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Math 533 Winter 2021, Lecture 1: Rings and
ideals

website: https://www.cip.ifi.lmu.de/~grinberg/t/21w/

0.1. General

We’ll follow the book Abstract Algebra by Dummit and Foote, 3rd edition (2004).
I will refer to this book by [DF].

Most of what we will do is a subset of [DF, Chapters 7–14], although we
won’t do all of it, we won’t proceed in the same order as the book does, and we
will (hopefully have time to) insert some extras here and there.

A few administrativa:

• See the website ( https://www.cip.ifi.lmu.de/~grinberg/t/21w/ ) for
any info you might be looking for.

We will use gradescope for HW. We won’t use Blackboard.

Grading is all HW, including HW0 (due this Friday). But HW0 is worth
fewer points than future HWs. Probably will be 6 HWs in total.

• Please interrupt whenever something is unclear!

Don’t hesitate to email questions either.

0.2. Plan

What we plan to do:

• Basics of rings and fields.

• Basics of modules over rings (and vector spaces over fields). In a way, this
is abstract linear algebra, done in a more general setup.

• The Smith normal form and its consequences (including the Jordan nor-
mal form you might know from linear algebra).

• Tensor products.

• Gröbner bases.

• Finite fields.

• Maybe a bit of Galois theory.

https://www.cip.ifi.lmu.de/~grinberg/t/21w/
https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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0.3. Notations

Notations:

• We let N = {0, 1, 2, . . .}.

• Unlike algebraic geometers, we accept noncommutative rings as rings (see
below for the definition). Unlike [DF], we don’t accept nonunital rings
(i.e., rings without a 1) as rings.

1. Rings and ideals

1.1. Defining rings ([DF, §7.1])

You may have seen rings before, but beware – there are at least 4 non-equivalent
concepts known by this name, and the one you know might be different from
the one we’ll use. Let us define this one:

Definition 1.1.1. A ring means a set R equipped with

• two binary operations (i.e., maps from R × R to R) that are called addi-
tion and multiplication and denoted by + and ·, and

• two elements of R that are called zero and unity and denoted by 0 and
1,

such that the following properties (the “ring axioms”) hold:

• (R,+, 0) is an abelian group. In other words:

– The operation + is associative (i.e., we have a+(b + c) = (a + b)+
c for any a, b, c ∈ R).

– The element 0 is a neutral element for the operation + (i.e., we
have a + 0 = 0 + a = a for any a ∈ R).

– Each element a ∈ R has an inverse for the operation + (i.e., an
element b ∈ R satisfying a + b = b + a = 0).

– The operation + is commutative (i.e., we have a + b = b + a for
any a, b ∈ R).

• (R, ·, 1) is a monoid. In other words:

– The operation · is associative (i.e., we have a · (b · c) = (a · b) · c for
any a, b, c ∈ R).

– The element 1 is a neutral element for the operation · (i.e., we have
a · 1 = 1 · a = a for any a ∈ R).
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Note that we do not require that the operation · be commutative; nor
do we require elements to have inverses for it.

• The distributive laws hold in R: That is, for all a, b, c ∈ R, we have

(a + b) · c = a · c + b · c and a · (b + c) = a · b + a · c.

• We have 0 · a = a · 0 = 0 for each a ∈ R.

The zero of R and the unity of R don’t necessarily have to be the numbers
0 and 1; we just call them 0 and 1 because they behave similarly to said
numbers. If things can get ambiguous (i.e., if they actually differ from the
numbers 0 and 1), then we will call them 0R and 1R instead (see below for
some examples of this).

The unity 1 of R is also known as the identity or the one of R (but beware
the ambiguity of the latter words).

The product a · b of two elements a, b ∈ R is often denoted ab (so we omit
the · sign) or occasionally a × b.

The inverse of an element a ∈ R in the abelian group (R,+, 0) will be
called the additive inverse of a, and denoted −a.

If a, b ∈ R, then the difference a− b is defined to be the element a+(−b) ∈
R.

Definition 1.1.2. A ring R is said to be commutative if its multiplication is
commutative (i.e., if ab = ba for all a, b ∈ R).

You have probably seen various rings in your mathematical life. Here are
some examples:

• The sets Z, Q, R and C (endowed with the usual addition, the usual
multiplication, the usual 0 and the usual 1) are commutative rings.

(Notice that existence of multiplicative inverses – i.e., inverses for the
operation · – is not required.)

• The set N of nonnegative integers (again endowed with the usual addi-
tion, the usual multiplication, the usual 0 and the usual 1) is not a ring,
since (N,+, 0) is not a group (only a monoid). It’s what is called a semir-
ing.

(Don’t be fooled by the existence of negative numbers: The number 2 has
no additive inverse in N, even though −2 is an additive inverse for it in
Z.)

• We can define a commutative ring Z′ as follows: We define a binary
operation ×̃ on the set Z by setting

a ×̃ b = −ab for all (a, b) ∈ Z × Z.
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Now, let Z′ be the set Z, endowed with the usual addition + and the
(unusual) multiplication ×̃ and with the (usual) zero 0Z′ = 0 and with the
(unusual) unity 1Z′ = −1. It is easy to check that Z′ is a commutative ring;
it is an example of a commutative ring whose unity is clearly not equal to
the integer 1; the two “1”s in the equality 1Z′ = −1 mean different things
(one is the unity of Z′, while the other is the number 1). This is why it is
important to never omit the subscript Z′ in 1Z′ .

Note that I am calling this ring Z′ rather than Z, even though as a set it
is identical with Z. I do this because I want to refer to a ring by just one
single letter instead of having to specify the addition and multiplication
every time; but this cannot go well if we use the same letter for different
rings.

This all said, Z′ is not a very interesting ring: It is essentially “a copy of
Z, except that every integer n has been renamed as −n”. To formalize this
intuition, we would need to introduce the notion of a ring isomorphism,
which I will do soon; the main idea is that the bijection

φ : Z → Z′, n 7→ −n

satisfies

φ (a + b) = φ (a) + φ (b) for all (a, b) ∈ Z × Z;

φ (a · b) = φ (a) ×̃ φ (b) for all (a, b) ∈ Z × Z;
φ (0) = 0Z′ ;
φ (1) = 1Z′

(where the 0 and the 1 without subscripts are the usual numbers 0 and
1), and thus the ring Z′ can be viewed as the ring Z with its elements
“relabelled” using this bijection.

• The polynomial rings Z [x], Q [a, b] and C [z1, z2, . . . , zn] (which we will
define soon) are commutative rings.

• The set of all functions Q → Q is a commutative ring, where addition and
multiplication are defined pointwise (i.e., addition is defined by

( f + g) (x) = f (x) + g (x) for all f , g : Q → Q and x ∈ Q,

and multiplication is defined by

( f g) (x) = f (x) · g (x) for all f , g : Q → Q and x ∈ Q,

), where the zero is the “constant-0” function (sending every x ∈ Q to 0),
and where the unity is the “constant-1” function (sending every x ∈ Q

to 1). Of course, the same construction works if we consider functions
R → C, or functions C → Q, or many other kinds of functions.
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More generally, if R is a ring, and if S is any set, then the set of all func-
tions S → R is a ring (with +, ·, 0 and 1 defined as above). If R is
commutative, then so is this new ring. For some reason, [DF] requires S
to be nonempty here; this is unnecessary.

When we specify a ring, we don’t need to provide its zero 0 and its unity 1
(although, of course, they need to exist); they are uniquely determined by the
operations + and ·. This is because they are neutral elements for the operations
+ and ·; but the neutral element of an operation is always unique.1

Here are some more examples of rings:

• The set S of all real numbers of the form a + b
√

5 with a, b ∈ Q (endowed
with the usual notions of “addition” and “multiplication” defined for real
numbers) is a commutative ring. The “hard” part of proving this is show-
ing that the product of two numbers of this form is again a number of this
form; but this is just a matter of computation:(

a + b
√

5
) (

c + d
√

5
)
= ac + bc

√
5 + ad

√
5 + bd · 5

= (ac + 5bd)︸ ︷︷ ︸
∈Q

+ (bc + ad)︸ ︷︷ ︸
∈Q

√
5.

Associativity, distributivity, etc. come for “free”, or, as we say, are inher-
ited from R (meaning that we already know that they hold for R, so they
must automatically hold for S).

The standard notation for this ring is Q
[√

5
]
, not S. We will eventually

see it as a particular case of a general construction.

• We could define a different ring structure on the set S (that is, a ring
which, as a set, is identical with S, but has a different choice of operations)
as follows: We define a binary operation ∗ on S by setting(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5

for all (a, b) ∈ Q × Q and (c, d) ∈ Q × Q.

This is well-defined, because every element of S can be written in the form
a + b

√
5 for a unique pair (a, b) ∈ Q × Q. This is a consequence of the

irrationality of
√

5. You could not do this with
√

4 instead of
√

5 !

Now, let S′ be the set S, endowed with the usual addition + and the
(unusual) multiplication ∗, with the (usual) zero 0S′ = 0 and with the (un-
usual) unity 1S′ = 1 +

√
5 (not the integer 1). It is easy to check that S′ is

1To wit: If ∗ is a binary operation on a set S, and if u and v are two neutral elements for ∗, then
u ∗ v = u (by the neutrality of v) and u ∗ v = v (by the neutrality of u), so that u = u ∗ v = v.
You have probably seen this argument in group theory, but it does not require a group, just
an arbitrary binary operation.
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a commutative ring. The sets S and S′ are identical, but the commutative
rings S and S′ are not: For example, the ring S′ has two nonzero elements
whose product is 0 (namely, 1 ∗

√
5 = 0), whereas the ring S has no such

things. Thus, we don’t just have S′ ̸= S as rings, but there is also no way
to regard S′ as “a copy of S with its elements renamed” (like we did with
Z′ and Z). So a ring is much more than just a set; the +, ·, 0 and 1 matter.

• The set S3 of all real numbers of the form a+ b 3
√

5 with a, b ∈ Q (endowed
with the usual addition, etc.) is not a ring. Indeed, multiplication is not a
binary operation on this set S3, as you can see by noticing that(

1 + 1 3
√

5
)

︸ ︷︷ ︸
∈S3

(
1 + 1 3

√
5
)

︸ ︷︷ ︸
∈S3

= 1 + 2 3
√

5 +
(

3
√

5
)2

/∈ S3.

(Strictly speaking, this requires some work to prove – how can we be sure

there are no a, b ∈ Q that satisfy 1 + 2 3
√

5 +
(

3
√

5
)2

= a + b 3
√

5 ? – but I’m
just making a point about how not everything that looks like a ring is a
ring.)

• For any n ∈ N, the set Rn×n of n × n-matrices with real entries (endowed
with matrix addition, matrix multiplication, the zero matrix and the iden-
tity matrix) is a ring. It is not commutative unless n ≤ 1, since we don’t
usually have AB = BA for matrices.

More generally: If R is any ring, and if n ∈ N, then the set Rn×n of
n × n-matrices with entries in R (endowed with matrix addition, matrix
multiplication, the zero matrix and the identity matrix) is a ring. This is
called the n × n-matrix ring over R; it is denoted by Rn×n or Mn (R) or
Mn (R). Of course, the matrix addition is defined in terms of the addition
of R, and the matrix multiplication is defined in terms of both + and
· operations of R. Matrix rings are one of the main reasons people are
studying noncommutative rings.

[Here I was asked what a 0 × 0-matrix is. Well, it pays off to be literal: It
is a table with 0 rows, 0 columns and 0 entries.]

At this point, the “endowed with...” phrase has become somewhat of a
ritual incantation: Most of our rings are endowed with the exact opera-
tions (+ and ·) and special elements (0 and 1) you would guess if I just
told you the set. Thus, in future, I will omit this phrase unless I actually
mean to endow the ring with some unexpected operations.

• Another famous noncommutative ring is the ring of Hamilton quater-
nions H. Its elements are the “formal expressions” of the form a + bi +
cj + dk with a, b, c, d ∈ R. (To be more rigorous, you can define them to
be 4-tuples (a, b, c, d) with a, b, c, d ∈ R; the “formal” sum a + bi + cj + dk
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can be viewed as just a fancy way to write such a 4-tuple.) Addition is
defined by the distributive law:

(a + bi + cj + dk) +
(
a′ + b′i + c′ j + d′k

)
=

(
a + a′

)
+

(
b + b′

)
i +

(
c + c′

)
j +

(
d + d′

)
k.

Multiplication is also defined by the distributive law using the formulas

i2 = j2 = k2 = −1, ij = −ji = k, jk = kj = −i, ki = −ik = j

(and the rule that any real number should commute with any of i, j, k).
For example, the distributive law yields

(1 + i) (2 + k) = 2 + k + i · 2︸︷︷︸
=2i

+ ik︸︷︷︸
=−j

= 2 + k + 2i + (−j) = 2 + 2i − j + k.

It is straightforward (but laborious) to check that this H is indeed a ring.
It is not commutative. It is used in computer graphics (quaternions en-
code rotations in 3D space), physics and number theory(!). In particular,
Lagrange’s four-squares theorem, which says that any positive integer can
be written as a sum of four perfect squares, can be proved using quater-
nions!

• If you like the empty set, you will enjoy the zero ring. This is the ring
which is defined as the one-element set {0}, endowed with the only pos-
sible operations + and · and its only possible 0 and 1 (there is only one
possibility for each of these, since the ring only has element!). So its zero
and its unity are both 0 (nobody said that they have to be distinct!), and
it has 0 + 0 = 0 and 0 · 0 = 0.

The zero ring is, of course, commutative. It plays the same role in the
world of rings as the empty set does in the world of sets: It contains
no interesting information whatsoever, but its existence is important for
things to work.

Generally, a trivial ring is defined to be a ring containing only one ele-
ment. Every trivial ring can be viewed as the zero ring with its element 0
relabelled.

• For every integer n, the residue classes of integers modulo n form a com-
mutative ring, which is called Z/nZ or Z/n or Zn (depending on the
author; beware that Zn has two different meanings). You already know
its additive group (Z/n,+, 0), which is classically called the cyclic group
of order n. The multiplication is defined just as addition is: namely, we
set

a · b = a · b for any a, b ∈ Z.
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(where the overline means “residue class modulo n”). This is all known
as modular arithmetic.

The ring Z/n has n elements when n > 0. In particular, Z/1Z is a trivial
ring. In contrast, Z/0Z is just Z with its elements relabelled (since a
residue class modulo 0 only contains a single integer2).

See homework set #1 (specifically, exercises 1, 4 and 6) for more examples of
rings.

Remark 1.1.3. Our above definition of a ring has some redundancies:
First of all, the 0 · a = a · 0 = 0 axiom follows from distributivity and

the groupness of (R,+, 0). This is why it appears in [DF] as a theorem
(Proposition 1 on page 226), not as an axiom.

Second, we can drop the “abelian” in the axiom “(R,+, 0) is an abelian
group”; in other words, we can drop the requirement that addition be com-
mutative. This is because this requirement can be derived from the remaining
axioms (see [DF, page 223]). But this is a bit artificial. I am aiming not for
a minimal set of axioms, but for a reasonable set of axioms that strikes the
balance between usefulness (i.e., important things are easy to derive from the
axioms) and verifiability (i.e., it is easy to check these axioms in meaningful
cases).

The kind of rings we defined above aren’t the same kind of rings [DF] defines.
The latter differ in that they are “lacking a unity”. I will call them nonunital
rings:

Definition 1.1.4. A nonunital ring is defined in the same way as we defined a
ring, except we no longer require a unity, and we replace the axiom “(R, ·, 1)
is a monoid” by “the operation · is associative”. In particular, any ring is a
nonunital ring, but not vice versa.

Note that the word “nonunital” means “we don’t require a unity”, not “the
ring must not have a unity”.

For example, the set 2Z of all even integers (i.e., the set {. . . ,−4,−2, 0, 2, 4, . . .})
is a nonunital ring (when equipped with the usual operations), but not a ring
in our sense.

Beware:
2You may be unused to this; some textbooks carefully avoid the n = 0 case when considering

Z/n. And indeed, Z/0 behaves unlike the “other” Z/n’s in some regard (for example,
Z/0 is infinite, whereas Z/n is finite for each nonzero n). But the underlying idea is still
the same: Two integers a and b are congruent modulo 0 if and only if 0 divides a − b; but
0 only divides 0 itself (since the only multiple of 0 is 0), so this means that a and b are
congruent modulo 0 if and only if a and b are equal. Hence, each residue class modulo
0 just consists of a single number. Thus, the elements of Z/0 are the one-element sets
. . . , {−2} , {−1} , {0} , {1} , {2} , . . .. They are added and multiplied just as the correspond-
ing integers: {a}+ {b} = {a + b} and {a} · {b} = {a · b}.
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• What we call a ring is called a “ring with identity” (or “ring with 1”) in
[DF].

• What we call a nonunital ring is just called a “ring” in [DF].


	General
	Plan
	Notations
	Rings and ideals
	Defining rings ([DF, §7.1])


