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Math 533 Winter 2021, Lecture 3: Rings and
ideals

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Rings and ideals (cont’d)

1.1. Ring morphisms ([DF, §7.3])

Groups have group homomorphisms; vector spaces have vector space homo-
morphisms (= linear maps); topological spaces have topological space homo-
morphisms (= continuous maps). No wonder that an analogous concept exists
for rings:

Definition 1.1.1. Let R and S be two rings.
(a) A ring homomorphism (or, for short, ring morphism, or, more in-

formally, ring homo or ring hom or ring map) from R to S means a map
f : R→ S that

• respects addition (i.e., satisfies f (a + b) = f (a) + f (b) for all a, b ∈ R);

• respects multiplication (i.e., satisfies f (ab) = f (a) · f (b) for all a, b ∈
R);

• respects the zero (i.e., satisfies f (0R) = 0S);

• respects the unity (i.e., satisfies f (1R) = 1S).

(b) A ring isomorphism (or, informally, ring iso) from R to S means an
invertible ring morphism f : R→ S whose inverse f−1 : S→ R is also a ring
morphism.

(c) The rings R and S are said to be isomorphic (this is written R ∼= S) if
there exists a ring isomorphism from R to S.

Examples:

• Let n ∈ Z. The map π : Z→ Z/n, a 7→ a that sends each integer a to its
residue class a is a ring morphism, because any a, b ∈ Z satisfy

a + b = a + b, a · b = a · b, 0 = 0Z/n, 1 = 1Z/n.

• The map Z → Z, a 7→ 2a is not a ring morphism. It respects addition
and the zero, but not multiplication and the unity.

• The map Z → Z, a 7→ 0 is not a ring morphism. It respects addition,
multiplication and the zero, but not the unity.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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• Let S be a subring of a ring R. Let i : S → R be the canonical inclusion;
this is simply the map that sends each a ∈ S to itself. (You can view it
as the restriction of the identity map idR : R → R to S.) Then, i is a ring
morphism. Indeed, it respects multiplication because the multiplication
of S is inherited from R; for similar reasons, it satisfies the other axioms
in the definition of a ring morphism.

• Consider the map

f : C→ R2×2,

a + bi 7→
(

a b
−b a

)
(for a, b ∈ R).

This map f is a ring morphism. Indeed, it is easy to see that it respects
addition, the zero and the unity. To see that it respects multiplication,
you need to check that f (zw) = f (z) · f (w) for any z, w ∈ C. But this is
straightforward: Write z = a + bi and w = c + di and multiply out1.

This can also be proved using linear algebra: The R-vector space C has
basis (1, i). If z ∈ C, then f (z) is the 2 × 2-matrix that represents the
“multiply by z” operator (i.e., the map C → C, u 7→ zu) in this basis.
Since the “multiply by zw” operator is the composition of the “multiply
by z” operator with the “multiply by w” operator, it thus follows that
f (zw) = f (z) · f (w) (because composition of endomorphisms of a vector
space corresponds to multiplication of their representing matrices).

• The map R2×2 → R, A 7→ det A is not a ring morphism. It respects
multiplication but not addition.

• Let R be a commutative ring. Let S be any set. Let RS be the ring of
all functions from S to R (with pointwise addition and multiplication).
Fix any s ∈ S. Then, the map RS → R, f 7→ f (s) is a ring morphism.
This map is known as the evaluation morphism at s, since all it does is
evaluating a function at the constant s.

1In more detail: Writing z = a + bi and w = c + di, we have zw = (a + bi) (c + di) =
(ac− bd) + (ad + bc) i and thus

f (zw) =

(
ac− bd ad + bc
− (ad + bc) ac− bd

)
.

However,

f (z) · f (w) =

(
a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad + bc
− (ad + bc) ac− bd

)
.

Comparing these two equalities yields f (zw) = f (z) · f (w).
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Time for another warning. You couldn’t have guessed, but our definition
again differs from [DF] in how it treats unities! Namely, [DF] does not require
a ring morphism to respect the unity. Thus, the map Z → Z, a 7→ 0 is a ring
morphism according to [DF], but not according to us.

Let us show some basic properties of ring morphisms:

Proposition 1.1.2. Let R and S be two rings. Let f : R → S be an invertible
ring morphism. Then, f is a ring isomorphism.

Proof. This is proved using the same reasoning as for groups (but not for topo-
logical spaces): You need to show that f−1 is a ring morphism. Let me just
show that f−1 respects addition (the proofs of the other axioms are similar). So
let c, d ∈ S; we must show that f−1 (c + d) = f−1 (c) + f−1 (d).

It is clearly sufficient to check that f
(

f−1 (c + d)
)
= f

(
f−1 (c) + f−1 (d)

)
.

Indeed, if we can show this equality, then we can apply f−1 to it and obtain
f−1 (c + d) = f−1 (c) + f−1 (d), which is what we want to prove.

Recall that f respects addition. Thus,

f
(

f−1 (c) + f−1 (d)
)
= f

(
f−1 (c)

)
+ f

(
f−1 (d)

)
= c + d = f

(
f−1 (c + d)

)
.

Hence, f
(

f−1 (c + d)
)
= f

(
f−1 (c) + f−1 (d)

)
is proved.

Incidentally, [DF] defines ring isomorphisms as invertible ring morphisms.
Proposition 1.1.2 shows that this is equivalent to our definition.

Proposition 1.1.3. Let R, S and T be three rings. Let f : S→ T and g : R→ S
be two ring morphisms. Then, f ◦ g : R→ T is a ring morphism.

Proof. This is proved in the same way as for groups.

Proposition 1.1.4. Let R, S and T be three rings. Let f : S→ T and g : R→ S
be two ring isomorphisms. Then, f ◦ g : R→ T is a ring isomorphism.

Proof. This is proved in the same way as for groups.

Proposition 1.1.5. Let R and S be two rings. Let f : R→ S be a ring isomor-
phism. Then, f−1 : S→ R is a ring isomorphism.

Proof. This is proved in the same way as for groups.

Corollary 1.1.6. The relation ∼= for rings is an equivalence relation.

Proof. Transitivity follows from Proposition 1.1.4. Reflexivity follows from the
obvious fact that id : R → R is a ring isomorphism whenever R is a ring.
Symmetry follows from Proposition 1.1.5.
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The next proposition shows that the “respects the zero” condition in the def-
inition of a ring morphism is redundant (even though the “respects the unity”
condition is not):

Proposition 1.1.7. Let R and S be two rings. Let f : R → S be a map that
respects addition. Then, f automatically respects the zero.

Proof. Since f respects addition, we have f (0R + 0R) = f (0R) + f (0R). Rewrite
this as f (0R) = f (0R) + f (0R) (since 0R + 0R = 0R). Now, subtract f (0R) from
both sides to get 0S = f (0R). In other words, f respects the zero.

Note that we can restate our definition of a ring morphism as follows:

A ring morphism is a map f : R→ S between two rings R and S that
is a group homomorphism from the additive group (R,+, 0) to the
additive group (S,+, 0) and simultaneously a monoid homomor-
phism from the multiplicative monoid (R, ·, 1) to the multiplicative
group (S, ·, 1).

It is easy to see that ring morphisms respect all sorts of operations con-
structed from +, ·, 0 and 1:

Proposition 1.1.8. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then:

(a) The map f respects finite sums; i.e., we have f (a1 + a2 + · · ·+ an) =
f (a1) + f (a2) + · · ·+ f (an) for any a1, a2, . . . , an ∈ R.

(b) The map f respects finite products; i.e., we have f (a1a2 · · · an) = f (a1) ·
f (a2) · · · · · f (an) for any a1, a2, . . . , an ∈ R.

(c) The map f respects differences; i.e., we have f (a− b) = f (a)− f (b)
for any a, b ∈ R.

(d) The map f respects inverses; i.e., if a is a unit of R, then f (a) is a unit
of S, with inverse ( f (a))−1 = f

(
a−1).

(e) The map f respects integer multiples; i.e., if a ∈ R and n ∈ Z, then
f (na) = n f (a).

(f) The map f respects powers; i.e., if a ∈ R and n ∈ N, then f (an) =
( f (a))n.

Proof. This is pretty straightforward, and you have probably seen the idea in
group theory already. Details LTTR2.

Recall that the image of a map f : R → S is defined to be the set f (R) =
{ f (r) | r ∈ R}; it is often denoted Im f . This makes sense for arbitrary maps
f between arbitrary sets R and S, not just for ring morphisms between rings.
However, the image of a ring morphism has a special property:

2“LTTR” means “left to the reader”.
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Proposition 1.1.9. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then, Im f = f (R) is a subring of S.

Proof. Just check the axioms for a subring. For example, let’s show that f (R) is
closed under multiplication:

Let x, y ∈ f (R). We must show that xy ∈ f (R). Since x ∈ f (R), there exists
some a ∈ R such that x = f (a). Similarly, there exists some b ∈ R such that
y = f (b). Consider these a and b. From x = f (a) and y = f (b), we obtain

xy = f (a) · f (b) = f (ab) (since f respects multiplication)
∈ f (R) ,

qed.

1.2. Ideals and kernels ([DF, §7.1])

In linear algebra, the kernel (aka nullspace) of a linear map “measures how
non-injective it is”. The same can be done for ring morphisms:

Definition 1.2.1. Let R and S be two rings. Let f : R→ S be a ring morphism.
Then, the kernel of f (denoted ker f or Ker f ) is defined to be the subset

Ker f := {a ∈ R | f (a) = 0S}

of R.

Some examples:

• Let n ∈ Z. The kernel of the ring morphism π : Z → Z/n, a 7→ a is
nZ = {all multiples of n}.

• Let R be a commutative ring. Let S be any set. Recall the ring RS of all
functions from S to R. Fix an element s ∈ S. Then, the kernel of the ring
morphism RS → R, f 7→ f (s) is the set of all functions f ∈ RS that vanish
on s.

• The kernel of an injective ring morphism f : R → S is always {0R}.
Indeed, if f : R → S is an injective ring morphism, then f sends 0R to
0S (since f is a ring morphism), and therefore f cannot send any other
element to 0S (since f is injective).

As we see here, the kernel of a ring morphism is not usually a subring of R,
since it normally does not contain 1R. However, it satisfies all the other axioms
for a subring (which is why [DF] considers it a subring of R). We can say more,
however. The type of a subset that kernels of ring morphisms are has its own
name:
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Definition 1.2.2. Let R be a ring. An ideal of R is a subset I of R such that

• a + b ∈ I for any a, b ∈ I;

• ab ∈ I and ba ∈ I for any a ∈ R and b ∈ I;

• 0 ∈ I (where the 0 means the zero of R).

When R is commutative, of course, the “ab ∈ I” and “ba ∈ I” conditions are
equivalent.

The three conditions in the definition of an ideal are called the “ideal ax-
ioms”. The first and the third of them are familiar (they already appeared in
the definition of a subring). The second is new – it is saying that if a factor in a
product belongs to I, then the whole product belongs to I, no matter what the
other factors are.

Proposition 1.2.3. Let R be a ring. Let I be an ideal of R. Then, I is a
subgroup of the additive group (R,+, 0).

Proof. The first and third “ideal axioms” reveal that I is closed under addition
and contains 0. It remains to show that I is closed under negation – i.e., that
we have −b ∈ I for each b ∈ I. But this is easy: If b ∈ I, then the second “ideal
axiom” (applied to a = −1) yields (−1) b ∈ I and b (−1) ∈ I. But this rewrites
as −b ∈ I, qed.

Theorem 1.2.4. Let R and S be two rings. Let f : R→ S be a ring morphism.
Then, the kernel Ker f of f is an ideal of R.

Proof. We need to prove the three “ideal axioms”. Let me only show the second,
as the other two are similar. So let a ∈ R and b ∈ Ker f . We must prove that
ab ∈ Ker f and ba ∈ Ker f .

We have b ∈ Ker f , so that f (b) = 0 (by the definition of Ker f ). Now, the
map f is a ring morphism and thus respects multiplication. Hence, f (ab) =
f (a) · f (b)︸︷︷︸

=0

= f (a) · 0 = 0, so that ab ∈ Ker f (by the definition of Ker f ).

Similarly, ba ∈ Ker f . Thus we have shown the second ideal axiom.

We will soon see a converse of this theorem: Every ideal of a ring R is the
kernel of some ring morphism from R.

The simplest way to construct ideals of a commutative ring is by fixing an
element and taking all its multiples:

Proposition 1.2.5. Let R be a commutative ring. Let u ∈ R. We define uR to
be the set {ur | r ∈ R}. The elements of this set uR are called the multiples
of u (in R).
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Then, uR is an ideal of R. This ideal is known as a principal ideal of R. In
particular, 0R = {0R} and 1R = R are therefore principal ideals of R.

Proof. The only thing to prove is that uR is an ideal of R. This is easy:

• We have a + b ∈ uR for any a ∈ uR and b ∈ uR. (Indeed, if a ∈ uR and
b ∈ uR, then there exist x, y ∈ R satisfying a = ux and b = uy (since
a ∈ uR and b ∈ uR), and therefore we have a + b = ux + uy = u (x + y) ∈
uR.)

• We have ab ∈ uR and ba ∈ uR for any a ∈ R and b ∈ uR. (Indeed, if a ∈ R
and b ∈ uR, then there exists an r ∈ R satisfying b = ur (since b ∈ uR),
and thus we have ab = aur = u (ar) ∈ uR and thus ba = ab ∈ uR.)

• We have 0 ∈ uR (since 0 = u · 0).

For example, 2Z = {all even integers} is an ideal of Z.
Principal ideals can also be defined for noncommutative rings, but this is

more complicated3.
In general, not all ideals of a ring need to be principal. An easy way to

construct non-principal ideals is to work with polynomials in several variables
over a field, or even with univariate polynomials over Z. For example:

• The ideal of all polynomials f ∈ Q [x, y] that have constant term 0 is an
ideal of Q [x, y] that is not principal.

• The ideal of all polynomials f ∈ Z [x] whose constant term is even is an
ideal of Z [x] that is not principal.

We will come back to this later when we actually have defined polynomials.

1.3. Quotient rings ([DF, §7.3])

Let me first recall something I assume you have seen: quotient groups.

3Some details:
If R is a noncommutative ring, then in general neither uR = {ur | r ∈ R} nor its mirror

analogue Ru = {ru | r ∈ R} are ideals of R. (For example, uR may fail the “ab ∈ uR for
any a ∈ R and b ∈ uR” requirement, because there is no way to move the u to the left of
the a.) This suggests considering the set {rus | r, s ∈ R}, but this is still not an ideal (in
general), since it is not always closed under addition.

However, one can define the “principal ideal” RuR to be

{all finite sums of the form r1us1 + r2us2 + · · ·+ rnusn with ri, si ∈ R} .

This is always an ideal of R.
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• If H is a subgroup of a group G, then the left cosets of H in G are the
subsets gH := {gh | h ∈ H} for all g ∈ G. There is one left coset gH for
each g ∈ G; but different g ∈ G often lead to the same left coset gH, so
there are usually fewer left cosets than elements of G. The set of all left
cosets of H is denoted by G/H.

• If H is merely a subgroup of a group G, then G/H is merely a “G-set”
(i.e., a set with an action of G). However, when H is a normal subgroup
of G (that is, a subgroup of G satisfying gng−1 ∈ H for each g ∈ G and
n ∈ H), then G/H becomes a group as well, with group operation defined
by

(g1H) (g2H) = g1g2H for all g1, g2 ∈ G. (1)

The group G/H is called the quotient group of G by H. The left cosets of
H in G are just called the cosets of H in G in this case.

• If G is an abelian group, then any subgroup H of G is normal, so G/H
always is a group.

• Now, assume that G is an additive group (which means that its binary
operation is written as + rather than as ·). This presupposes that G is
abelian, as it is considered gauche to write a non-abelian group additively.
Let H be a subgroup of G. Then, the cosets of H in G are denoted by
g+ H instead of gH (in order to match the additive notation for the group
operation). The equality (1) therefore rewrites as

(g1 + H) + (g2 + H) = (g1 + g2) + H for all g1, g2 ∈ G.

Note that the quotient group G/H is an abelian group.

• The most famous example of quotient groups is when G = Z and H =
nZ = {all multiples of n} for some fixed integer n. (Here, the group oper-
ation on G is addition of integers.) In this case, the quotient group Z/nZ

is the cyclic group Z/n, also known as Zn. See Chapter XII of Samir Sik-
sek’s Introduction to Abstract Algebra ( http://homepages.warwick.ac.uk/
~maseap/teaching/aa/aanotes.pdf ) for this and other examples.

We shall now define a similar quotient structure for rings instead of groups.
Instead of normal subgroups, we will use ideals this time:

Definition 1.3.1. Let I be an ideal of a ring R. Thus, I is a subgroup of the
additive group (R,+, 0), hence a normal subgroup (since (R,+, 0) is abelian).
Therefore, the quotient group R/I itself becomes an abelian group. Its ele-
ments are the cosets r + I of I in R. (Note that, since our groups are additive,
we are writing r + I for what would normally be written rI in group theory.)

Note that the addition on R/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ R.

http://homepages.warwick.ac.uk/~maseap/teaching/aa/aanotes.pdf
http://homepages.warwick.ac.uk/~maseap/teaching/aa/aanotes.pdf
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We now define a multiplication operation on R/I by setting

(a + I) (b + I) = ab + I for all a, b ∈ R.

(See below for a proof that this is well-defined.)
The set R/I, equipped with the addition and the multiplication we just

defined and with the elements 0 + I and 1 + I (as zero and unity), is a ring
(as we will show in a moment). This ring is called the quotient ring of R
by the ideal I; it is also pronounced “R modulo I”. It is denoted R/I (so
when you hear “the ring R/I”, it always means the set R/I equipped with
the structure just mentioned).

The cosets r + I are called residue classes modulo I, and are often denoted
r mod I or [r]I or [r] or r. (The last two notations are used when I is clear
from the context.)

Theorem 1.3.2. Let R and I be as in Definition 1.3.1. Then, the multiplication
on R/I is well-defined, and R/I does indeed become a ring when endowed
with the operations and elements just described.

Before we prove this theorem, let us see some examples:

• Let n ∈ Z. The set nZ = {all multiples of n} is a principal ideal of Z.
The quotient ring Z/nZ is precisely the ring Z/n we discussed above.
Thus, the notion of a quotient ring generalizes the familiar concept of
modular arithmetic. (More precisely, modular arithmetic is arithmetic in
R/I where R = Z and I = nZ.)

• Recall the ring Z [i] = {a + bi | a, b ∈ Z} of Gaussian integers. Consider
its principal ideal

3Z [i] = {3r | r ∈ Z [i]} = {3a + 3bi | a, b ∈ Z}
= {c + di | c, d ∈ Z are multiples of 3} .

What is the quotient ring Z [i] / (3Z [i]) ? The elements of this quo-
tient ring have the form4 a + bi with a, b ∈ {0, 1, 2} (since any Gaussian
integer can be reduced to an a + bi with a, b ∈ {0, 1, 2} by subtracting an
appropriate Gaussian-integer multiple of 3). In other words,

Z [i] / (3Z [i]) =
{

0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i
}

.

It is easy to see that this is a 9-element ring (i.e., the residue classes
0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i are distinct), and a field (i.e.,
all the nonzero residue classes are invertible). So we have found a finite
field with 9 elements.

4We are using z to denote the residue class of a Gaussian integer z ∈ Z [i]. This should not be
confused with the complex conjugate of z (which is commonly denoted z as well).
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For the curious: If we replace 3 by any other positive integer n, then
Z [i] / (nZ [i]) will be a finite ring with n2 elements, but not always
a field. Understanding when it will be a field is a fruitful question in
elementary number theory. (It is a field for some, but not for all, primes
n.)

Proof of Theorem 1.3.2. To see that the multiplication on R/I is well-defined, we
must prove that a product xy with x, y ∈ R/I does not depend on how exactly
we write x and y as x = a + I and y = b + I. In other words, we must show
that if a + I = a′ + I and b + I = b′ + I, then ab + I = a′b′ + I.

So let a, a′, b, b′ ∈ R be such that a + I = a′ + I and b + I = b′ + I. From
a + I = a′ + I, we obtain a− a′ ∈ I, so that (a− a′) b ∈ I (by the second ideal
axiom, since I is an ideal). In other words, ab− a′b ∈ I. Hence, ab + I = a′b + I.
Similarly, we can obtain a′b + I = a′b′ + I (from b + I = b′ + I). Thus, ab + I =
a′b + I = a′b′ + I, which is just what we need.

So the multiplication on R/I is well-defined. Now why is R/I a ring? This
we leave to the reader – it’s a straightforward consequence of the fact that R is
a ring.

Thus, ideals of rings are somewhat like normal subgroups of groups: You
can “quotient them out” (this is slang for “take a quotient by them”) and get a
ring again.

Now, we are ready to show that any ideal of a ring is the kernel of a ring
morphism:

Theorem 1.3.3. Let R be a ring. Let I be an ideal of R. Consider the map

π : R→ R/I, r 7→ r + I.

Then, π is a surjective ring morphism with kernel I. This morphism π is
called the canonical projection from R onto R/I.

Proof. LTTR5.

The following theorem is known as the “universal property of quotient rings”.
It may appear technical and pointless for now, but its importance will become
clear once you start constructing ring morphisms out of quotient rings and
realize that the most comfortable way to do so is via this theorem.

Theorem 1.3.4 (Universal property of quotient rings). Let R be a ring. Let I
be an ideal of R.

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(this is shorthand for saying that f (a) = 0 for all a ∈ I). Consider the
canonical projection π : R → R/I. Then, there is a unique ring morphism
f ′ : R/I → S satisfying f = f ′ ◦ π.

5This abbreviation means “left to the reader”.
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The equality f = f ′ ◦ π in this theorem is oftentimes restated as follows: The
diagram

R

π
��

f

&&R/I
f ′

// S

commutes. In general, a diagram is a bunch of sets and a bunch of maps
between them, drawn as nodes and arrows; it is said to commute (or be com-
mutative) if any two ways of going between two nodes yield the same map. In
the above diagram, there are two ways of going from the R-node to the S-node:
one is direct, while the other goes through R/I. The corresponding maps are
f (for the direct way) and f ′ ◦ π (for the indirect way). This is the only pair
of two different ways that go between the same two nodes; thus, the diagram
commutes if and only if f = f ′ ◦ π. Commutative diagrams become increas-
ingly useful as you go deeper into algebra (and become ubiquitous when you
get to category theory or homological algebra); for us here, this diagram is just
a convenient aide-mémoire. Note that we have drawn the map f ′ as a dashed
arrow, since this is the map whose existence is claimed, whereas the other two
maps are given and thus drawn as regular arrows. This is a common conven-
tion and helps you distinguish the things you have from the things you are
trying to construct.

Before we prove Theorem 1.3.4, let us give an example:

• Consider the canonical projections

π6 : Z→ Z/6 and π3 : Z→ Z/3.

Both of them send each integer a to its residue class; but the residue class
is a + 6Z for the first map and a + 3Z for the second.

I claim that there is a unique ring morphism π′3 : Z/6 → Z/3 such that
π3 = π′3 ◦ π6. Indeed, this is what Theorem 1.3.4 says when it is applied
to R = Z, I = 6Z, π = π6, S = Z/3 and f = π3, because the ideal 6Z

satisfies π3 (6Z) = 0 (check this!).

How would you construct this π′3 ? The equation π3 = π′3 ◦ π6 is equiv-
alent to saying that π3 (a) = π′3 (π6 (a)) for any a ∈ Z; in other words, it
is saying that a + 3Z = π′3 (a + 6Z) for any a ∈ Z (since π3 (a) = a + 3Z

and π6 (a) = a + 6Z). So the map π′3 needs to send the residue classes

0 + 6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z to
0 + 3Z, 1 + 3Z, 2 + 3Z, 3 + 3Z, 4 + 3Z, 5 + 3Z,

respectively. In other words, it needs to send the residue classes

0 + 6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z to
0 + 3Z, 1 + 3Z, 2 + 3Z, 0 + 3Z, 1 + 3Z, 2 + 3Z,
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respectively. This uniquely determines this map. If you want, you can
easily check by hand that this map is indeed a ring morphism.

More generally, if n and m are two integers such that m | n, and if

πn : Z→ Z/n and πm : Z→ Z/m

are the canonical projections, then there is a unique ring morphism π′m :
Z/n→ Z/m such that π′m ◦πn = πm. This morphism can be regarded as
reducing a modulo-n residue class “further” to a modulo-m residue class.

Let us now prove the universal property of quotient rings:

Proof of Theorem 1.3.4. What does f = f ′ ◦ π mean? It means that f (r) =
f ′ (π (r)) for each r ∈ R. In other words, it means that f (r) = f ′ (r + I) for each
r ∈ R (since π (r) = r + I by the definition of π). But this equality uniquely
determines (actually overdetermines) all values of f ′ (since any element of R/I
has the form r + I for some r ∈ R). Thus, if we want to construct a map f ′ that
satisfies f = f ′ ◦ π, the only thing we can do is to set

f ′ (r + I) = f (r) for each r ∈ R. (2)

We now need to show two facts:

1. This map f ′ is well-defined – i.e., the value f (r) depends only on the
coset r + I but not on the specific choice of r. (If this wasn’t the case, then
the equality (2) would give two conflicting values for a single value of f ′,
which would spell doom for our map f ′.)

2. This map f ′ is a ring morphism.

Let us prove Fact 1 first. So let r, r′ ∈ R be such that r + I = r′ + I. We must
show that f (r) = f (r′).

We do what we can: From r + I = r′ + I, we obtain r − r′ ∈ I, so that
f (r− r′) = 0 because f (I) = 0. However, f is a ring morphism and thus
respects differences; hence, f (r− r′) = f (r) − f (r′). Thus, f (r) − f (r′) =
f (r− r′) = 0, so that f (r) = f (r′). This proves Fact 1.

Let us now prove Fact 2. We need to show that f ′ is a ring morphism. There
are four axioms to check; we shall only show that f ′ respects multiplication (as
the other three axioms follow the same mold).

So let a, b ∈ R/I. We must show that f ′ (ab) = f ′ (a) · f ′ (b).
Write the cosets a, b ∈ R/I as a = r + I and b = s + I for some r, s ∈ R. Then,

ab = (r + I) (s + I) = rs + I because of how we defined multiplication on R/I.
Hence, f ′ (ab) = f ′ (rs + I) = f (rs) (by (2)). On the other hand, a = r + I and
thus f ′ (a) = f ′ (r + I) = f (r) (by (2)). Similarly, f ′ (b) = f (s). Thus,

f ′ (ab) = f (rs) = f (r)︸︷︷︸
= f ′(a)

· f (s)︸︷︷︸
= f ′(b)

(since f is a ring morphism)

= f ′ (a) · f ′ (b) ,



Lecture 3, version March 19, 2021 page 13

which is precisely what we wanted to prove. Thus, Fact 2 is proved as well.
So we have constructed a ring morphism f ′ : R/I → S that satisfies (2) and

therefore satisfies f = f ′ ◦ π. The uniqueness of such an f ′ is obvious, since (as
we have seen) the equality (2) determines all values of f ′. Thus, the theorem is
proven.
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