕

i∈N

R is precisely the R-

module R(N) defined above.
For arbitrary I and any left R-module M, the direct sum

⊕
i∈I

M is denoted by

M(I).

1.1.1. Restriction of modules

Here are some more ways to construct modules over rings:

• If R is a subring of a ring S, then S is a left R-module (where the action
of R on S is defined by restricting the multiplication map S × S → S to
R × S) and a right R-module (in a similar way).

Let me restate this in a more down-to-earth way: If R is a subring of a ring
S, then we can multiply any element of R with any element of S (since
both elements lie in the ring S); this makes S into a left R-module (and
likewise, S becomes a right R-module). Explicitly, the action of R on the
left R-module S is given by

rs = rs for all r ∈ R and s ∈ S
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(where the “rs” on the left hand side means the image of (r, s) under the
action, whereas the “rs” on the right hand side means the product of r
and s in the ring S).

Thus, for example, C is an R-module (since R is a subring of C) and also
a Q-module (for similar reasons). (In this example, you can say “vector
space” instead of “module”, since R and Q are fields.)

• More generally: If R and S are any two rings, and if f : R → S is a ring
morphism, then S becomes a left R-module (with the action of R on S
being defined by

rs = f (r) s for all r ∈ R and s ∈ S

) and a right R-module (in a similar way). The proof of this is easy. These
R-module structures are sometimes said to be induced by the morphism
f .

Our previous example (in which we made S into an R-module whenever
R is a subring of S) is the particular case of this construction obtained
when f is the canonical inclusion of R into S.

Here are some other particular cases:

– Any quotient ring R/I of a ring R (by some ideal I) becomes a left
R-module, because the canonical projection π : R → R/I (which
sends every r ∈ R to its residue class r ∈ R/I) is a ring morphism.
Explicitly, the action of R on R/I is given by

r · u = π (r)︸ ︷︷ ︸
=r

·u = r · u = ru for all r, u ∈ R.

Similarly, R/I becomes a right R-module.

– Here is another particular case: I claim that the abelian group Z/5
becomes a Z [i]-module4, if we define the action by

(a + bi) · m = a + 2b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

To wit, the map

f : Z [i] → Z/5,

a + bi 7→ a + 2b

4As usual, Z [i] denotes the ring of the Gaussian integers, with i =
√
−1.
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is a ring morphism (check this!5); and this can be used to turn Z/5
into a Z [i]-module by our above construction; this yields precisely
the action I claimed above (because all a + bi ∈ Z [i] and m ∈ Z/5
satisfy (a + bi) · m = f (a + bi)︸ ︷︷ ︸

=a+2b

·m = a + 2b · m).

This is not the only way to turn Z/5 into a Z [i]-module. We could
just as well use the ring morphism

g : Z [i] → Z/5,

a + bi 7→ a + 3b

instead of f . This would give us a Z [i]-module Z/5 with action
given by

(a + bi) · m = a + 3b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

Thus, we have obtained two different Z [i]-module structures on
Z/5 – that is, two different Z [i]-modules that are equal as sets (and
even as additive groups) but different as Z [i]-modules (and not even
isomorphic as such). None of these two module structures is more
natural or otherwise better than the other. Thus, when you speak
of a “Z [i]-module Z/5”, you need to clarify which one you mean.
(Such situations are rather frequent in algebra. “Natural” R-module
structures – i.e., structures that are clearly “the right one” – are rare
in comparison.)

• Even more generally: If R and S are two rings, and if f : R → S is a ring
morphism, then any left S-module M (not just S itself) naturally becomes
a left R-module, with the action defined by

rm = f (r)m for all r ∈ R and m ∈ M.

5Indeed, it is pretty easy to see that this map f respects addition, the zero and the unity. It
remains to show that this map respects multiplication. To show this, we fix any x, y ∈ Z [i].
We then need to show that f (xy) = f (x) f (y).

Write x and y as x = a + bi and y = c + di for some a, b, c, d ∈ Z. Then, xy =
(a + bi) (c + di) = (ac − bd) + (ad + bc) i (by the rule for multiplying complex numbers).
Hence,

f (xy) = f ((ac − bd) + (ad + bc) i) = ac − bd + 2 (ad + bc) (1)

(by the definition of f ). On the other hand, x = a + bi entails f (x) = f (a + bi) = a + 2b,
and similarly we find f (y) = c + 2d. Multiplying these two equalities, we find

f (x) f (y) = a + 2b · c + 2d = (a + 2b) (c + 2d) = ac + 22bd + 2 (ad + bc) (2)

(since (a + 2b) (c + 2d) = ac+ 22bd+ 2 (ad + bc)). Now, the right hand sides of the equalities
(1) and (2) are identical (since 22 ≡ −1 mod 5 and thus 22

= −1, so that 22bd = −bd); hence,
so are the left hand sides. In other words, f (xy) = f (x) f (y). This completes the proof
that the map f respects multiplication; therefore, f is a ring morphism.
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This method of turning S-modules into R-modules is called restricting
an S-module to R. If we apply this to a canonical inclusion (i.e., if R
is a subring of S and if f : R → S is the canonical inclusion), then we
conclude that any module over a ring naturally becomes a module over
any subring. For example, any C-module naturally becomes an R-module
(this is known as “decomplexification” in linear algebra6) and a Q-module
and a Z-module.

1.1.2. More examples

Here is another general construction:

Proposition 1.1.5. Let R be a ring. Let I be an ideal of R. Let M be a left
R-module. An (I, M)-product shall mean a product of the form im with i ∈ I
and m ∈ M. Then,

IM := {finite sums of (I, M) -products}

is an R-submodule of M.

Proof. This is fairly similar to the proof of the fact that the product I J of two
ideals I and J is again an ideal (see Exercise 8 (a) on homework set #1).

Proposition 1.1.6. Let R be a commutative ring. Let a ∈ R. Let M be an
R-module. Then,

aM := {am | m ∈ M}
is an R-submodule of M.

In particular, 0M = {0M} and 1M = M are R-submodules of M.

Proof. This is easy and LTTR.

The last statement of Proposition 1.1.6 holds for noncommutative rings R,
too: If M is a left R-module, then {0M} and M are R-submodules of M. These
are the “bookends” for the R-submodules of M (in the sense that every R-
submodule N of M satisfies {0M} ⊆ N ⊆ M).

Here are a few more examples of modules:

• Let n ∈ N, and let R be a ring. The set Rn is not only a left R-module (as
we have seen), but also a right Rn×n-module7, where the action of Rn×n

6Of course, again, linear algebraists speak of vector spaces instead of modules.
From linear algebra, you might also know a procedure going in the other direction: “com-

plexification”, which turns an R-vector space into a C-vector space. We will later learn how
to generalize this to arbitrary ring morphisms.

7Recall that Rn×n is the ring of n × n-matrices over R.



Lecture 8, version February 22, 2023 page 8

on Rn is the vector-by-matrix multiplication map

Rn × Rn×n → Rn,
(v, M) 7→ vM

(where we identify n-tuples v ∈ Rn with row vectors).

• More generally, for any n, m ∈ N, the set Rn×m of all n × m-matrices is a
left Rn×n-module and a right Rm×m-module (since an n×m-matrix can be
multiplied by an n × n-matrix from the left and by an m × m-matrix from
the right, and since the module axioms follow from the standard laws
of matrix multiplication such as associativity and distributivity). Even
better, this set is a so-called (Rn×n, Rm×m)-bimodule (we will later define
this notion; essentially it means a left and a right module structure that fit
together well).

• Let us study a particular case of this.

Namely, let R be a field F, and let n = 2. So F2 is a left F-module, with
the action given by

λ (a, b) = (λa, λb) for all λ, a, b ∈ F,

and is a right F2×2-module, with the action given by

(a, b)
(

x y
z w

)
= (ax + bz, ay + bw) for all a, b, x, y, z, w ∈ F.

What are the F-submodules of F2 ? These are precisely the F-vector sub-
spaces of F2; as you know from linear algebra, these subspaces are the
whole F2 as well as the zero subspace {0F2} and all lines through the
origin.

What are the F2×2-submodules of F2 ? Only F2 and {0F2}, because any
two nonzero vectors in F2 can be mapped to one another by a 2× 2-matrix.

Now, consider the subring

F2≤2 :=
{(

x 0
z w

)
| x, z, w ∈ F

}
of F2×2. This is the ring of all lower-triangular 2 × 2-matrices over F.
(Yes, it is a subring of F2×2, since the sum and the product of two lower-
triangular matrices are lower-triangular and since the zero and identity
matrices are lower-triangular.) Since F2 is a right F2×2-module, F2 must
also be a right F2≤2-module (by restriction). What are the F2≤2-submodules
of F2 ? Only F2 and {0F2} and {(a, 0) | a ∈ F}. (You might have to prove
this on a future homework set.)
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1.2. A couple generalities

Let us show a few general properties of modules. Recall that when a group
is written additively (i.e., its operation is denoted by +), the inverse of an
element a of this group is denoted by −a (and is called its additive inverse).
The following proposition says that the additive inverse of a vector in an R-
module can be obtained by scaling the vector by −1:

Proposition 1.2.1. Let R be a ring. Let A be a left R-module. Then, (−1) a =
−a for each a ∈ A.

Proof. Let a ∈ A. Then, 1a = a (by one of the module axioms). Thus,

(−1) a + a︸︷︷︸
=1a

= (−1) a + 1a

= ((−1) + 1)︸ ︷︷ ︸
=0

a (by the right distributivity axiom)

= 0a = 0 (by one of the module axioms) .

In other words, (−1) a is an additive inverse of a. But the additive inverse of a
is −a. Thus, we conclude that (−1) a = −a. This proves Proposition 1.2.1.

Further properties of negation can easily be derived from this. For example,

(−r) (−a) = ra for all r ∈ R and a ∈ A.

Proposition 1.2.2. Let R be a ring. Let A be a left R-module. Then, any
R-submodule of A is a subgroup of the additive group (A,+, 0).

Proof of Proposition 1.2.2. Let B be an R-submodule of A. Then, B is closed un-
der addition and under scaling and contains the zero vector. Since B is closed
under scaling, we have (−1) b ∈ B for each b ∈ B. However, each b ∈ B satisfies
(−1) b = −b (by Proposition 1.2.1, applied to a = b) and thus −b = (−1) b ∈ B.
In other words, B is closed under negation (= taking additive inverses). Thus,
B is a subgroup of (A,+, 0).

Next, let us recall how we defined finite sums ∑
s∈S

as of elements of a ring.

In the same way, we can define a finite sum ∑
s∈S

as of elements of any additive

group, and thus a finite sum ∑
s∈S

as of elements of any R-module (since any R-

module is an additive group). Thus, in particular, if a1, a2, . . . , an are n elements
of an R-module A, then the finite sum a1 + a2 + · · ·+ an ∈ A is well-defined.

The following “generalized distributivity laws” hold in any left R-module:
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Proposition 1.2.3. Let R be a ring. Let M be a left R-module. Then:
(a) We have

(r1 + r2 + · · ·+ rk)m = r1m + r2m + · · ·+ rkm

for any r1, r2, . . . , rk ∈ R and m ∈ M.
(b) We have

r (m1 + m2 + · · ·+ mi) = rm1 + rm2 + · · ·+ rmi

for any r ∈ R and m1, m2, . . . , mi ∈ M.

Proof. (a) This follows by applying the right distributivity law (one of the mod-
ule axioms) many times. (More precisely, this follows by induction on k; the
right distributivity law is used in the induction step. The induction base follows
from the 0m = 0 axiom.)

(b) This follows by applying the left distributivity law (one of the module
axioms) many times. (More precisely, this follows by induction on i; the left
distributivity law is used in the induction step. The induction base follows
from the r · 0M = 0M axiom.)

The following convention is useful when dealing with R-modules. Essen-
tially, it says that (just as with products of multiple elements in a ring or in a
group) we can drop parentheses when we scale an element of an R-module by
several elements of R:

Convention 1.2.4. Let R be a ring. Let M be a left R-module. Let r, s ∈ R
and m ∈ M. Then, (rs)m and r (sm) are the same vector (by the associativity
axiom in the definition of a left R-module). We shall denote this vector by
rsm. Likewise, expressions like r1r2 · · · rkm (for r1, r2, . . . , rk ∈ R and m ∈ M)
will be understood.

Everything we said above about left R-modules can be adapted to right R-
modules in a straightforward way; we leave the details to the reader.

1.3. Abelian groups as Z-modules ([DF, §10.1])

Now, let us try to understand Z-modules in particular.

Proposition 1.3.1. Let A be an abelian group. Assume that A is written
additively (i.e., the operation of A is denoted by +, and the neutral element
by 0). For any n ∈ Z and a ∈ A, define

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0.
(3)
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Thus, we have defined a map Z × A → A, (n, a) 7→ na.
(a) The group A becomes a Z-module (where we take this map as the

action of Z on A, and the pre-existing addition of A as the addition).
(b) This is the only Z-module structure on A. That is, if A is any Z-

module, then the action of Z on A is given by the formula (3) (and therefore
uniquely determined by the abelian group structure on A).

(c) The Z-submodules of A are precisely the subgroups of A.

Proof of Proposition 1.3.1. LTTR. Here are the main ideas:
(a) You have to prove axioms like (n + m) a = na + ma and n (a + b) = na +

nb and (nm) a = n (ma) for all n, m ∈ Z and a, b ∈ A. These facts are commonly
proved for A = Z in standard texts on the construction of the number system;
if you pick the “right” proofs, then you can adapt them to the general case just
by replacing Z by A. The main idea is “reduce to the case when n and m are
nonnegative, and then prove them by induction on n and m”. The details are
rather laborious, as there are several cases to discuss based on the signs of n, m
and n + m.

(b) Given any Z-module structure on A, we must have

na = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n times

a = 1a + 1a + · · ·+ 1a︸ ︷︷ ︸
n times

(by Proposition 1.2.3 (a))

= a + a + · · ·+ a︸ ︷︷ ︸
n times

(by the 1a = a axiom)

for any n ∈ N and any a ∈ A. This proves the “top half” of (3). It is not hard
to prove the “bottom half” either (use the right distributivity axiom to see that
na + (−n) a = (n + (−n))︸ ︷︷ ︸

=0

a = 0a = 0).

(c) Proposition 1.2.2 shows that any Z-submodule of A is a subgroup of
A. Conversely, we must prove that if B is a subgroup of A, then B is a Z-
submodule of A. So let B be a subgroup of A. Then, any n ∈ Z and b ∈ B
satisfy

nb =


b + b + · · ·+ b︸ ︷︷ ︸

n times

, if n ≥ 0;

−

b + b + · · ·+ b︸ ︷︷ ︸
−n times

 , if n < 0
∈ B

(since B is closed under addition and negation and contains 0). In other words,
B is closed under scaling. Hence, B is a Z-submodule of A (since B is a sub-
group of A and therefore closed under addition and contains 0), qed.

Proposition 1.3.1 reveals what Z-modules really are: In general, when R is
a ring, an R-module is an abelian group A with an extra structure (namely, an
action of R on A); however, for R = Z, this extra structure is redundant (in the
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sense that it can always be constructed in a unique way from the abelian group
structure), and so a Z-module is just an abelian group in fancy clothes.8 Thus,
we shall identify abelian groups with Z-modules (at least when the abelian
groups are written additively).

This has a rather convenient consequence: The theory of R-modules is a
generalization of the theory of abelian groups. In particular, anything we have
proved or will prove for R-modules can therefore be applied to abelian groups
(by setting R = Z).

Thus, we have understood what Z-modules are. What about Q-modules?
Not every abelian group can be made into a Q-module:

Example 1.3.2. There is no Q-module structure on Z/2 (that is, there is no
Q-module whose additive group is Z/2).

Proof. This follows from linear algebra (since Q-modules are Q-vector spaces
and thus have dimensions; but Z/2 is too large to have dimension 0 and yet
too small to have dimension > 0). Alternatively, you can do it by hand: Assume
that Z/2 is a Q-module in some way. Then,

1
2
·
(
2 · 1

)
=

(
1
2
· 2

)
︸ ︷︷ ︸

=1

·1 = 1 · 1 = 1,

so that
1 =

1
2
·
(
2 · 1

)︸ ︷︷ ︸
=0

=
1
2
· 0 = 0,

which contradicts 1 ̸= 0.

Thus we see that not every abelian group can be made into a Q-module
(unlike for Z-modules). However, any abelian group that can be made into a Q-
module can only be made so in one way. (This will be exercise 3 on homework
set #3.)

What about R-modules? Here, we get neither existence nor uniqueness:
There are abelian groups that cannot be made into R-modules; there are also
abelian groups that can be made into R-modules in multiple different ways. So
the action of R on an R-module cannot be reconstructed from the underlying
group of the latter (unlike for Z and Q). “Most” rings behave more like R than
like Z and Q in this regard.

8Don’t get me wrong: “redundant” and “in fancy clothes” doesn’t mean “useless”; it just
means that the scaling is determined by the abelian group structure.
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1.4. Module morphisms ([DF, §10.2])

Module morphisms are defined similarly to ring morphisms, but you probably
already know their definition from linear algebra: they are also known as linear
maps. Let me recall the definition:

Definition 1.4.1. Let R be a ring. Let M and N be two left R-modules.
(a) A left R-module homomorphism (or, for short, left R-module mor-

phism, or left R-linear map) from M to N means a map f : M → N that

• respects addition (i.e., satisfies f (a + b) = f (a)+ f (b) for all a, b ∈ M);

• respects scaling (i.e., satisfies f (ra) = r f (a) for all r ∈ R and a ∈ M);

• respects the zero (i.e., satisfies f (0M) = 0N).

You can drop the word “left” (and, e.g., just say “R-module morphism”)
when it is clear from the context.

(b) A left R-module isomorphism (or, informally, left R-module iso) from
M to N means an invertible left R-module morphism f : M → N whose
inverse f−1 : N → M is also a left R-module morphism.

(c) The left R-modules M and N are said to be isomorphic (this is written
M ∼= N) if there exists a left R-module isomorphism f : M → N.

(d) We let HomR (M, N) be the set of all left R-module morphisms from
M to N.

(e) Right R-module morphisms are defined similarly.

It is not hard to show that the “respects the zero” axiom in Definition 1.4.1
(a) is redundant. (In fact, it is “doubly redundant”: It follows from each of the
other two axioms!)

Here are some examples of R-module morphisms:

• You have seen linear maps between vector spaces in linear algebra. These
are precisely the left R-module morphisms when R is a field.

• Let k ∈ Z. The map Z → Z, a 7→ ka is always a Z-module morphism.
(For comparison: It is a ring morphism only when k = 1.)

• More generally: Let R be a commutative ring. Let k ∈ R. Let M be any R-
module. Then, the map M → M, a 7→ ka is an R-module morphism. (This
is the map that we have called “scaling by k”.) If R is not commutative,
then this map is not a (left) R-module morphism in general!

• Let R be a ring. Let n ∈ N. For any i ∈ {1, 2, . . . , n}, the map

πi : Rn → R,
(a1, a2, . . . , an) 7→ ai
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is a left R-module morphism.

More generally: If (Mi)i∈I is a family of left R-modules, and if j ∈ I, then
the map

πj : ∏
i∈I

Mi → Mj,

(mi)i∈I 7→ mj

is a left R-module morphism. This follows immediately from the fact that
the structure of ∏

i∈I
Mi (addition, action and zero) is defined entrywise.

• If M and N are two R-modules, then the map

M × N → N × M,
(m, n) 7→ (n, m)

is an R-module isomorphism.

The Z-module morphisms (i.e., the Z-linear maps) are simply the group
morphisms of additive groups:

Proposition 1.4.2. Let M and N be two Z-modules. Then,

HomZ (M, N) = {group morphisms (M,+, 0) → (N,+, 0)} .

Proof. We have to show that any group morphism f : (M,+, 0) → (N,+, 0)
automatically respects the scaling – i.e., that it satisfies f (na) = n f (a) for all
n ∈ Z and a ∈ M. This is LTTR.
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