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Please solve 5 of the 10 problems!
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1 Exercise 1

1.1 Problem

Let F be a finite field. Prove the following:

(a) We have a|F | = a for each a ∈ F .

(b) If i > 1 is an integer such that each a ∈ F satisfies ai = a, then i ≥ |F |.

1.2 Remark

Note that part (a) generalizes Fermat’s Little Theorem (the part that says that ap = a for
any prime p and any a ∈ Z/p).

1.3 Solution

...
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2 Exercise 2

2.1 Problem

Let p be a prime number. Let F be a finite field of characteristic p. Let f be the map
F → F, a 7→ ap. We know (from Lecture 14) that this map f is a ring morphism from F to
F (known as the Frobenius endomorphism of F ).

(a) Prove that f is a ring isomorphism from F to F (so it is invertible).

(b) Now, replace the words “field of characteristic p” by the (more general) “commutative
Z/p-algebra” in the above. Find an example where the claim of part (a) becomes
false.

2.2 Solution

...

3 Exercise 3

3.1 Problem

Let S and F be two fields such that S is a subring of F . (For example, we can take S = Q
and F = R.)

For any a ∈ F , we define an annihilating polynomial of a to be a polynomial f ∈ S [x]
such that a is a root of f . For instance:

• If a ∈ S, then x− a is an annihilating polynomial of a.

• If a is a square root of an element v ∈ S, then x2 − v is an annihilating polynomial of
a.

• If S = Q and F = R, then x4 − 10x2 + 1 is an annihilating polynomial of
√
2 +

√
3.

• The real number π is known to be transcendental; this means that there exists no
nonzero annihilating polynomial of π (for S = Q and F = R).

The minimal polynomial of an element a ∈ F is defined to be the monic annihilating
polynomial of a of smallest possible degree.

Prove the following:

(a) The minimal polynomial of an element a ∈ F is unique whenever it exists. That is,
if there is at least one monic annihilating polynomial of a, then only one of these
polynomials has smallest possible degree.

(b) The minimal polynomial of an element a ∈ F is always irreducible if it exists.
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(c) If f is the minimal polynomial of an element a ∈ F , then the map

S [x] /f → F,

g 7→ g [a]

is a (well-defined) ring morphism, and is injective.

(d) If f is the minimal polynomial of an element a ∈ F , then the annihilating polynomials
of a are precisely the polynomials g ∈ S [x] that are divisible by f .

3.2 Remark

The minimal polynomial of an a ∈ F is defined in the exact same way as the minimal poly-
nomial of a square matrix was defined in linear algebra. However, the minimal polynomial
of a matrix is not always irreducible, so that part (b) of this exercise is specific to fields.

3.3 Solution

...

4 Exercise 4

4.1 Problem

Set S = Q and F = R in Exercise 3. Let p and q be two positive integers such that none of
p, q and pq is a perfect square (i.e., a square in Z). (For example, we can take p = 5 and
q = 8.) Let a =

√
p+

√
q ∈ F .

Let f denote the polynomial(
x2 − p− q

)2 − 4pq = x4 − 2 (p+ q)x2 + (p− q)2 ∈ S [x] .

(a) Show that f is an annihilating polynomial of a (that is, f [a] = 0).

(b) Show that f has no rational root.

(c) Show that f is irreducible (in S [x]).

(d) Conclude that f is the minimal polynomial of a.

[Hint: Part (c) is the tricky one. The polynomial f is even – meaning that f [−x] =
f , or, equivalently (since S has characteristic 0) that no odd powers of x appear in f .
Use this to argue that if f = g1g2 · · · gk is the factorization of f into monic irreducible
polynomials, then substituting −x for x into it must yield another factorization f = f [−x] =
g1 [−x] g2 [−x] · · · gk [−x] of f into monic irreducible polynomials (why are they still monic?).
Since S [x] is a UFD, the two factorizations must be identical (up to the order of the factors).
This narrows down the possibilities for g1, g2, . . . , gk substantially.]
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4.2 Remark

The assumption that none of p, q and pq is a square is not just sufficient, but also necessary
for the claim of part (d). For example, if p = 3 and q = 12 (so that pq = 36 is a square),
then √

p+
√
q =

√
3 +

√
12 = 3

√
3 has minimal polynomial x2 − 27, and the polynomial f

fails to be irreducible.

4.3 Solution

...

5 Exercise 5

5.1 Problem

Let p be a prime number. Let F be a finite field of characteristic p. As we know from
Lecture 14, this entails that F contains “a copy of Z/p” (that is, a subring isomorphic to
Z/p). We identify this copy with Z/p itself, so that Z/p is a subring of F . We write S for
the field Z/p, and we shall use the terminology from Exercise 3.

Let m be the positive integer satisfying |F | = pm. (We know from Lecture 14 that this
m exists.)

Prove the following:

(a) Each a ∈ F has a minimal polynomial (i.e., there is always at least one monic annihi-
lating polynomial of a).

(b) If the minimal polynomial of an element a ∈ F has degree k, then ap
k
= a.

(c) If the minimal polynomial of an element a ∈ F has degree k, then k ≤ m.

[Hint: Exercise 3 (c) can help with parts (b) and (c) of the present exercise. A size
argument might also be useful in (c).]

5.2 Solution

...

6 Exercise 6

6.1 Problem

We continue in the setting of Exercise 5. Prove the following:

(a) There exists at least one a ∈ F such that none of the m− 1 powers ap1 , ap2 , . . . , apm−1

equals a.
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(b) There exists at least one monic irreducible polynomial f ∈ S [x] = (Z/p) [x] of degree
m that satisfies F ∼= S [x] /f .

(c) Any monic irreducible polynomial g ∈ S [x] of degree m divides xpm − x ∈ S [x].

[Hint: For part (a), it helps to notice that pm > p1 + p2 + · · ·+ pm−1.
For part (b), try to find an element a ∈ F whose minimal polynomial has degree m.
Part (c) is entirely self-contained.]

6.2 Remark

Part (b) of this exercise shows that any finite field can be constructed (up to isomorphism)
by adjoining a (single) root of an irreducible polynomial to a field of the form Z/p. It also
shows that for any prime p and any positive integer m, there exists an irreducible polynomial
of degree m over Z/p.

Parts (b) and (c) can be used in showing that the finite field of a given size is unique
up to isomorphism (i.e., any two finite fields of the same size are isomorphic).

6.3 Solution

...

7 Exercise 7

7.1 Problem

Let p be a prime number.

(a) Prove that (1 + x)ap+c = (1 + xp)a (1 + x)c in the polynomial ring (Z/p) [x] for any
a, c ∈ N.

(b) Prove Lucas’s congruence: Any a, b ∈ N and any c, d ∈ {0, 1, . . . , p− 1} satisfy(
ap+ c

bp+ d

)
≡

(
a

b

)(
c

d

)
mod p.

7.2 Solution

...

8 Exercise 8

8.1 Problem

Let p be an odd prime. Let ζ be a root of the polynomial x4+1 ∈ (Z/p) [x] in a commutative
Z/p-algebra A. Thus, ζ4 = −1, so that ζ is a unit (with inverse −ζ3). Let τ ∈ A be defined
by τ = ζ + ζ−1. Prove the following:
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(a) We have τ 2 = 2. (Here, 2 stands for 2 · 1A ∈ A.)

(b) We have τ p =

(
2

p

)
τ , where

(
2

p

)
means a Legendre symbol.

(c) If p ≡ ±1 mod 8 (that is, if p is congruent to 1 or to −1 modulo 8), then τ p = τ .

(d) If p ≡ ±3 mod 8 (that is, if p is congruent to 3 or to −3 modulo 8), then τ p = −τ .

(e) Conclude the Second Supplementary Law to Quadratic Reciprocity, which says that(
2

p

)
=

{
1, if p ≡ ±1 mod 8;
−1, if p ≡ ±3 mod 8.

(1)

[Hint: For part (b), start out by writing τ p = (τ 2)
(p−1)/2

τ .]

8.2 Remark

The right hand side of (1) is also commonly written as (−1)(p
2−1)/8.

8.3 Solution

...

9 Exercise 9

9.1 Problem

Let R be a commutative ring. Let P be the polynomial ring R [x, y].
Fix N ∈ N. Let PN be the R-submodule

{f ∈ P | f = 0 or deg f < N}

of P . (This is an R-submodule, since it is the span of the family (xiyj)(i,j)∈N2; i+j<N .)

(a) Consider the R-algebra morphism

S : P → R [x] ,

f 7→ f
(
x, xN

)
.

(This is the map that substitutes xN for y in any polynomial f ∈ P . It is an R-algebra
morphism, as we know from Lecture 11.)

Prove that the restriction of S to PN is injective.

From now on, assume that R is a field.

(b) Let f ∈ PN be such that the polynomial S (f) ∈ R [x] is irreducible. Show that
f ∈ P = R [x, y] is irreducible.
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9.2 Remark

The converse of part (b) does not hold. For example, if R = Q and N = 2, then the
polynomial f := 1 + 2x + y ∈ P is irreducible, but the polynomial S (f) = 1 + 2x + x2 =
(1 + x)2 ∈ R [x] is not.

9.3 Solution

...

10 Exercise 10

10.1 Problem

Let R be a commutative ring. Let f ∈ R [x] be a polynomial. Prove that f is a unit of the
ring R [x] if and only if1

• the coefficient [x0] f is a unit of R, and

• all the remaining coefficients [x1] f, [x2] f, [x3] f, . . . of f are nilpotent.

[Hint: Recall the result (from Exercise 7 (c) on homework set #1) that the nilpotent
elements of a commutative ring form an ideal, as well as the result (from Exercise 1 on
homework set #2) that the difference of a unit and a nilpotent element is always a unit (in
a commutative ring). This should help with the “if” direction. For the “only if” direction,
let f = f0x

0 + f1x
1 + · · ·+ fnx

n ∈ R [x] be a unit and g = g0x
0 + g1x

1 + · · ·+ gmx
m ∈ R [x]

be its inverse. Use induction on r to show that f r+1
n gm−r = 0 for each r ∈ {0, 1, . . . ,m}.

Use this to conclude that fn is nilpotent.]

10.2 Remark

This exercise precisely delineates the phenomenon of nonconstant polynomials that have
inverses (such as the polynomial 1 + 2x ∈ (Z/4) [x]). In particular, it shows that this
requires R not only to have zero-divisors (i.e., not be an integral domain), but also to have
nonzero nilpotent elements (so, e.g., it cannot happen for R = Z/6).

10.3 Solution

...

References

1Recall that
[
xi
]
f denotes the coefficient of the monomial xi in f .
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