Math 533: Abstract Algebra I, Winter 2021: Homework 4

Please solve 5 of the 10 problems!

Darij Grinberg

February 13, 2023

1 EXERCISE 1

1.1 PROBLEM

Let F be a finite field. Prove the following:

(a) We have $a^{|F|} = a$ for each $a \in F$.

(b) If i > 1 is an integer such that each $a \in F$ satisfies $a^i = a$, then $i \ge |F|$.

1.2 Remark

Note that part (a) generalizes Fermat's Little Theorem (the part that says that $a^p = a$ for any prime p and any $a \in \mathbb{Z}/p$).

1.3 Solution

•••

2 EXERCISE 2

2.1 Problem

Let p be a prime number. Let F be a finite field of characteristic p. Let f be the map $F \to F$, $a \mapsto a^p$. We know (from Lecture 14) that this map f is a ring morphism from F to F (known as the Frobenius endomorphism of F).

- (a) Prove that f is a ring isomorphism from F to F (so it is invertible).
- (b) Now, replace the words "field of characteristic p" by the (more general) "commutative \mathbb{Z}/p -algebra" in the above. Find an example where the claim of part (a) becomes false.

2.2 Solution

•••

3 EXERCISE 3

3.1 Problem

Let S and F be two fields such that S is a subring of F. (For example, we can take $S = \mathbb{Q}$ and $F = \mathbb{R}$.)

For any $a \in F$, we define an *annihilating polynomial of a* to be a polynomial $f \in S[x]$ such that a is a root of f. For instance:

- If $a \in S$, then x a is an annihilating polynomial of a.
- If a is a square root of an element $v \in S$, then $x^2 v$ is an annihilating polynomial of a.
- If $S = \mathbb{Q}$ and $F = \mathbb{R}$, then $x^4 10x^2 + 1$ is an annihilating polynomial of $\sqrt{2} + \sqrt{3}$.
- The real number π is known to be transcendental; this means that there exists no nonzero annihilating polynomial of π (for $S = \mathbb{Q}$ and $F = \mathbb{R}$).

The minimal polynomial of an element $a \in F$ is defined to be the monic annihilating polynomial of a of smallest possible degree.

Prove the following:

- (a) The minimal polynomial of an element $a \in F$ is unique whenever it exists. That is, if there is at least one monic annihilating polynomial of a, then only one of these polynomials has smallest possible degree.
- (b) The minimal polynomial of an element $a \in F$ is always irreducible if it exists.

(c) If f is the minimal polynomial of an element $a \in F$, then the map

$$S[x] / f \to F,$$

$$\overline{g} \mapsto g[a]$$

is a (well-defined) ring morphism, and is injective.

(d) If f is the minimal polynomial of an element $a \in F$, then the annihilating polynomials of a are precisely the polynomials $g \in S[x]$ that are divisible by f.

3.2 Remark

The minimal polynomial of an $a \in F$ is defined in the exact same way as the minimal polynomial of a square matrix was defined in linear algebra. However, the minimal polynomial of a matrix is not always irreducible, so that part (b) of this exercise is specific to fields.

3.3 Solution

•••

4 EXERCISE 4

4.1 Problem

Set $S = \mathbb{Q}$ and $F = \mathbb{R}$ in Exercise 3. Let p and q be two positive integers such that none of p, q and pq is a perfect square (i.e., a square in \mathbb{Z}). (For example, we can take p = 5 and q = 8.) Let $a = \sqrt{p} + \sqrt{q} \in F$.

Let f denote the polynomial

$$(x^{2} - p - q)^{2} - 4pq = x^{4} - 2(p+q)x^{2} + (p-q)^{2} \in S[x].$$

- (a) Show that f is an annihilating polynomial of a (that is, f[a] = 0).
- (b) Show that f has no rational root.
- (c) Show that f is irreducible (in S[x]).
- (d) Conclude that f is the minimal polynomial of a.

[**Hint:** Part (c) is the tricky one. The polynomial f is even – meaning that f[-x] = f, or, equivalently (since S has characteristic 0) that no odd powers of x appear in f. Use this to argue that if $f = g_1g_2\cdots g_k$ is the factorization of f into monic irreducible polynomials, then substituting -x for x into it must yield another factorization $f = f[-x] = g_1[-x]g_2[-x]\cdots g_k[-x]$ of f into monic irreducible polynomials (why are they still monic?). Since S[x] is a UFD, the two factorizations must be identical (up to the order of the factors). This narrows down the possibilities for g_1, g_2, \ldots, g_k substantially.]

4.2 Remark

The assumption that none of p, q and pq is a square is not just sufficient, but also necessary for the claim of part (d). For example, if p = 3 and q = 12 (so that pq = 36 is a square), then $\sqrt{p} + \sqrt{q} = \sqrt{3} + \sqrt{12} = 3\sqrt{3}$ has minimal polynomial $x^2 - 27$, and the polynomial f fails to be irreducible.

4.3 Solution

...

5 EXERCISE 5

5.1 Problem

Let p be a prime number. Let F be a finite field of characteristic p. As we know from Lecture 14, this entails that F contains "a copy of \mathbb{Z}/p " (that is, a subring isomorphic to \mathbb{Z}/p). We identify this copy with \mathbb{Z}/p itself, so that \mathbb{Z}/p is a subring of F. We write S for the field \mathbb{Z}/p , and we shall use the terminology from Exercise 3.

Let *m* be the positive integer satisfying $|F| = p^m$. (We know from Lecture 14 that this *m* exists.)

Prove the following:

- (a) Each $a \in F$ has a minimal polynomial (i.e., there is always at least one monic annihilating polynomial of a).
- (b) If the minimal polynomial of an element $a \in F$ has degree k, then $a^{p^k} = a$.
- (c) If the minimal polynomial of an element $a \in F$ has degree k, then $k \leq m$.

[Hint: Exercise 3 (c) can help with parts (b) and (c) of the present exercise. A size argument might also be useful in (c).]

5.2 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

We continue in the setting of Exercise 5. Prove the following:

(a) There exists at least one $a \in F$ such that none of the m-1 powers $a^{p^1}, a^{p^2}, \ldots, a^{p^{m-1}}$ equals a.

- (b) There exists at least one monic irreducible polynomial $f \in S[x] = (\mathbb{Z}/p)[x]$ of degree m that satisfies $F \cong S[x]/f$.
- (c) Any monic irreducible polynomial $g \in S[x]$ of degree *m* divides $x^{p^m} x \in S[x]$.

[Hint: For part (a), it helps to notice that $p^m > p^1 + p^2 + \cdots + p^{m-1}$. For part (b), try to find an element $a \in F$ whose minimal polynomial has degree m. Part (c) is entirely self-contained.]

6.2 Remark

Part (b) of this exercise shows that any finite field can be constructed (up to isomorphism) by adjoining a (single) root of an irreducible polynomial to a field of the form \mathbb{Z}/p . It also shows that for any prime p and any positive integer m, there exists an irreducible polynomial of degree m over \mathbb{Z}/p .

Parts (b) and (c) can be used in showing that the finite field of a given size is unique up to isomorphism (i.e., any two finite fields of the same size are isomorphic).

6.3 SOLUTION

...

7 EXERCISE 7

7.1 PROBLEM

Let p be a prime number.

- (a) Prove that $(1+x)^{ap+c} = (1+x^p)^a (1+x)^c$ in the polynomial ring $(\mathbb{Z}/p)[x]$ for any $a, c \in \mathbb{N}$.
- (b) Prove Lucas's congruence: Any $a, b \in \mathbb{N}$ and any $c, d \in \{0, 1, \dots, p-1\}$ satisfy

$$\binom{ap+c}{bp+d} \equiv \binom{a}{b} \binom{c}{d} \mod p.$$
7.2 SOLUTION

•••

8 EXERCISE 8

8.1 PROBLEM

Let p be an odd prime. Let ζ be a root of the polynomial $x^4 + 1 \in (\mathbb{Z}/p)[x]$ in a commutative \mathbb{Z}/p -algebra A. Thus, $\zeta^4 = -1$, so that ζ is a unit (with inverse $-\zeta^3$). Let $\tau \in A$ be defined by $\tau = \zeta + \zeta^{-1}$. Prove the following:

- (a) We have $\tau^2 = 2$. (Here, 2 stands for $2 \cdot 1_A \in A$.)
- (b) We have $\tau^p = \left(\frac{2}{p}\right)\tau$, where $\left(\frac{2}{p}\right)$ means a Legendre symbol.
- (c) If $p \equiv \pm 1 \mod 8$ (that is, if p is congruent to 1 or to $-1 \mod 8$), then $\tau^p = \tau$.
- (d) If $p \equiv \pm 3 \mod 8$ (that is, if p is congruent to 3 or to $-3 \mod 8$), then $\tau^p = -\tau$.
- (e) Conclude the Second Supplementary Law to Quadratic Reciprocity, which says that

$$\begin{pmatrix} \frac{2}{p} \end{pmatrix} = \begin{cases} 1, & \text{if } p \equiv \pm 1 \mod 8; \\ -1, & \text{if } p \equiv \pm 3 \mod 8. \end{cases}$$
(1)

[**Hint:** For part (b), start out by writing $\tau^p = (\tau^2)^{(p-1)/2} \tau$.]

8.2 Remark

The right hand side of (1) is also commonly written as $(-1)^{(p^2-1)/8}$.

8.3 SOLUTION

9 EXERCISE 9

9.1 PROBLEM

Let R be a commutative ring. Let P be the polynomial ring R[x, y]. Fix $N \in \mathbb{N}$. Let P_N be the R-submodule

$$\{f \in P \mid f = 0 \text{ or } \deg f < N\}$$

of P. (This is an R-submodule, since it is the span of the family $(x^i y^j)_{(i,j) \in \mathbb{N}^2; i+j < N}$.)

(a) Consider the *R*-algebra morphism

$$S: P \to R[x],$$

$$f \mapsto f(x, x^{N})$$

(This is the map that substitutes x^N for y in any polynomial $f \in P$. It is an *R*-algebra morphism, as we know from Lecture 11.)

Prove that the restriction of S to P_N is injective.

From now on, assume that R is a field.

(b) Let $f \in P_N$ be such that the polynomial $S(f) \in R[x]$ is irreducible. Show that $f \in P = R[x, y]$ is irreducible.

. . .

9.2 Remark

The converse of part (b) does not hold. For example, if $R = \mathbb{Q}$ and N = 2, then the polynomial $f := 1 + 2x + y \in P$ is irreducible, but the polynomial $S(f) = 1 + 2x + x^2 = (1+x)^2 \in R[x]$ is not.

9.3 SOLUTION

10 EXERCISE 10

10.1 Problem

Let R be a commutative ring. Let $f \in R[x]$ be a polynomial. Prove that f is a unit of the ring R[x] if and only if¹

- the coefficient $[x^0] f$ is a unit of R, and
- all the remaining coefficients $[x^1] f, [x^2] f, [x^3] f, \dots$ of f are nilpotent.

[Hint: Recall the result (from Exercise 7 (c) on homework set #1) that the nilpotent elements of a commutative ring form an ideal, as well as the result (from Exercise 1 on homework set #2) that the difference of a unit and a nilpotent element is always a unit (in a commutative ring). This should help with the "if" direction. For the "only if" direction, let $f = f_0 x^0 + f_1 x^1 + \cdots + f_n x^n \in R[x]$ be a unit and $g = g_0 x^0 + g_1 x^1 + \cdots + g_m x^m \in R[x]$ be its inverse. Use induction on r to show that $f_n^{r+1}g_{m-r} = 0$ for each $r \in \{0, 1, \ldots, m\}$. Use this to conclude that f_n is nilpotent.]

10.2 Remark

This exercise precisely delineates the phenomenon of nonconstant polynomials that have inverses (such as the polynomial $\overline{1} + \overline{2}x \in (\mathbb{Z}/4)[x]$). In particular, it shows that this requires R not only to have zero-divisors (i.e., not be an integral domain), but also to have nonzero nilpotent elements (so, e.g., it cannot happen for $R = \mathbb{Z}/6$).

10.3 Solution

•••

REFERENCES

¹Recall that $[x^i] f$ denotes the coefficient of the monomial x^i in f.