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Math 533 Winter 2021, Lecture 5: Rings and
ideals

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Rings and ideals (cont’d)

1.1. The Chinese Remainder Theorem ([DF, §7.6]) (cont’d)

Last time, we have stated the following result, which we have not proved yet:

Theorem 1.1.1 (The Chinese Remainder Theorem for two ideals). Let I and J
be two comaximal ideals of a commutative ring R. (Recall that “comaximal”
means that I + J = R.) Then:

(a) We have I ∩ J = I J.
(b) We have R/ (I J) ∼= (R/I)× (R/J).
(c) More precisely, there is a ring isomorphism

R/ (I J) → (R/I)× (R/J)

that sends each residue class r + I J to the pair (r + I, r + J).

Let us now prove this. Before we do so, let us agree on a convention that will
save us some parentheses:

Convention 1.1.2. The “/” sign will have higher precedence than the “×”
sign, but lower precedence than the “implied · sign”. Thus, the expression
“(R/I)× (R/J)” can be abbreviated as “R/I × R/J” (without worrying that
it might be misunderstood as “R/ (I × R) /J”, whatever this would mean),
and similarly the expression “R/ (I J)” can be abbreviated as “R/I J” (with-
out worrying that it might be misunderstood as “(R/I) J”).

Proof of Theorem 1.1.1. We have 1 ∈ R = I + J (since I and J are comaximal). In
other words, there exist i ∈ I and j ∈ J with 1 = i + j. Consider these i and j.

(a) We know that I J ⊆ I ∩ J (see homework set #1 Exercise 8 (b)); thus, we
only need to show that I ∩ J ⊆ I J.

So let a ∈ I ∩ J. Thus, a ∈ I and a ∈ J. Now,

a = a · 1︸︷︷︸
=i+j

= a · (i + j) = ai︸︷︷︸
=ia∈I J

(since i∈I and a∈J)

+ aj︸︷︷︸
∈I J

(since a∈I and j∈J)

∈ I J + I J = I J.

(The last equality relied on the fact that K + K = K for any ideal K of R. This
is an easy consequence of the fact that K is a subgroup of the additive group
(R,+, 0).)

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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Forget that we fixed a. We thus have shown that a ∈ I J for each a ∈ I ∩ J. In
other words, I ∩ J ⊆ I J. As we said above, this completes the proof of part (a).

(c) Consider the map1

f : R → R/I × R/J,
r 7→ (r + I, r + J) .

It is straightforward to see that this map f is a ring morphism (from R to the
direct product R/I × R/J).

Moreover, we claim that Ker f = I ∩ J. Indeed, let x ∈ Ker f . Thus, f (x) =
0R/I×R/J = (0 + I, 0 + J). Since f (x) was defined to be (x + I, x + J), this
means that (x + I, x + J) = (0 + I, 0 + J). In other words, x + I = 0 + I and
x + J = 0 + J. In other words, x ∈ I and x ∈ J. In other words, x ∈ I ∩ J.

Forget that we fixed x. We thus have shown that x ∈ I ∩ J for each x ∈ Ker f .
In other words, Ker f ⊆ I ∩ J. Reading this argument in reverse shows that
I ∩ J ⊆ Ker f . Thus, Ker f = I ∩ J. Since I ∩ J = I J by part (a), we thus obtain
Ker f = I J.

Now, we claim that f is surjective. Indeed, 1 = i + j, so that 1 − i = j ∈ J
and thus 1 + J = i + J. Now, i + I = 0 + I (since i ∈ I) and i + J = 1 + J (since
1 + J = i + J). But the definition of f yields f (i) = (i + I, i + J) = (0 + I, 1 + J)
(since i + I = 0 + I and i + J = 1 + J). Similarly, f (j) = (1 + I, 0 + J). Now, for
every x ∈ R and y ∈ R, we have

f (xi + yj) = f (x)︸ ︷︷ ︸
=(x+I,x+J)

(by the definition of f )

f (i)︸︷︷︸
=(0+I,1+J)

+ f (y)︸︷︷︸
=(y+I,y+J)

(by the definition of f )

f (j)︸︷︷︸
=(1+I,0+J)

(since f is a ring morphism)

= (x + I, x + J) (0 + I, 1 + J)︸ ︷︷ ︸
=(x·0+I,x·1+J)=(0+I,x+J)

+ (y + I, y + J) (1 + I, 0 + J)︸ ︷︷ ︸
=(y·1+I,y·0+J)=(y+I,0+J)

= (0 + I, x + J) + (y + I, 0 + J) = (0 + y + I, x + 0 + J) = (y + I, x + J) .

Thus, every element of the form (y + I, x + J) for some y ∈ R and x ∈ R lies
in the image of f . Since every element of R/I × R/J has this form, we thus
conclude that every element of R/I × R/J lies in the image of f . In other
words, f is surjective.

Now, recall the First isomorphism theorem for rings (which we met and
proved in Lecture 4). Applying it to our ring morphism f : R → R/I × R/J, we
obtain R/ Ker f ∼= f (R); more precisely, we obtain that the universal property
of quotient rings (applied to the ideal Ker f of R) yields a ring morphism f ′ :
R/ Ker f → R/I × R/J, which (if we restrict its target to its actual image f (R))
is a ring isomorphism from R/ Ker f to f (R).

Fortunately, in our case right now, we have f (R) = R/I × R/J (since f is
surjective), so we don’t need to restrict the target of f ′ (this target is already

1Recall that “R/I × R/J” means “(R/I)× (R/J)”.
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f (R)). We thus conclude that f ′ is a ring isomorphism R/ Ker f → R/I × R/J.
Since Ker f = I J, we can rewrite this as follows: f ′ is a ring isomorphism
R/I J → R/I × R/J. Moreover, if we recall how f ′ was constructed, we con-
clude that f ′ sends each residue class r + Ker f = r + I J to f (r) = (r + I, r + J)
(by the definition of f ). Thus, we have found a ring isomorphism

R/I J → R/I × R/J

that sends each residue class r + I J to the pair (r + I, r + J) (namely, f ′). This
proves part (c) of Theorem 1.1.1. Of course, part (b) thus follows.

You can get rid of the commutativity requirement on R in Theorem 1.1.1 if
you replace I J by I J + J I. (Checking this is a nice exercise on making sure you
understand the above proof.)

As a corollary of Theorem 1.1.1, we can now prove the good old number-
theoretical Chinese Remainder Theorem:

Theorem 1.1.3 (The Chinese Remainder Theorem for two integers). Let n and
m be two coprime integers. Then,

Z/ (nm) ∼= (Z/n)× (Z/m) as rings.

More precisely, there is a ring isomorphism

Z/ (nm) → (Z/n)× (Z/m)

that sends each residue class r to (r, r) (or, to use somewhat less ambiguous
notation, sends each residue class r + nmZ to the pair (r + nZ, r + mZ)).

Proof. Let R = Z and I = nZ and J = mZ. One of the propositions from Lec-
ture 4 then yields I J = nmZ and I ∩ J = lcm (n, m)Z and I + J = gcd (n, m)Z.
Since n and m are coprime, we have gcd (n, m) = 1; thus, I + J = gcd (n, m)︸ ︷︷ ︸

=1

Z =

1Z = Z. In other words, the ideals I and J of Z are comaximal. Hence, part
(b) of Theorem 1.1.1 yields R/ (I J) ∼= (R/I)× (R/J). In view of R︸︷︷︸

=Z

/ (I J)︸︷︷︸
=nmZ

=

Z/ (nmZ) = Z/ (nm) and R︸︷︷︸
=Z

/ I︸︷︷︸
=nZ

= Z/ (nZ) = Z/n and R︸︷︷︸
=Z

/ J︸︷︷︸
=mZ

=

Z/ (mZ) = Z/m, this rewrites as Z/ (nm) ∼= (Z/n)× (Z/m). This proves the
first claim of Theorem 1.1.3. The “More precisely” claim likewise follows from
part (c) of Theorem 1.1.1.

As its name suggests, Theorem 1.1.1 can be generalized to k ideals. First, a
convention:
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Definition 1.1.4. Let I1, I2, . . . , Ik be k ideals of a ring R. We say that these k
ideals I1, I2, . . . , Ik are mutually comaximal if Ii + Ij = R holds for all 1 ≤ i <
j ≤ k.

In other words, k ideals I1, I2, . . . , Ik are mutually comaximal if Ii and Ij are
comaximal for every i < j. When k > 2, this is a much stronger statement than
I1 + I2 + · · ·+ Ik = R.

For example, if n1, n2, . . . , nk are k integers, then the k principal ideals n1Z, n2Z, . . . , nkZ

are mutually comaximal if n1, n2, . . . , nk are mutually coprime (that is, ni is co-
prime to nj for all i < j). When k > 2, this is a much stronger statement
than gcd (n1, n2, . . . , nk) = 1. Be warned! Lots of mistakes have been made by
mistaking “mutually coprime” for “gcd of all k numbers is 1”.

Enough of the warning labels; here is the theorem:

Theorem 1.1.5 (The Chinese Remainder Theorem for k ideals). Let
I1, I2, . . . , Ik be k mutually comaximal ideals of a commutative ring R. Then:

(a) We have I1 ∩ I2 ∩ · · · ∩ Ik = I1 I2 · · · Ik.
(b) We have R/ (I1 I2 · · · Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.
(c) More precisely, there is a ring isomorphism

R/ (I1 I2 · · · Ik) → R/I1 × R/I2 × · · · × R/Ik

that sends each residue class r + I1 I2 · · · Ik to the k-tuple
(r + I1, r + I2, . . . , r + Ik).

Proof. We proceed by induction on k:
Induction base: You can take k = 1 as a base case (it is utterly trivial), or even

k = 0 if you are brave enough2.
Induction step: Let n be a positive integer. (You can assume n > 1 if it makes

you sleep better.) Assume (as the IH3) that the theorem holds for k = n − 1. We
must now prove that the theorem holds for k = n.

So let I1, I2, . . . , In be n mutually comaximal ideals of a commutative ring R.
Then, the IH yields that Theorem 1.1.5 holds for I1, I2, . . . , In−1. In particular,
part (a) of Theorem 1.1.5 shows that

I1 ∩ I2 ∩ · · · ∩ In−1 = I1 I2 · · · In−1, (1)

and part (b) of Theorem 1.1.5 shows that

R/ (I1 I2 · · · In−1) ∼= R/I1 × R/I2 × · · · × R/In−1. (2)

2Make sure to understand the empty product of ideals of R to be R itself, since R is the neutral
element of the monoid of ideals of R under multiplication (see Exercise 8 (d) on homework
set #1).

3“IH” means “induction hypothesis”.
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Finally, part (c) of Theorem 1.1.5 shows that there is a ring isomorphism

R/ (I1 I2 · · · In−1) → R/I1 × R/I2 × · · · × R/In−1 (3)

that does what you would expect it to do (viz., sends each residue class r +
I1 I2 · · · In−1 to the (n − 1)-tuple (r + I1, r + I2, . . . , r + In−1)).

Now, we shall show that the two ideals I1 I2 · · · In−1 and In are comaximal.
Indeed, recall that the ideals I1, I2, . . . , In are mutually comaximal. Hence, for
each p ∈ {1, 2, . . . , n − 1}, the ideals Ip and In are comaximal, i.e., satisfy Ip +
In = R. Hence, for each p ∈ {1, 2, . . . , n − 1}, there exist some ip ∈ Ip and
jp ∈ In satisfying 1 = ip + jp (since 1 ∈ R = Ip + In). Consider these ip and jp.
Now, multiplying the n − 1 equalities 1 = ip + jp for all p ∈ {1, 2, . . . , n − 1},
we obtain

1 =
n−1

∏
p=1

(
ip + jp

)
= i1i2 · · · in−1 +

(
a sum of 2n−1 − 1 other products of ip’s and jp’s

)
.

On the right hand side of this equality, the first addend i1i2 · · · in−1 belongs to
I1 I2 · · · In−1 (since ip ∈ Ip for each p). As to the 2n−1 − 1 other products, they
all belong to In, because each of them contains at least one factor in the ideal
In (since each of them contains at least one jp as a factor, but each jp lies in In).
Hence, all these 2n−1 − 1 products lie in In; therefore, so does their sum. Thus,
we obtain

1 = i1i2 · · · in−1︸ ︷︷ ︸
∈I1 I2···In−1

+
(

a sum of 2n−1 − 1 other products of ip’s and jp’s
)

︸ ︷︷ ︸
∈In

∈ I1 I2 · · · In−1 + In.

Since I1 I2 · · · In−1 + In is an ideal of R, this entails that any multiple of 1 must
lie in I1 I2 · · · In−1 + In as well. In other words, any element of R must lie in
I1 I2 · · · In−1 + In (since any element of R is a multiple of 1). In other words,
R ⊆ I1 I2 · · · In−1 + In, so that I1 I2 · · · In−1 + In = R. In other words, the two
ideals I1 I2 · · · In−1 and In are comaximal.

Hence, we can apply Theorem 1.1.1 to these two ideals. We thus obtain (from
part (a) of Theorem 1.1.1) that4

I1 I2 · · · In−1 ∩ In = (I1 I2 · · · In−1) In; (4)

furthermore, we obtain (from part (b)) that

R/ ((I1 I2 · · · In−1) In) ∼= R/ (I1 I2 · · · In−1)× R/In; (5)

4The notation “I1 I2 · · · In−1 ∩ In” is to be understood as “(I1 I2 · · · In−1) ∩ In”.
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and finally we obtain (from part (c)) that there is a ring isomorphism

R/ ((I1 I2 · · · In−1) In) → R/ (I1 I2 · · · In−1)× R/In (6)

that does what you expect (viz., sends each residue class r + (I1 I2 · · · In−1) In to
the pair (r + I1 I2 · · · In−1, r + In)).

Now, let us combine what we have learned. We have

I1 ∩ I2 ∩ · · · ∩ In = (I1 ∩ I2 ∩ · · · ∩ In−1)︸ ︷︷ ︸
=I1 I2···In−1

(by (1))

∩In = I1 I2 · · · In−1 ∩ In

= (I1 I2 · · · In−1) In (by (4))
= I1 I2 · · · In;

this proves part (a) of Theorem 1.1.5 for k = n. Finishing off the other two parts
requires a little bit of yak-shaving. We will need the following lemma:

Lemma 1.1.6. Let A, B, C be three rings.
(a) If A ∼= B, then A × C ∼= B × C.
(b) More specifically: If f : A → B is a ring isomorphism, then

f × idC : A × C → B × C (this is the map that sends each (a, c) ∈ A × C
to ( f (a) , idC (c)) = ( f (a) , c) ∈ B × C) is a ring isomorphism, too.

This lemma simply says that if you replace a ring in a direct product by an
isomorphic one, then the whole direct product too stays isomorphic. I won’t of-
fend your intellect with the proof of this lemma; it is a purely paint-by-numbers
affair. Such lemmas are a dime a dozen, and you are supposed to invent one
whenever you need it. The idea behind this lemma is simply that isomorphisms
behave like equalities.

So let us go back to our proof of Theorem 1.1.5. We have

R/ (I1 I2 · · · In) = R/ ((I1 I2 · · · In−1) In)
∼= R/ (I1 I2 · · · In−1)︸ ︷︷ ︸

∼=R/I1×R/I2×···×R/In−1
(by (2))

×R/In (by (5))

= (R/I1 × R/I2 × · · · × R/In−1)× R/In (by Lemma 1.1.6 (a))
∼= R/I1 × R/I2 × · · · × R/In;

this proves part (b) of Theorem 1.1.5 for k = n.
It remains to prove part (c). Here we will need Lemma 1.1.6 (b). Indeed, (3)

gives us a ring isomorphism R/ (I1 I2 · · · In−1) → R/I1 × R/I2 × · · · × R/In−1;
thus, Lemma 1.1.6 (b) yields a ring isomorphism

R/ (I1 I2 · · · In−1)× R/In → (R/I1 × R/I2 × · · · × R/In−1)× R/In.
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Now, we compose the arrows in our quiver:

R/ (I1 I2 · · · In)

= R/ ((I1 I2 · · · In−1) In)

→ R/ (I1 I2 · · · In−1)× R/In (this is the morphism from (6))
→ (R/I1 × R/I2 × · · · × R/In−1)× R/In

(this is the isomorphism we just constructed using Lemma 1.1.6 (b))
→ R/I1 × R/I2 × · · · × R/In.

All these arrows are ring isomorphisms; hence, so is their composition. It
remains to show that this isomorphism does what you expect (i.e., sends r +
I1 I2 · · · In to (r + I1, r + I2, . . . , r + In)). This is completely straightforward, and
becomes even more so if you drop the details and just write r for all possible
cosets r + J no matter what J is: Following a coset r = r + I1 I2 · · · In through
the above arrows, we obtain

r = r 7→ (r, r) 7→ ((r, r, . . . , r) , r) 7→ (r, r, . . . , r) .

While the different r’s mean different things (viz., cosets for different ideals),
we are never in any danger of confusing them for one another, since we know
what sets these maps go between. So the (r, r, . . . , r) at the end of this compu-
tation must be (r + I1, r + I2, . . . , r + In), since it is an element of R/I1 × R/I2 ×
· · ·×R/In. So our isomorphism sends r+ I1 I2 · · · In to (r + I1, r + I2, . . . , r + In).
Thus, part (c) of Theorem 1.1.5 is proved for k = n.

All three parts of the theorem are thus proved for k = n. This completes the
induction step, and thus the proof.

We can again apply this to R = Z:

Theorem 1.1.7 (The Chinese Remainder Theorem for k integers). Let
n1, n2, . . . , nk be k mutually coprime integers. (“Mutually coprime” means
that ni is coprime to nj whenever i < j). Then,

Z/ (n1n2 · · · nk) ∼= Z/n1 × Z/n2 × · · · × Z/nk.

More precisely, there is a ring isomorphism

Z/ (n1n2 · · · nk) → Z/n1 × Z/n2 × · · · × Z/nk

that does what you expect.

Proof. This can be derived from Theorem 1.1.5, in the same way as we derived
Theorem 1.1.3 from Theorem 1.1.1. Details are LTTR.
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Corollary 1.1.8. Let p1, p2, . . . , pk be k distinct primes. Let i1, i2, . . . , ik be k
nonnegative integers. Then,

Z/
(

pi1
1 pi2

2 · · · pik
k

)
∼= Z/pi1

1 × Z/pi2
2 × · · · × Z/pik

k .

More precisely, there is a ring isomorphism

Z/
(

pi1
1 pi2

2 · · · pik
k

)
→ Z/pi1

1 × Z/pi2
2 × · · · × Z/pik

k

that does what you expect.

Proof. The prime powers pi1
1 , pi2

2 , . . . , pik
k are mutually coprime; so we can apply

Theorem 1.1.7 to nj = p
ij
j .

Note that it is important that the primes be distinct in Corollary 1.1.8. For
example, Z/p2 is not isomorphic to Z/p × Z/p (not even as additive groups,
let alone as rings).

The Chinese Remainder Theorem has many down-to-earth consequences.
For example, in Exercise 7 on homework set #0, I have given you two posi-
tive integers n (namely, 7 and 14), and asked you to count how many of the
numbers 0, 1, . . . , n − 1 appear as remainders of a perfect square divided by n.
It is not hard to see that this question is equivalent to asking how many ele-
ments of the ring Z/n are squares in this ring. Here I am using the following
terminology:

Definition 1.1.9. Let R be a ring. An element r ∈ R is said to be a square (in
R) if there exists some u ∈ R such that r = u2.

For example, the squares in R are the nonnegative reals, whereas the squares
in Z are the perfect squares.

If n is a positive integer, then an element i ∈ {0, 1, . . . , n − 1} is the remainder
of some perfect square divided by n if and only if the element i = i + nZ is a
square in Z/n. Thus, counting distinct remainders of perfect squares divided
by n is equivalent to counting squares in Z/n.

Now, I claim that the latter can be done easily when the prime factorization
of n is known. The way to do it is in three steps:

1. Answer the question (i.e., “how many squares does Z/n have?”) when n
is prime.

2. Extend the answer to the case when n is a prime power (i.e., a number of
the form pi with p prime and i ∈ N).

3. Finally, extend the answer to all positive integers n.
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This three-step program is a standard strategy for answering number-theoretical
questions. Typically, the three steps each have methods tailored to them:

1. When n is prime, the ring Z/n is a field. This makes many tactics avail-
able that would otherwise not work; e.g., Gaussian elimination works over
fields but not generally over arbitrary rings (we will learn more about this
later).

2. There are many tools for “lifting” results about primes to analogous re-
sults about prime powers.

3. Here, the Chinese Remainder Theorem becomes useful. Any positive in-
teger Z/n is a product of finitely many mutually coprime prime powers
pa1

1 , pa2
2 , . . . , pak

k . Thus, the Chinese Remainder Theorem (more precisely,
Corollary 1.1.8) yields

Z/n ∼= Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k . (7)

For our specific question (counting squares in Z/n), you are going to do Step
1 on homework set #1 (Exercise 10 (c)). (More precisely, that exercise covers the
case when n is odd. But the only even prime is 2, and you can count the squares
in Z/2 on your hands. Not fingers, hands.) Step 2 will not be done in this
course in full, but you will see the case of n = p2 in homework set #2 (Exercise
4). Step 3 is now easy (assuming Steps 1 and 2 are done): If A1, A2, . . . , Ak are
rings, then the squares in the direct product A1 × A2 × · · · × Ak are just the
k-tuples (a1, a2, . . . , ak) where each ai is a square in Ai; thus,

(the number of squares in A1 × A2 × · · · × Ak)

=
k

∏
i=1

(the number of squares in Ai) . (8)

Furthermore, isomorphic rings have the same number of squares (since any
ring morphism sends squares to squares). Thus, (7) yields

(the number of squares in Z/n)

=
(
the number of squares in Z/pa1

1 × Z/pa2
2 × · · · × Z/pak

k

)
=

k

∏
i=1

(
the number of squares in Z/pai

i
)

(by (8)) .

Remark 1.1.10. Theorem 1.1.5 becomes false if we drop the assumption that
R be commutative. However, we can tweak this theorem to make it work for
noncommutative rings R as well:
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Theorem 1.1.11. Let I1, I2, . . . , Ik be k mutually comaximal ideals of a (not
necessarily commutative) ring R. Let I1 ∗ I2 ∗ · · · ∗ Ik denote the sum of
all the k! products J1 J2 · · · Jk, where J1, J2, . . . , Jk are the k ideals I1, I2, . . . , Ik
in some order. (For example, if k = 3, then I1 ∗ I2 ∗ I3 = I1 I2 I3 + I1 I3 I2 +
I2 I1 I3 + I2 I3 I1 + I3 I1 I2 + I3 I2 I1.)

Now:
(a) We have I1 ∩ I2 ∩ · · · ∩ Ik = I1 ∗ I2 ∗ · · · ∗ Ik.
(b) We have R/ (I1 ∗ I2 ∗ · · · ∗ Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.
(c) More precisely, there is a ring isomorphism

R/ (I1 ∗ I2 ∗ · · · ∗ Ik) → R/I1 × R/I2 × · · · × R/Ik

that sends each residue class r + I1 ∗ I2 ∗ · · · ∗ Ik to the k-tuple
(r + I1, r + I2, . . . , r + Ik).

We leave the proof of this theorem to the reader. (It is a not-too-difficult
adaptation of our above proof of Theorem 1.1.5.)

1.2. Euclidean domains ([DF, §8.1])

We have talked about ideals of Z a lot (they give rise to modular arithmetic),
but you might have noticed that all of them were principal. This is no accident:

Proposition 1.2.1. Any ideal of Z is principal.

Proof. Let I be an ideal of Z. We must show that I is principal.
If I = {0}, then this is clear (since I = 0Z in this case). So we WLOG

assume that I ̸= {0}. Since I always contains 0, this means that I must contain
a nonzero integer as well. Hence, I contains a positive integer (because if I
contains a negative integer a, then I must also contain (−1) a, which is positive).
Let b ∈ I be the smallest positive integer that I contains. Hence, I cannot
contain any positive integer smaller than b. However, I contains b, and thus
contains every multiple of b (since I is an ideal). In other words, bZ ⊆ I.

We will now show that I ⊆ bZ. Indeed, let a ∈ I. Let r be the remainder
of a divided by b. Then, r ∈ {0, 1, . . . , b − 1} and r ≡ a mod b. Now, from r ≡
a mod b, we obtain b | r − a and thus r − a ∈ bZ ⊆ I. Hence, r = r − a︸ ︷︷ ︸

∈I

+ a︸︷︷︸
∈I

∈

I + I = I (since I is an ideal of Z). Hence, r cannot be a positive integer
smaller than b (since I cannot contain any positive integer smaller than b). In
other words, r /∈ {1, 2, . . . , b − 1}. Contrasting this with r ∈ {0, 1, . . . , b − 1}, we
obtain r = 0. Thus, b | r︸︷︷︸

=0

−a = 0 − a | −a | a, so that a ∈ bZ.

Forget that we fixed a. We thus have shown that a ∈ bZ for each a ∈ I. In
other words, I ⊆ bZ. Combined with bZ ⊆ I, this yields I = bZ. Thus, I is
principal, qed.
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The key to making this proof work was clearly the concept of division with
remainder. Not every ring has this feature. However, many rings different from
Z have it; thus, it is worth defining a word for them:

Definition 1.2.2. Let R be a commutative ring.
(a) A norm on R means a function N : R → N with N (0) = 0.
(b) A norm N on R is said to be Euclidean if for any a ∈ R and any

nonzero b ∈ R, there exist elements q, r ∈ R with

a = qb + r and (r = 0 or N (r) < N (b)) .

(c) We say that R is a Euclidean domain if R is an integral domain and has
a Euclidean norm.

You can think of the norm as a measure of the “size” of an element of R,
similar to the absolute value of an integer or to the degree of a polynomial.
(These will indeed be particular cases.) Note that we are not requiring that the
norm have any nice algebraic properties (such as N (ab) = N (a) N (b), which
will be true for some Euclidean norms but not for others). Note that we are
also not requiring the q and the r in the definition of a Euclidean norm to be
unique.

Some examples will help illustrate the definition:

• Any field F is a Euclidean domain. Indeed, any map N : F → N with
N (0) = 0 is a Euclidean norm on F.

• The ring Z is a Euclidean domain. Indeed, a Euclidean norm on Z is
given by the map N : Z → N, a 7→ |a|. The fact that it is Euclidean
follows from division with remainder. However, q and r are not unique!
For a = 7 and b = 5, there are two pairs (q, r) ∈ Z × Z with

a = qb + r and (r = 0 or N (r) < N (b)) .

These two pairs are (1, 2) and (2,−3). The second pair has negative r,
which is why it does not qualify as a quotient-remainder pair in the sense
of high school arithmetic; but it qualifies for the definition of a Euclidean
norm.

• If F is a field, then the ring F [x] of univariate polynomials over F is a
Euclidean domain. We will discuss this later in more detail, when we
study polynomials. However, polynomial rings in more than 1 variable
are not Euclidean domains; neither are polynomial rings over non-fields.

• The ring Z [i] of Gaussian integers is a Euclidean domain. Indeed, we
claim that the map

N : Z [i] → N, a + bi 7→ a2 + b2 (where a, b ∈ Z)
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is a Euclidean norm.

To prove this, we must show that for any α ∈ Z [i] and any nonzero
β ∈ Z [i], there exist elements q, r ∈ Z [i] with

α = qβ + r and (r = 0 or N (r) < N (β)) . (9)

So let us fix an α ∈ Z [i] and a nonzero β ∈ Z [i]. We are looking for
elements q, r ∈ Z [i] that satisfy (9). We can even replace the “r = 0 or
N (r) < N (β)” condition in (9) by the stronger condition “N (r) < N (β)”.

To find the elements q, r we are seeking, we make the following obser-
vation: The absolute value |z| of a complex number z = a + bi (with
a, b ∈ R) is defined as |z| =

√
a2 + b2 =

√
zz. Thus, any z ∈ Z [i] satisfies

N (z) = |z|2. Hence, we have the following chain of equivalences:

(N (r) < N (β)) ⇐⇒
(
|r|2 < |β|2

)
⇐⇒ (|r| < |β|) ⇐⇒

(
|r|
|β| < 1

)
⇐⇒

(∣∣∣∣ r
β

∣∣∣∣ < 1
)

(10)

(since
|z|
|w| =

∣∣∣ z
w

∣∣∣ for any two complex numbers z and w ̸= 0). Moreover,

we have the equivalence

(α = qβ + r) ⇐⇒
(

α

β
= q +

r
β

)
⇐⇒

(
α

β
− q =

r
β

)
. (11)

Now, recall that we are looking for elements q, r ∈ Z [i] that satisfy α =
qβ + r and N (r) < N (β). In view of (10) and (11), this means that we

are looking for elements q, r ∈ Z [i] that satisfy
α

β
− q =

r
β

and
∣∣∣∣ r
β

∣∣∣∣ <

1. Equivalently, we can look for a Gaussian integer q ∈ Z [i] satisfying∣∣∣∣α

β
− q

∣∣∣∣ < 1 (because once such a q has been found, we can set r = α − qβ

and obtain
r
β
=

α − qβ

β
=

α

β
− q, so that

α

β
− q =

r
β

and
∣∣∣∣ r
β

∣∣∣∣ = ∣∣∣∣α

β
− q

∣∣∣∣ <
1). But finding such a q is easy if you remember the geometric meaning
of the Gaussian integers: The Gaussian integers are the lattice points of
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a square lattice in the plane5. So a Gaussian integer q ∈ Z [i] satisfying∣∣∣∣α

β
− q

∣∣∣∣ < 1 simply means a lattice point at a distance less than 1 from

the point
α

β
. Geometrically, it is easy to see that such a lattice point exists

(since the point
α

β
must lie in one of the squares of the lattice, and then

5Here is the square lattice I am talking about:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2 − i −1 − i 1 − i 2 − i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2 − 2i −1 − 2i 1 − 2i 2 − 2i−2i
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have distance <

√
2

2
from one of the four vertices of the square6; but this

entails that
α

β
has distance < 1 from this latter vertex7). Thus, we have

found q.

For a non-geometric proof of this fact, see the proof of Theorem 3.1 in
Keith Conrad’s The Gaussian integers (see https://kconrad.math.uconn.
edu/math5230f12/handouts/Zinotes.pdf ).

6Here is a close-up picture of the square (with one possible location of
α

β
):

1 + i 2 + i

1 + 2i 2 + 2i

α/β

I am claiming that the point
α

β
has distance <

√
2

2
from one of the four vertices of the

square in which it lies. The easiest way to see this geometrically is to draw circles of radius√
2

2
around the vertices of the square, and convince yourself that these circles cover the

entire square:

1 + i 2 + i

1 + 2i 2 + 2i

α/β

7since

√
2

2
< 1

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
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• The ring
Z

[√
−3

]
:=

{
a + b

√
−3 | a, b ∈ Z

}
(this is another subring of C, since

√
−3 =

√
3i) is not Euclidean. (See,

e.g., https://math.stackexchange.com/questions/115934 for proofs.)

• The ring
Z

[√
2
]

:=
{

a + b
√

2 | a, b ∈ Z
}

is Euclidean. An Euclidean norm for it is the map

Z
[√

2
]
→ N,

a + b
√

2 7→
∣∣∣a2 − 2b2

∣∣∣ (with a, b ∈ Z) .

• The ring
Z

[√
14

]
:=

{
a + b

√
14 | a, b ∈ Z

}
is Euclidean. An Euclidean norm for it is notoriously hard to construct
(in particular, it is not the map sending each a + b

√
14 to

∣∣a2 − 14b2
∣∣). See

https://math.stackexchange.com/questions/1148364 .

• The ring Z
[√

5
]

:=
{

a + b
√

5 | a, b ∈ Z
}

is not Euclidean.

https://math.stackexchange.com/questions/115934
https://math.stackexchange.com/questions/1148364
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