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Math 533 Winter 2021, Lecture 2: Rings and
ideals

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

1. Rings and ideals (cont’d)

1.1. Calculating in rings

The intuition for commutative rings is essentially that all computations that
can be performed with the operations +, − and · on integers can be similarly
made in any commutative ring. To some extent, this holds also for general
(noncommutative) rings.

For instance, if a1, a2, . . . , an are n elements of a ring, then the sum a1 +
a2 + · · · + an is well-defined, and can be computed by adding the elements
a1, a2, . . . , an together in any order. More generally, finite sums of the form
∑

s∈S
as are defined when the as belong to a ring, and behave just like finite sums

of numbers.1 The same holds for finite products when the ring is commutative.
If the ring is not commutative, then finite products in a specified order – like
a1a2 · · · an – are still well-defined, but unordered finite products – like ∏

s∈S
as –

are not, unless you have “local commutativity” (i.e., the as commute with each
other).2

In any ring, subtraction satisfies the rules you would expect: For any two
elements a, b of a ring, we have

(−a) b = a (−b) = − (ab) ;
(−a) (−b) = ab;

(−1) a = −a.

See [DF, §7.1, Proposition 1] for the easy proofs. Furthermore, any three ele-
ments a, b, c of a ring satisfy the “subtractive distributivity laws”

a (b− c) = ab− ac and (a− b) c = ac− bc.

(These follows easily from the standard distributivity laws that are part of the
ring axioms.)

1It should be kept in mind that empty sums (i.e., sums of the form ∑
s∈∅

as) are defined to equal

the zero of the ring.
2It should be kept in mind that empty products (i.e., products of the form ∏

s∈∅
as) are defined

to equal the unity of the ring.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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If n is an integer and a is an element of a ring R, then we define an element
na of R by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n addends

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n addends

 , if n < 0
.

If n is a nonnegative integer and a is an element of a ring R, then an is a
well-defined element of R (namely, an = a · a · · · · · a︸ ︷︷ ︸

n factors

). In particular, applying

this definition to n = 0, we obtain

a0 = (empty product) = 1 for each a ∈ R.

Thus we can scale elements of a ring by integers, and take them to nonnega-
tive integer powers. The identities you would expect are satisfied for these op-
erations: For example, for any a, b ∈ R (with R being a ring) and any n, m ∈ Z,
we have

(n + m) a = na + ma;
n (a + b) = na + nb;
(nm) a = n (ma) ;
(−1) a = −a;

an+m = anam;

anm = (an)m .

Also,

1n = 1 for n ∈N;

0n =

{
0, if n > 0;
1, if n = 0

for n ∈N.

Moreover, if a, b ∈ R satisfy ab = ba, then

aibj = bjai for i, j ∈N

and
(ab)n = anbn for n ∈N

and (the binomial formula)

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k for n ∈N.

All of this is proved just as for numbers.
Here are things that behave less familiar:
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• It is not true that a 6= 0 and b 6= 0 implies ab 6= 0. This fails in the ring
Z/6 (for example, you can pick a = 2 and b = 3 to get ab = 2 · 3 = 2 · 3 =
6 = 0, even though a and b are 6= 0) and in matrix rings like Z2×2 (here

you can pick a =

(
1 0
0 0

)
and b =

(
0 0
0 1

)
to get ab =

(
0 0
0 0

)
, even

though a and b are not the zero matrix).

• It is not true that ab = 1 implies ba = 1. This would be true in the clas-
sical matrix rings Rn×n and Cn×n, in any commutative ring (for obvious
reasons), and in any finite ring (for less obvious reasons), but may fail
in arbitrary rings. (Counterexamples are not easy to find; see [DF, §7.1,
exercise 30 (a)] for one.)

1.2. Zero divisors and integral domains ([DF, §7.1])
Definition 1.2.1. An element of a ring R is said to be nonzero if it is 6= 0.
(Here, 0 means 0R.)

Definition 1.2.2. Let R be a commutative ring. A nonzero element a ∈ R is
called a zero divisor if there is a nonzero b ∈ R such that ab = 0.

This definition is slightly controversial: Some people don’t require a to be
nonzero. Thus, to them, 0 is a zero divisor unless R is trivial. It’s not a very
well-conceived definition, but it’s not used very much either.

Definition 1.2.3. Let R be a commutative ring. Assume that 0 6= 1 in R. (By
this, we mean 0R 6= 1R; that is, the zero and the unity of R are distinct. In
other words, we assume that the ring R is not trivial.) We say that R is an
integral domain if all nonzero a, b ∈ R satisfy ab 6= 0.

Equivalently, a commutative ring R with 0 6= 1 (in R, that is) is an integral
domain if and only if R has no zero divisors.

Examples:

• The rings Z, Q, R and C are integral domains.

• The ring Z/n is an integral domain if and only if n is 0 or a prime or
minus a prime. We will prove this later.

• The ring S′ from the last lecture (i.e., the ring S whose elements are num-
bers of the form a + b

√
5 with a, b ∈ Q, with multiplication ∗ given by(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5) is not an integral domain, since it

has 1 ∗
√

5 = 0.

• The ring of all functions from Q to Q is not an integral domain, since any
two functions with disjoint supports will multiply to 0. (For a specific
example, we have δ0 · δ1 = 0, where δy (for y ∈ Q) is the function that
sends y to 1 and all other rational numbers to 0.)
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1.3. Units and fields ([DF, §7.1])

Definition 1.3.1. Let R be a ring.
(a) An element a ∈ R is said to be a unit of R (or invertible in R) if there

exists a b ∈ R such that ab = ba = 1. In this case, b is unique and is known
as the inverse (or multiplicative inverse, or reciprocal) of a, and is written
a−1.

(b) We let R× denote the set of all units of R.

A few comments:

• It goes without saying that the “1” refers to the unity of the ring R.

• We required ab = ba = 1 rather than merely ab = 1 because R is not
necessarily commutative. When R is commutative, of course, ab = 1
suffices.

• Why is b unique in part (a) of the definition? Because if b1 and b2 are two
such b’s (for the same a), then ab1 = b1a = 1 and ab2 = b2a = 1, so that
b1 ab2︸︷︷︸

=1

= b11 = b1 and thus b1 = b1a︸︷︷︸
=1

b2 = 1b2 = b2. This is the exact

same argument that proves the uniqueness of inverses in a group.

• Don’t confuse “unit” (= invertible element) with “unity” (= neutral ele-
ment for multiplication). The unity is always a unit, but not vice versa!

• Some people write R∗ or Rx for R×.

Examples of units:

• The units of the ring Q are all nonzero elements of Q. (This is because
every nonzero element of Q has a reciprocal, and this reciprocal again lies
in Q.) The same holds for R and for C.

• The units of the ring Z are 1 and −1 (with inverses 1 and −1, respec-

tively). No other integer is a unit of Z. For example, 2 has an inverse
1
2

in Q, but not in Z.

• The units of the matrix ring Rn×n are the invertible n× n-matrices. You
have seen many ways to characterize them in your linear algebra class.
You might even remember that the set (Rn×n)

× of these units is known
as the n-th general linear group of R, and is called GLn (R) or GL (n, R).

• In the ring of all functions from Q to Q, the units are the functions that
never vanish (i.e., that don’t take 0 as a value). Inverses can be computed
pointwise.
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Our next example we state as a proposition:

Proposition 1.3.2. Let n ∈ Z.
(a) The units of the ring Z/n are precisely the residue classes a with a

coprime to n.
(b) Let a ∈ Z. Then, a is a unit of Z/n if and only if a is coprime to n.

Proof. We begin by proving part (b), which is the stronger claim. (Part (a) will
then easily follow.)

(b) ⇐=: Assume that a ∈ Z is coprime to n. Then, Bezout’s theorem tells
us that there exist x, y ∈ Z with xa + yn = 1. Thus, xa ≡ xa + yn = 1 mod n,
so that xa = 1 in Z/n. Hence, x · a = xa = 1 in Z/n. Since the ring Z/n is
commutative, this shows that a is invertible (with inverse x). In other words, a
is a unit of Z/n.
=⇒: Conversely, assume that a is a unit of Z/n. Thus, a has an inverse

b ∈ Z/n. This inverse b satisfies ab = 1; in other words, ab ≡ 1 mod n. But this
easily yields that3 gcd (ab, n) = gcd (1, n) = 1. In other words, ab is coprime to
n. Hence, a is coprime to n as well (since any common divisor of a and n must
be a common divisor of ab and n).

(a) This follows easily from part (b).

Theorem 1.3.3. Let R be a ring. Then, the set R× is a multiplicative group.
More precisely: (R×, ·, 1) is a group.

Proof. It suffices to show the following facts:

1. The unity 1 of R belongs to R×.

2. If a, b ∈ R×, then ab ∈ R×.

3. If a ∈ R×, then a has an inverse in R×.

All other group axioms for R× follow from the ring axioms of R. So let us
prove these three facts.

Proof of Fact 1: Fact 1 is obvious (as 1 has inverse 1).
Proof of Fact 2: Let a, b ∈ R×. Thus, the elements a, b are units, and thus

have inverses a−1, b−1, respectively. These satisfy aa−1 = a−1a = 1 and bb−1 =

b−1b = 1. Now, a bb−1︸︷︷︸
=1

a−1 = aa−1 = 1 and b−1 a−1a︸︷︷︸
=1

b = b−1b = 1, so that ab is

invertible as well (with inverse b−1a−1). That is, ab ∈ R×. This proves Fact 2.
Proof of Fact 3: Let a ∈ R×. Thus, a has an inverse a−1 in R. This inverse a−1,

in turn, has an inverse (namely, a), and thus also lies in R×. Hence, a has an
inverse in R×. This proves Fact 3.

3We are using the fact that if u and v are two integers satisfying u ≡ v mod n, then gcd (u, n) =
gcd (v, n). This is just a restatement of the classical result that the gcd of two integers does
not change if we add a multiple of one to the other.



Lecture 2, version March 19, 2021 page 6

The group R× from the above theorem is known as the group of units of R.

Theorem 1.3.4 (Shoe-sock theorem). Let R be a ring. Let a, b be two units of
R. Then, ab is a unit of R, and its inverse is (ab)−1 = b−1a−1.

Proof. See the proof of Fact 2 in the preceding proof.

Definition 1.3.5. Let R be a commutative ring. Assume that 0 6= 1 in R. We
say that R is a field if every nonzero element of R is a unit.

Examples:

• The rings Q, R and C are fields. The ring Z is not (since 2 is not a unit).

• The ring S of all real numbers of the form a + b
√

5 with a, b ∈ Q (see the
previous lecture) is a field, too. Indeed, the inverse of a nonzero element
a + b

√
5 is(

a + b
√

5
)−1

=
1

a + b
√

5
=

a− b
√

5
a2 − b2 · 5 =

a
a2 − 5b2 +

−b
a2 − 5b2

√
5

(the denominators here are nonzero because a + b
√

5 6= 0 entails a2 −
5b2 6= 0). So this is why they taught you rationalizing denominators in
high school!

• The Hamiltonian quaternions H are not a field, but for a stupid reason:
they are noncommutative. Otherwise, they would be a field. A non-
commutative ring in which each nonzero element is invertible is called a
division ring or skew-field.

• Let n be a positive integer. The ring Z/n is a field if and only if n is prime.
(We will prove this below.)

1.4. Fields and integral domains: some connections ([DF,
§7.1])

Proposition 1.4.1. (a) Every field is an integral domain.
(b) Every finite integral domain is a field. (Here, of course, “finite” means

“finite as a set”.)

Proof. (a) Let F be a field. Let a, b ∈ F be nonzero. We must show that ab is
nonzero.

Indeed, a and b are nonzero, and thus are units (since F is a field). Thus, they
have inverses a−1 and b−1.
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Now, if we had ab = 0, then we would have ab︸︷︷︸
=0

b−1a−1 = 0, which would

yield 0 = a bb−1︸︷︷︸
=1

a−1 = aa−1 = 1, which would contradict the fact that 0 6= 1

in F (since F is a field). Thus, we cannot have ab = 0. In other words, ab is
nonzero. This completes the proof of (a).

(b) Let R be a finite integral domain. We must show that R is a field.
Let a ∈ R be nonzero. We must show that a is a unit.
Since R is an integral domain, we know that ab 6= 0 for any b 6= 0. Thus,

ax 6= ay for any two distinct elements x and y of R (because if x and y are two
distinct elements of R, then x − y 6= 0, and thus the previous sentence yields
a (x− y) 6= 0; but this rewrites as ax− ay 6= 0, so that ax 6= ay). In other words,
the map

R→ R, x 7→ ax

is injective. Hence, this map is also bijective (since any injective map between
two finite sets of the same size is bijective – this is one of the Pigeonhole Prin-
ciples). Thus, in particular, this map is surjective, and hence takes 1 as a value.
In other words, there exists an x ∈ R such that ax = 1. Since R is commutative,
this x must be an inverse of a, and thus we conclude that a is a unit. This
finishes the proof of (b).

Without the word “finite”, Proposition 1.4.1 (b) would not be true; for in-
stance, Z is an integral domain but no field. The polynomial ring R [x] (con-
sisting of univariate polynomials with real coefficients) is another example of
an integral domain that is not a field. (We will prove this later.)

Our above study of units of Z/n lets us now easily obtain the following:

Corollary 1.4.2. Let n be a positive integer. Then, the following chain of
equivalences holds:

(Z/n is an integral domain)⇐⇒ (Z/n is a field)⇐⇒ (n is prime) .

Proof. The first of the two⇐⇒ signs follows from Proposition 1.4.1 (since Z/n
is finite). Let’s now prove the second.
=⇒: Assume that Z/n is a field. Then, the n− 1 residue classes 1, 2, . . . , n− 1

are units of Z/n (since they are nonzero). Hence, the n− 1 integers 1, 2, . . . , n−
1 are coprime to n (by Proposition 1.3.2 (b)). Hence, n is either 1 or prime.
However, if n was 1, then we would have 0 = 1, which would mean that 0 = 1
in Z/n; but this is forbidden for a field. Thus, n cannot be 1, and therefore
must be prime.
⇐=: Assume that n is prime. Then, n > 1, so that 0 6= 1. That is, 0 6= 1 in

Z/n. Furthermore, if a (for some integer a) is a nonzero element of Z/n, then
the integer a is not divisible by n (since a is nonzero), so that a is coprime to n
(since n is prime), and this entails (by Proposition 1.3.2 (b)) that a is a unit of
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Z/n. So we have shown that every nonzero element of Z/n is a unit. In other
words, Z/n is a field.

Back to the general case. Rings have addition, subtraction and multiplication;
but we can also divide two elements of a ring, as long as the denominator (i.e.,
the element we are dividing by) is a unit. If the ring is noncommutative, this
is somewhat complicated by the fact that there are two kinds of division (“left”
and “right” division); however, for commutative rings, it is as simple as for
numbers:

Definition 1.4.3. Let R be a commutative ring. Let a ∈ R and b ∈ R×. Then,
a
b

means the element ab−1 = b−1a ∈ R. This element is also written a/b, and

is called the quotient of a by b. The operation (a, b) 7→ a/b is called division.

Thus, in a field, we can divide by any nonzero element.
Division satisfies the rules you would expect: If R is a commutative ring, and

if a, c ∈ R and b, d ∈ R×, then

a
b
+

c
d
=

ad + bc
bd

;
a
b
· c

d
=

ac
bd

.

Division undoes multiplication: Three elements a ∈ R, b ∈ R× and c ∈ R
satisfy

a
b
= c if and only if a = bc.

1.5. Subrings ([DF, §7.1])

Groups have subgroups; vector spaces have subspaces (and so do topological
spaces, although the two notions have little in common). Not surprisingly, the
same is true for rings, and you can guess the definition:

Definition 1.5.1. Let R be a ring. A subring of R is a subset S of R such that

• a + b ∈ S for any a, b ∈ S;

• ab ∈ S for any a, b ∈ S;

• −a ∈ S for any a ∈ S;

• 0 ∈ S (where the 0 means the zero of R);

• 1 ∈ S (where the 1 means the unity of R).

The five conditions in Definition 1.5.1 are called the “subring axioms”. The
first of these five axioms is often reformulated as “S is closed under addition”;
the second then becomes “S is closed under multiplication”; the third becomes
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“S is closed under negation”. Thus, a subring of a ring is a subset that is
closed under addition, closed under multiplication, closed under negation, and
contains the zero and the unity.

The following is essentially obvious:

Proposition 1.5.2. Let S be a subring of a ring R. Then, S automatically is a
ring in its own right (with its operations + and · obtained by restricting the
corresponding operations of R, and with its elements 0 and 1 passed down
from R).

Here are some examples of subrings:

• From the classical construction of the number systems, you know that
Z ⊆ Q ⊆ R ⊆ C. Each of these three “⊆” signs can be strengthened to
“is a subring of” (for example, Z is a subring of Q).

• We can extend this chain further to the right: C is a subring of H (the
quaternions).

• However, we cannot extend this chain to the left: The only subring of Z

is Z itself. Indeed, a subring of Z would have to contain 0 and 1 (by
definition), thus also any sum of the form 1 + 1 + · · ·+ 1 (since a subring
is closed under addition), i.e., any positive integer, and therefore also any
negative integer (since it is closed under negation), and thus any integer.
But this means it is Z.

This would be different if we used [DF]’s definitions. For example, the
nonunital ring 2Z is a subring of Z in [DF]’s sense.

• There are lots of rings between Z and Q (that is, rings B such that Z is a
subring of B and B in turn is a subring of Q). You will see some of these
in exercise 1 on homework set #1.

• There are myriad rings between Q and R. For example, the ring S from
the previous lecture is one of these.

• There are no rings between R and C. That is, if a subring of C contains
R as a subring, then this subring must be either R or C itself. This is not
hard to prove (but I won’t do so here).

• There are rings between Z and C that are neither subrings nor “super-
rings” of R. A particularly important one is the ring Z [i] of Gaussian
integers. A Gaussian integer is a complex number of the form a + bi
where a and b are integers (and where i is the imaginary unit

√
−1). For

example, 3 + 5i and −7 + 8i are Gaussian integers. It is easy to see that
Z [i] is indeed a subring of C, and of course Z is a subring of Z [i]. But
Z [i] is not an intermediate stage on the Z ⊆ Q ⊆ R ⊆ C “chain”; it is a
“detour”.
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Likewise, there is a ring Q [i] of Gaussian rationals, which are defined
just as Gaussian integers but using rational numbers (instead of integers)
for a and b. This ring Q [i] is sandwiched between Q and C.

• Recall the ring of functions from Q to Q. Similarly, there is a ring of func-
tions from R to R. The latter has a subring consisting of all continuous
functions from R to R. To see that this is indeed a subring, you need to
show that the sum and the product of two continuous functions are con-
tinuous, and that the constant-0 and constant-1 functions are continuous.

Beware that [DF] does not require 1 ∈ S for a subring, because [DF] does not
require rings to have a 1 in the first place. This is a confusing point, because it is
possible that S and R are two rings in our sense (i.e., they both have unities), and
S is a subring of R in [DF]’s sense (i.e., S satisfies our definition of a subring,
minus the “1 ∈ S” axiom), but not a subring of R in our sense (because its
unity is not the unity of R). For example, the zero ring is a subring of Z in
[DF]’s sense, but not in ours (since the unity of the zero ring is the number
0). Alas, there are less pathological examples, too, so this isn’t something you
can ignore. For example, you can pretend that each 2× 2-matrix is secretly a
3× 3-matrix by inserting a zero row at the bottom and a zero column at the right

(i.e., identifying each 2× 2-matrix
(

a b
c d

)
with the 3× 3-matrix

 a b 0
c d 0
0 0 0

;

note that I am not saying you should do that), and this makes R2×2 a subring
of R3×3 in [DF]’s sense, but not in ours. Of course, this is one of the situations
where you really need subscripts under the “1” to avoid confusing different
unities.
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