
Lecture 7, version February 22, 2023 page 1

Math 533 Winter 2021, Lecture 7: Rings and
ideals → Modules

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Rings and ideals (cont’d)

1.1. Unique factorization domains ([DF, §8.3]) (cont’d)

Here are some examples of UFDs:

• The ring Z is a UFD. This is, of course, a consequence of Euclid’s famous
theorem that says that any positive integer can be uniquely decomposed
into a product of primes. Our definition of an irreducible factorization
differs slightly from the classical notion of a prime factorization in arith-
metic, since our irreducible elements are allowed to be negative and since
we only require r ∼ p1p2 · · · pn (rather than r = p1p2 · · · pn); but it is
pretty easy to conciliate the two concepts by replacing all negative factors
by their absolute values. For example, (−3,−2, 2) is an irreducible factor-
ization of −12, since −12 ∼ (−3) · (−2) · 2; but of course it corresponds
to the classical prime factorization 12 = 3 · 2 · 2 of the positive integer 12.

• Any field is a UFD, since every nonzero element is a unit and thus has
the empty tuple as its only irreducible factorization.

• We shall soon see that every PID is a UFD.

• The rings

Z [2i] = {a + b · 2i | a, b ∈ Z}
= {Gaussian integers with an even imaginary part}

and
Z

[√
−5

]
=

{
a + b

√
−5 | a, b ∈ Z

}
are not UFDs.

In the previous lecture, we proved that an element of a PID is prime if and
only if it is irreducible. We shall now prove the same result for UFDs (which is
stronger, as we will soon see that every PID is a UFD):

Proposition 1.1.1. Let R be a UFD. Let r ∈ R. Then, r is prime if and only if
r is irreducible.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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Proof. =⇒: If r is prime, then r is irreducible. In fact, we have already proved
this in the previous lecture (and not just for a UFD, but for any integral do-
main).
⇐=: Assume that r is irreducible. We must show that r is prime.
Let a, b ∈ R satisfy r | ab. We must prove that r | a or r | b.
Assume the contrary. Thus, neither a nor b is a multiple of r. Hence, in par-

ticular, a and b are nonzero (since 0 is a multiple of r). Thus, a and b have irre-
ducible factorizations (since R is a UFD). Let (p1, p2, . . . , pn) and (q1, q2, . . . , qm)
be irreducible factorizations of a and b. Thus, p1, p2, . . . , pn and q1, q2, . . . , qm
are irreducible elements of R satisfying

a ∼ p1p2 · · · pn and b ∼ q1q2 · · · qm.

Multiplying a ∼ p1p2 · · · pn with b ∼ q1q2 · · · qm, we see that

ab ∼ p1p2 · · · pnq1q2 · · · qm (1)

(since a product of two units is again a unit).
However, r | ab. Thus, there exists a q ∈ R such that ab = rq. Consider this q.

Note that ab is nonzero (since a and b are nonzero, but R is an integral domain).
Thus, q is nonzero (since q = 0 would imply ab = r q︸︷︷︸

=0

= 0, which would

contradict the previous sentence). Hence, q has an irreducible factorization
(since R is a UFD). Let (s1, s2, . . . , sk) be an irreducible factorization of q. Thus,
s1, s2, . . . , sk are irreducible elements of R satisfying q ∼ s1s2 · · · sk. From q ∼
s1s2 · · · sk, we obtain rq ∼ rs1s2 · · · sk. Since ab = rq, this rewrites as

ab ∼ rs1s2 · · · sk. (2)

Now, we conclude that the two tuples

(p1, p2, . . . , pn, q1, q2, . . . , qm) and (r, s1, s2, . . . , sk)

are two irreducible factorizations of ab (since all their entries
p1, p2, . . . , pn, q1, q2, . . . , qm and r, s1, s2, . . . , sk are irreducible, and since (1) and
(2) hold). Thus, by the uniqueness condition in the definition of a UFD (which
says that the irreducible factorization of an element is unique up to associates),
these two tuples must be identical up to associates. In particular, every entry
of the second tuple must be associate to some entry of the first. Hence, in
particular, the entry r of the second factorization must be associate to one of
the entries p1, p2, . . . , pn, q1, q2, . . . , qm of the first. In other words, we must have

r ∼ pi for some i ∈ {1, 2, . . . , n} (3)

or
r ∼ qj for some j ∈ {1, 2, . . . , m} . (4)
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However, both of these possibilities lead to contradictions: Indeed, if (3) holds,
then we have r | a (since1 r ∼ pi | p1p2 · · · pn ∼ a), which contradicts the fact
that a is not a multiple of r. Likewise, if (4) holds, then we have r | b, which
contradicts the fact that b is not a multiple of r. Thus, we get a contradiction in
either case, and our proof is complete.

If R is a UFD, and if r ∈ R is nonzero, then r is associate to a finite product
p1p2 · · · pn of irreducible elements (by the definition of a UFD). This product
can be simplified by collecting associate factors together. For example, in Z, we
have

−24 = 2 · (−2) · 2 · 3 = −23 · 3.

Here is what we get in general:

Proposition 1.1.2. Let R be a UFD. Let r ∈ R be nonzero. Then:
(a) There exists a list (q1, q2, . . . , qk) of mutually non-associate irreducible

elements q1, q2, . . . , qk ∈ R as well as a list (e1, e2, . . . , ek) of positive integers
such that

r ∼ qe1
1 qe2

2 · · · qek
k .

We shall refer to these two lists as the prime power factorization of r.
(b) These two lists are unique up to associates and up to simultaneous

permutation. (That is, any two prime power factorizations of r can be trans-
formed into one another by replacing the irreducible elements q1, q2, . . . , qk
by associates, and reordering them while carrying the exponents e1, e2, . . . , ek
along with them.)

Proof of Proposition 1.1.2. (a) Start with an irreducible factorization of r, and col-
lect associate factors together. For example, if an irreducible factorization of r
has the form (p1, p2, p3, p4, p5, p6) with p1 ∼ p4 and p2 ∼ p5 ∼ p6 (and no other
associate relations between its entries), then

r ∼ p1p2p3p4p5p6 ∼ p1p2p3p1p2p2 = p2
1p3

2p3,

and this is a prime power factorization of r.
(b) This follows from the uniqueness of an irreducible factorization (up to

associates).

Proposition 1.1.3. Let R be a UFD. Let a, b ∈ R be nonzero. Then, there
exists a list (p1, p2, . . . , pn) of mutually non-associate irreducible elements
p1, p2, . . . , pn ∈ R as well as two lists (e1, e2, . . . , en) and ( f1, f2, . . . , fn) of
nonnegative integers such that

a ∼ pe1
1 pe2

2 · · · pen
n and b ∼ p f1

1 p f2
2 · · · p fn

n .

1We will use the fact that associates divide each other: i.e., if u and v are two elements of R
satisfying u ∼ v, then u | v.
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Proof. Proposition 1.1.2 shows that a and b have prime power factorizations

a ∼ qe1
1 qe2

2 · · · qek
k and b ∼ r f1

1 r f2
2 · · · r fm

m .

All we need now is to reconcile these prime power factorizations so that they
contain the same irreducible elements (albeit possibly with 0 exponents). For
this purpose, we do the following steps:

1. If some of the qi are associate to some of the rj, then we replace these qi
by the respective rj.

2. If some of the qi don’t appear among the rj, then we insert q0
i factors into

the prime power factorization of b.

3. If some of the rj don’t appear among the qi, then we insert r0
j factors into

the prime power factorization of a.

For example, if R = Z and a = 12 and b = 45, and if we start with the prime
power factorizations a ∼ 22 · (−3)1 and b ∼ 32 · 51, then Step 1 transforms the
prime power factorization of a into a ∼ 22 · 31 (since the −3 is replaced by
the 3 from the prime power factorization of b); Step 2 then inserts a 20 factor
into the prime power factorization of b (so it becomes b ∼ 20 · 32 · 51); Step 3
then inserts a 50 factor into the prime power factorization of a (so it becomes
a ∼ 22 · 31 · 50). The resulting factorizations are a ∼ 22 · 31 · 50 and b ∼ 20 · 32 · 51,
just as promised by Proposition 1.1.3.

Proposition 1.1.4. Let R be a UFD. Let a, b ∈ R be nonzero. Let
(p1, p2, . . . , pn), (e1, e2, . . . , en) and ( f1, f2, . . . , fn) be as in Proposition 1.1.3.
Then:

(a) The element

pmin{e1, f1}
1 pmin{e2, f2}

2 · · · pmin{en, fn}
n

is a gcd of a and b.
(b) The element

pmax{e1, f1}
1 pmax{e2, f2}

2 · · · pmax{en, fn}
n

is an lcm of a and b.

Proof. This is done just as it is commonly done for integers in elementary
number theory. The details are LTTR. (See, e.g., the proof of Proposition 1.11
in https://www.math.columbia.edu/~rf/factorization1.pdf for some details
on the proof of part (a); the proof of part (b) is similar.)

https://www.math.columbia.edu/~rf/factorization1.pdf
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Corollary 1.1.5. Any two elements in a UFD have a gcd and an lcm.

Proof. Let a and b be two elements of a UFD R. We must show that a and b
have a gcd and an lcm.

If b = 0, then this is easy (just show that a is a gcd of a and 0, and that 0 is an
lcm of a and 0). Thus, we WLOG assume that b ̸= 0. For a similar reason, we
WLOG assume that a ̸= 0. Hence, Proposition 1.1.3 shows that there exists a list
(p1, p2, . . . , pn) of mutually non-associate irreducible elements p1, p2, . . . , pn ∈
R as well as two lists (e1, e2, . . . , en) and ( f1, f2, . . . , fn) of nonnegative integers
such that

a ∼ pe1
1 pe2

2 · · · pen
n and b ∼ p f1

1 p f2
2 · · · p fn

n .

Thus, Proposition 1.1.4 shows that a and b have a gcd and a lcm.

Finally, as promised, let us prove the following theorem, which provides us
many UFDs to apply the above results to:

Theorem 1.1.6. Any PID is a UFD.

I won’t prove Theorem 1.1.6 here; a proof can be found in [DF, §8.3, The-
orem 14]. The proof of the existence of an irreducible factorization is rather
philosophical and non-constructive; it yields no algorithm for actually finding
such a factorization. (And indeed, there are UFDs in which finding such a
factorization is algorithmically impossible.) The proof of the uniqueness of an
irreducible factorization is an analogue of the proof you know from elementary
number theory (since we know that irreducible elements are prime).

The following corollary combines several results we have seen above in a
convenient hierarchy:

Corollary 1.1.7. We have

{fields} ⊆ {Euclidean domains} ⊆ {PIDs} ⊆ {UFDs}
⊆ {integral domains} ⊆ {commutative rings} ⊆ {rings} .

1.2. Application: Fermat’s p = x2 + y2 theorem ([DF, §8.3])

As an application of some of the above, we will show a result of Fermat:2

Theorem 1.2.1 (Fermat’s two-squares theorem). Let p be a prime number
such that p ≡ 1 mod 4. Then, p can be written as a sum of two perfect
squares.

2The word “prime number” is understood as in classical number theory – i.e., a positive
integer p > 1 whose only positive divisors are 1 and p. In particular, negative numbers are
not allowed as prime numbers, even though they are prime elements of Z.
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I will give a rough outline of how this can be proved using rings. Some of
the steps I will leave to you (they will be problems on homework set #2).

First, a general curious fact about primes:

Theorem 1.2.2 (Wilson’s theorem). Let p be a prime. Then, (p − 1)! ≡
−1 mod p.

For example, for p = 5, this is saying that 4! ≡ −1 mod 5. And indeed,
4! = 24 ≡ −1 mod 5.

Proof of Theorem 1.2.2. We must show that (p − 1)! ≡ −1 mod p. Equivalently,
we must show that

(p − 1)! = −1 in Z/p. (5)

However, (p − 1)! = 1 · 2 · · · · · (p − 1), so that

(p − 1)! = 1 · 2 · · · · · (p − 1) = 1 · 2 · · · · · p − 1. (6)

But Z/p is a field (as we know) with p elements 0, 1, . . . , p − 1. Its nonzero
elements 1, 2, . . . , p − 1 are thus its units. In other words, its group of units
(Z/p)× is precisely the set

{
1, 2, . . . , p − 1

}
(and all the p− 1 elements 1, 2, . . . , p − 1

are distinct). Hence,
∏

a∈(Z/p)×
a = 1 · 2 · · · · · p − 1. (7)

Recall that (Z/p)× is a group. In particular, any unit has an inverse, which
is again a unit. The units 1 and −1 are their own inverses (since 1 · 1 = 1 · 1 = 1
and −1 · −1 = (−1) · (−1) = 1), and they are the only units that are their own
inverses (you will prove this in Exercise 5 (a) on homework set #2). The inverse
of the inverse of a unit a is a. Hence, in the product ∏

a∈(Z/p)×
a, we can pair up

each factor other than 1 and −1 with its inverse:

∏
a∈(Z/p)×

a =
(

a1 · a−1
1

)
︸ ︷︷ ︸

=1

·
(

a2 · a−1
2

)
︸ ︷︷ ︸

=1

· · · · ·
(

ak · a−1
k

)
︸ ︷︷ ︸

=1

·1 · −1

= 1 · 1 · · · · · 1 · 1 · −1 = −1. (8)

Now, (6) becomes

(p − 1)! = 1 · 2 · · · · · p − 1 = ∏
a∈(Z/p)×

a (by (7))

= −1 (by (8)) .

This proves (5) and thus Theorem 1.2.2.
(Caveat: The above was a little bit wrong for p = 2; in that case, the factors

1 and −1 are actually one and the same factor. But our proof can easily be
adapted to the above.)
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Corollary 1.2.3. Let p be a prime such that p ≡ 1 mod 4. Let u =
p − 1

2
∈ N.

Then, u!2 ≡ −1 mod p.

Proof. This follows from exercise 5 (b) on homework set #2.

Now, recall the ring Z [i] of Gaussian integers. Let N : Z [i] → N be the map
that sends each Gaussian integer a + bi (with a, b ∈ Z) to a2 + b2 ∈ N. It is
straightforward to see:

Proposition 1.2.4. We have N (αβ) = N (α) N (β) for any α, β ∈ Z [i].

Proof. One way to do so is by first showing that N (γ) = γγ for each γ ∈ Z [i]
(where γ denotes the complex conjugate of γ). Another is by direct com-
putation: Writing α and β as α = a + bi and β = c + di, we have αβ =
(a + bi) (c + di) = (ac − bd) + (ad + bc) i and therefore

N (αβ) = N ((ac − bd) + (ad + bc) i) = (ac − bd)2 + (ad + bc)2

= a2c2 − 2acbd + b2d2 + a2d2 + 2adbc + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 =
(

a2 + b2
)

︸ ︷︷ ︸
=N(α)

(
c2 + d2

)
︸ ︷︷ ︸

=N(β)

= N (α) N (β) .

Using this fact, we can characterize the units of Z [i]:

Corollary 1.2.5. Let α ∈ Z [i]. Then, we have the following equivalence:

(α is a unit of Z [i]) ⇐⇒ (N (α) = 1) ⇐⇒ (α ∈ {1, i,−1,−i}) .

Proof. This is exercise 6 (d) on homework set #2.

The next lemma is also easy to see:

Lemma 1.2.6. Let α and β be Gaussian integers such that α ̸= 0. Then, α | β

holds in Z [i] if and only if
β

α
is a Gaussian integer.

Proof. This is proved just as the analogous statement for integers is proved.

Now we can prove Theorem 1.2.1:
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Proof of Theorem 1.2.1. Let u =
p − 1

2
. Then, u ∈ N (actually, p ≡ 1 mod 4

implies that u is even). Corollary 1.2.3 shows that u!2 ≡ −1 mod p. That is,

p | u!2 − (−1)︸ ︷︷ ︸
=i2

= u!2 − i2 = (u! − i) (u! + i) .

This is a divisibility in Z, thus also in Z [i].
The number p is a prime number, and thus prime in Z; but this does not

mean that it is prime in Z [i]. And in fact, we claim that it isn’t. Indeed, if p
was prime in Z [i], then the divisibility p | (u! − i) (u! + i) would entail that
p | u! − i or p | u! + i; however, neither p | u! − i nor p | u! + i is true3.

Thus, we know that p is not prime in Z [i]. But Z [i] is a Euclidean domain
(as we proved at the end of lecture 5), and thus a PID (since we have shown in
lecture 6 that any Euclidean domain is a PID). Hence, every irreducible element
of Z [i] is a prime element of Z [i] (by a proposition we proved in lecture 6).
Thus, p cannot be irreducible in Z [i] (since p is not prime in Z [i]).

However, p is nonzero and not a unit of Z [i] (since
1
p

is not a Gaussian

integer). Therefore, since p is not irreducible, there exist two elements α, β ∈
Z [i] that satisfy αβ = p but are not units (by the definition of “irreducible”).
Consider these α and β.

From αβ = p, we obtain N (αβ) = N (p) = N (p + 0i) = p2 + 02 = p2. Thus,
p2 = N (αβ) = N (α) N (β) (by Proposition 1.2.4). However, N (α) and N (β)
are nonnegative integers (since N is a map Z [i] → N). Since p is prime, the
only ways to write p2 as a product of two nonnegative integers are p2 = 1 · p2

and p2 = p2 · 1 and p2 = p · p (by the classical prime factorization theorem from
number theory). Hence, the equality p2 = N (α) N (β) (with N (α) and N (β)
being nonnegative integers) entails that we must be in one of the following two
cases:

Case 1: One of the two numbers N (α) and N (β) is 1, and the other is p2.
Case 2: Both numbers N (α) and N (β) are p.
Let us consider Case 1. In this case, one of the two numbers N (α) and

N (β) is 1. We WLOG assume that N (α) = 1 and N (β) = p2 (since the other
possibility can be transformed into this one by swapping α with β). Now, recall
that N (α) = 1 is equivalent to α being a unit (because of Corollary 1.2.5).
However, α is not a unit. This is a contradiction. Hence, Case 1 is impossible.

Thus, we must be in Case 2. In other words, N (α) = p and N (β) = p.

3This is easiest to see using Lemma 1.2.6: Indeed, if we had p | u! − i, then Lemma 1.2.6

would entail that
u! − i

p
is a Gaussian integer; however,

u! − i
p

=
u!
p
+

−1
p

i is not a Gaussian

integer (since its imaginary part
−1
p

is not an integer). Thus, we don’t have p | u! − i. For a

similar reason, we don’t have p | u! + i.
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Now, α is a Gaussian integer, so we can write it as α = x + yi for some
x, y ∈ Z. Therefore, using these x, y, we have N (α) = x2 + y2. Hence, x2 + y2 =
N (α) = p. Thus, p is a sum of two perfect squares; Theorem 1.2.1 is proven.

More about decompositions of integers into sums of perfect squares can be
found

• in [DF, §8.3];

• in Keith Conrad’s https://kconrad.math.uconn.edu/math5230f12/handouts/
Zinotes.pdf ;

• in §4.2 of my https://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf
.

In particular, one can describe precisely which integers can be written as
sums of two perfect squares, and in how many ways; and most of these results
can be neatly proved using Gaussian integers.

Lagrange proved that every nonnegative integer can be written as a sum of
four squares. These days, one of the shortest proofs of this fact uses the so-
called Hurwitz quaternions – a quaternion analogue of Gaussian integers. See
https://en.wikipedia.org/wiki/Lagrange’s_four-square_theorem or https:
//www.mathcs.duq.edu/~haensch/411Materials/Quaternions.pdf or https://
www.math.brown.edu/reschwar/M153/lagrange.pdf for the proof.

2. Modules ([DF, Chapter 10])

We now move on from studying rings themselves to studying modules over
rings. In many ways, modules are even more important than rings, as their
definition offers more freedom (which is indeed amply used throughout math-
ematics). Some would argue that the notion of a ring is merely an ancillary
character to that of a module.

2.1. Definition and examples ([DF, §10.1])

For every ring R, there are two notions of an “R-module”: The “left R-modules”
and the “right R-modules”. Let us define the left ones:

Definition 2.1.1. Let R be a ring. A left R-module (or a left module over R)
means a set M equipped with

• a binary operation + (that is, a map from M × M to M) that is called
addition;

• an element 0M ∈ M that is called the zero element or the zero vector
or just the zero, and is just denoted by 0 when there is no ambiguity;

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://www.mathcs.duq.edu/~haensch/411Materials/Quaternions.pdf
https://www.mathcs.duq.edu/~haensch/411Materials/Quaternions.pdf
https://www.math.brown.edu/reschwar/M153/lagrange.pdf
https://www.math.brown.edu/reschwar/M153/lagrange.pdf
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• a map from R × M to M that is called the action of R on M, and is
written as multiplication (i.e., we denote the image of a pair (r, m) ∈
R × M under this map by rm or r · m)

such that the following properties (the “module axioms”) hold:

• (M,+, 0) is an abelian group.

• The right distributivity law holds: We have (r + s)m = rm + sm for all
r, s ∈ R and m ∈ M.

• The left distributivity law holds: We have r (m + n) = rm + rn for all
r ∈ R and m, n ∈ M.

• The associativity law holds: We have (rs)m = r (sm) for all r, s ∈ R
and m ∈ M.

• We have 0Rm = 0M for every m ∈ M.

• We have r · 0M = 0M for every r ∈ R.

• We have 1m = m for every m ∈ M.

When M is a left R-module, the elements of M are called vectors, and the
elements of R are called scalars.

As the name “left R-module” suggests, there is an analogous notion of a
right R-module. In this latter notion, the action is not a map from R × M to
M, but rather a map from M × R to M, and we accordingly use the notation
mr (rather than rm) for the image of a pair (m, r) under this map. The axioms
for a right R-module are similar to the above axioms for a left R-module. (For
example, the associative law will now be saying m (rs) = (mr) s for all r, s ∈ R
and m ∈ M.)

When R is commutative, any left R-module becomes a right R-module in a
natural way:

Proposition 2.1.2. Let R be a commutative ring. Then, we can make any left
R-module M into a right R-module by setting

mr = rm for all r ∈ R and m ∈ M. (9)

Similarly, we can make any right R-module into a left R-module. These
two transformations are mutually inverse, so we shall use them to identify
left R-modules with right R-modules. This will allow us to use the words
“left R-module” and “right R-module” interchangeably, and just speak of “R-
modules” instead (without specifying whether they are left or right). (Note
that this is not allowed when R is not commutative!)
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When R is a field, the R-modules are also known as the R-vector spaces.
These are precisely the vector spaces you have seen in a linear algebra class.
A left R-module over an arbitrary ring R is just the natural generalization of
a vector space. But while vector spaces have a very predictable structure (in
particular, a vector space is uniquely determined up to isomorphism by its
dimension), modules can be wild (although the “nice” families of modules,
like Rn for n ∈ N, still exist for every ring). The wilder a ring is, the more
diverse are its modules.

One more remark about Definition 2.1.1: The “0Rm = 0M” and “r · 0M = 0M”
axioms are actually redundant (i.e., they follow from the other axioms). I leave
it to you to check this.

We will soon see some examples of R-modules; but let us first define R-
submodules. If you have seen subspaces of a vector space, this definition won’t
surprise you:

Definition 2.1.3. Let M be a left R-module. An R-submodule (or, to be more
precise, a left R-submodule) of M means a subset N of M such that

• a + b ∈ N for any a, b ∈ N;

• ra ∈ N for any r ∈ R and a ∈ N;

• 0 ∈ N (where 0 means 0M).

In other words, an R-submodule of M means a subgroup of the additive
group (M,+, 0) that is also closed under scaling by all scalars r ∈ R. Here,
scaling by an r ∈ R means the map M → M, m 7→ rm. This map is a group
endomorphism4 of (M,+, 0) (check this!).

(All three axioms in Definition 2.1.3 have names: The “a + b ∈ N” axiom is
called “N is closed under addition”; the “ra ∈ N” axiom is called “N is closed
under scaling”; the “0 ∈ N” axiom is called “N contains the zero vector”.)

An R-submodule of a left R-module M becomes a left R-module in its own
right (just as a subring of a ring becomes a ring).5

Here are some examples of modules:

• Let R be any ring. Then, R itself becomes a left R-module: Just define the
action to be the multiplication of R.

The R-submodules of this left R-module R are the subsets L of R that
are closed under addition and contain 0 and satisfy ra ∈ L for all r ∈ R
and a ∈ L. These subsets are called the left ideals of R. When R is

4A group endomorphism of a group G means a group homomorphism from G to G.
5This is not completely obvious! To prove this, you have to check that any R-submodule of

a left R-module M is closed under taking additive inverses. This follows from Proposition
1.2.2 in Lecture 8 below. (Or you can prove it on your own; it is not hard.)
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commutative, these are precisely the ideals of R. For general R, however,
the notion of an ideal is more restrictive than the notion of a left ideal.

For example, if R is the matrix ring Q2×2, then the only ideals of R are
{02×2} and R itself, but R has infinitely many left ideals (for example, the

set of all matrices of the form
(

0 a
0 b

)
is a left ideal).

• Let R be any ring, and let n ∈ N. Then,

Rn = {(a1, a2, . . . , an) | all ai belong to R}

is a left R-module, where addition and action are defined entrywise: e.g.,
the action is defined by

r · (a1, a2, . . . , an) = (ra1, ra2, . . . , ran) for all r ∈ R and a1, a2, . . . , an ∈ R.

The zero vector of this R-module Rn is (0, 0, . . . , 0).

Note that the zero vector of an R-module is uniquely determined by its ad-
dition (in fact, this is true for any group); thus, we don’t even need to specify it
explicitly when we define an R-module.
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