
Winter 2021, Math 533: Abstract Algebra Homework #2
Rose Adkisson

Problem 1. Exercise 1: Let R be a ring. Let a be a nilpotent element of R. (Recall that
“nilpotent” means that there exists some n ∈ N such that an = 0.)

(a) Prove that 1− a ∈ R is a unit.

(b) Let u ∈ R be a unit satisfying ua = au. Prove that u− a ∈ R is a unit.

Solution.

(a) To show that 1−a ∈ R is a unit, we must show that 1−a has an inverse in R. In other
words, we much show that there exists some p ∈ R such that (1− a)p = p(1− a) = 1.
Note that an = 0 for some large enough n ∈ N since a is nilpotent. Thus 1 − an =
1− 0 = 1. We then find that if we can find p such that 1− an = (1− a)p = p(1− a),
we have found p that is inverse to 1− a and therefore shown that 1− a is a unit.

We may let p = 1 + a+ a2 + ...+ an−1. Clearly p ∈ R and

(1− a)p = (1− a)(1 + a+ a2 + ...+ an−1)

= (1− a) · 1 + (1− a) · a+ (1− a) · a2 + ...+ (1− a) · an−1

= 1 · 1− a · 1 + 1 · a− a · a+ a · a− ...− a · an−2 + 1 · an−1 − a · an−1

= 1− a+ a− a2 + a2 − ...− an−1 + an−1 − an

= 1− an

= 1.

It is easy to see that p(1− a) yields the same process and result. Thus we have found
a p ∈ R that is inverse to 1− a. Thus 1− a is a unit of R.

(b) Since u is a unit of R, there exists some u−1 ∈ R such that uu−1 = u−1u = 1. Also
recall that au = ua.

Claim: a and u−1 commute.
Proof:

ua = au =⇒ u−1ua = u−1au

=⇒ a = u−1au

=⇒ au−1 = u−1auu−1

=⇒ au−1 = u−1a.

Hence, (u−1a)n = (u−1)nan = 0, since an = 0.
Similar to (a), we will explicitly find the inverse to u− a when an = 0 for some n ∈ N.
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Let p = u−1 + u−1(u−1a) + u−1(u−1a)2 + ...+ u−1(u−1a)n−1. Clearly p ∈ R and

(u− a)p

= (u− a)(u−1 + u−1(u−1a) + u−1(u−1a)2 + ...+ u−1(u−1a)n−1)

= (u− a) · u−1 + (u− a) · u−1(u−1a) + (u− a) · u−1(u−1a)2 + ...+ (u− a) · u−1(u−1a)n−1

= uu−1 − au−1 + uu−1(u−1a)− au−1(u−1a) + ...+ uu−1(u−1a)n−1 − au−1(u−1a)n−1

= 1− u−1a+ u−1a− (u−1a)2 + ...− (u−1a)n−1 + (u−1a)n−1 − (u−1a)n(
using the commutativity of a with u−1

)
= 1− (u−1a)n

= 1− 0

= 1.

It is easy to see that p(u− a) yields the same process and result. Thus we have found
a p ∈ R that is inverse to u− a. Thus u− a is a unit of R.

�
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Problem 3. Exercise 3: Let R be an integral domain. Let a ∈ R and b ∈ R. Assume that a
and b have an lcm ` ∈ R. Prove that a and b have a gcd g ∈ R, which furthermore satisfies
g` = ab.

Solution. Let R be an integral domain, a, b ∈ R, and let ` be an lcm of a and b.
If a = 0, then ` = 0 (since a | `) and therefore b is a gcd g of a and b (since b | 0 = a
and b | b) that satisfies g` = ab (since b` = 0 = ab). Thus we are done in the case when
a = 0. Similarly we can handle the case when b = 0. From now on, we assume that a 6= 0
and b 6= 0. Since R is an integral domain, this implies ab 6= 0. Also, since R is an integral
domain, fractions of the form

u

v
with u ∈ R and v ∈ R \ {0} are well-defined (i.e., unique)

when v | u. The following property of such fractions will be used without saying: If u, u′ ∈ R

and v, v′ ∈ R \ {0} are such that v | u and v′ | u′, then vv′ | uu′ and u

v
· u
′

v′
=

uu′

vv′
.

Consider ab: this is a common multiple of a and b, since a|ab and b|ab. Hence, `|ab as

` is an lcm of a and b. Thus,
ab

`
∈ R is well-defined. (Indeed, `|ab and ab 6= 0 yield ` 6= 0.)

We will first show that
ab

`
is a common divisor of a and b; then we will show that

ab

`
is a gcd g of a and b that satisfies ab = g`.

• Showing that
ab

`
is a common divisor of a and b: We have

`

b
∈ R (since b|`). Now,

a =
ab`

`b
=

ab

`
· `
b
.

Since
`

b
∈ R, this entails

ab

`

∣∣∣a.
Similarly, we find

ab

`

∣∣∣b.
Thus we have that

ab

`
is a common divisor of a and b.

• Showing that
ab

`
is a gcd of a and b: We must show that, for any common divisor d of

a and b, we have d|ab
`
.

Suppose d ∈ R is a common divisor of a and b. Then d|a and d|b, so d|ab. Hence,
ab

d
∈ R. Since d|b, we find

b

d
∈ R, and thus

a
∣∣∣ (a · b

d

)
=

ab

d
.

Similarly, b
∣∣∣ab
d
. Therefore,

ab

d
is a common multiple of a and b. Thus, as ` is an lcm

of a and b, we have

`
∣∣∣ab
d
.
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Thus there exists some k ∈ R with `k =
ab

d
, implying d`k = ab and therefore dk =

ab

`
.

Thus
d
∣∣∣ab
`
.

We have now shown that any common divisor d of a and b is a divisor of
ab

`
. This

gives that
ab

`
is a gcd of a and b.

Thus,
ab

`
is a gcd of a and b. Of course, if we denote it by g, then it satisfies ab = g` (by its

definition). We have now shown all of the desired claims.
�
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Problem 5. Exercise 5: Let p be a prime number.

(a) Prove that the only units of the ring Z/p that are their own inverses (i.e., the only
m ∈ (Z/p)× that satisfy m−1 = m) are 1 and −1.

(b) Assume that p is odd. Let u =
p− 1

2
∈ N. Prove that u!2 ≡ −(−1)u mod p.

Solution.

(a) Consider any unit r ∈ Z/p where r = r−1. We will show that r = 1 or r = −1 (where
1 means 1Z/p = 1).
We have rr−1 = 1. Since r = r−1, this rewrites as rr = 1. In other words, r2 = 1,
so that r2 − 1 = 0. This rewrites as (r − 1)(r + 1) = 0. But Z/p is a field and
thus an integral domain; hence, all nonzero a, b ∈ Z/p satisfy ab 6= 0. Thus, since
(r − 1)(r + 1) = 0, we hve either r − 1 = 0 or r + 1 = 0. Thus, r = 1 or r = −1. This
shows that the only units of the ring Z/p that are their own inverses are 1 = 1 and
−1 = −1.

(b) Since p is odd, we have

(p− 1)! = (p− 1) · (p− 2) · ... · p+ 1

2
· p− 1

2
· ... · 2 · 1.

We will now look to rewrite the first half of these factors modulo p:

p− 1 ≡ −1 mod p;

p− 2 ≡ −2 mod p;

...;

p+ 1

2
= p− p− 1

2
≡ −p− 1

2
mod p.

Thus we may rewrite (p− 1)! as follows:

(p− 1)! ≡ (−1) · (−2) · ... ·
(
−p− 1

2

)
· p− 1

2
· ... · 2 · 1 mod p.

Notice that there are
p− 1

2
negative factors and

p− 1

2
positive factors on the right

hand side, and the each of the former agrees with exactly one of the latter in its
absolute value. Thus, by combining factors with equal absolute value, we can rewrite
the above as follows:

(p− 1)! ≡ (−1)(p−1)/2
(
1 · 2 · ... · p− 1

2

)2

mod p.

This rewrites as
(p− 1)! ≡ (−1)(p−1)/2

(
p− 1

2

)
!2 mod p.

By Wilson’s Theorem, we have that (p− 1)! ≡ −1 mod p, so that

−1 ≡ (−1)(p−1)/2
(
p− 1

2

)
!2 mod p;
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in other words, (
p− 1

2

)
!2 ≡ −1(−1)(p−1)/2 mod p.

Recalling that u =
p− 1

2
, we can rewrite this as

u!2 ≡ −1(−1)u mod p,

which is our desired result.

�
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Problem 8. Exercise 8: Let R be a ring. Let I and J be two ideals of R such that I ⊆ J .
Let J/I denote the set of all cosets j + I ∈ R/I where j ∈ J . Prove the following:

(a) This set J/I is an ideal of R/I.

(b) We have (R/I) / (J/I) ∼= R/J (as rings). More concretely, there is a ring isomorphism
R/J → (R/I) / (J/I) that sends each residue class r = r+J to r + I = (r + I)+(J/I).

Solution.

(a) To be an ideal of R/I, the set J/I must be a subset of R/I such that
1. a+ b ∈ J/I for all a, b ∈ J/I;
2. ab ∈ J/I and ba ∈ J/I for all b ∈ J/I and all a ∈ R/I;
3. 0R/I ∈ J/I.

First note that it is clear that J/I ⊂ R/I by definition of J/I.

Next we will address (1), that is, the claim that J/I is closed under addition. Consider
any j1 + I, j2 + I ∈ J/I (with j1, j2 ∈ J). Then j1 + I + j2 + I = (j1 + j2) + I. Since J
is an ideal, it is closed under addition, thus j1 + j2 ∈ J . Thus (j1 + j2) + I ∈ J/I and
J/I is closed under addition. Thus (1) is proved.

Next we must prove (2), i.e., show that the product of an element of J/I and an
element of R/I remains in J/I. Consider any j + I ∈ J/I (with j ∈ J) and any
r + I ∈ R/I. Then

(j + I)(r + I) = jr + I.

Note that J is an ideal of R and is therefore closed under multiplication with an
element of R, so jr ∈ J . Thus jr + I ∈ J/I. Also note

(r + I)(j + I) = rj + I.

Note that J is an ideal of R and is therefore closed under multiplication with an ele-
ment of R, so rj ∈ J . Thus rj + I ∈ J/I. Thus (2) is proved.

Since J is an ideal of R, we have 0R ∈ J . Thus 0R+ I ∈ J/I. Also note 0R/I = 0R+ I.
Thus 0R/I ∈ J/I.

We have now shown the properties necessary for J/I to be an ideal of R/I.

(b) Consider the map f : R/I → R/J , r + I 7→ r + J . First we need to show that f is
well defined:

For r1+I, r2+I ∈ R/I, if r1+I = r2+I, we must show that r1+J = r2+J .
We will use the fact that I ⊂ J :

r1 + I = r2 + I =⇒ r1 − r2 ∈ I

=⇒ r1 − r2 ∈ J

=⇒ r1 + J = r2 + J.

It is obvious that the map f respects addition, multiplication, the zero, and the unity;
thus, f is a ring morphism. Now, by the First Isomorphism Theorem for Rings, we
have

(R/I)/ ker f ∼= f(R/I). (1)

Next we will show that f is surjective, giving f(R/I) = R/J .
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Consider any r+J ∈ R/J . We can find a preimage for it, namely r+I ∈ R/I.
Thus every element of R/J has a preimage and f is surjective.

Thus (1) becomes

(R/I)/ ker f ∼= R/J. (2)

As our last step to achieving the desired result, we will show that ker f = J/I.

Let r + I ∈ ker f . Then f(r + I) = 0 + J . But f(r + I) = r + J . Thus
0 + J = r + J and therefore r ∈ J . Thus r + I ∈ J/I. Thus we have shown
that ker f ⊂ J/I.

Let r+I ∈ J/I with r ∈ J . Then r+J = 0+J . Thus f(r+I) = r+J = 0+J
and therefore r + I ∈ ker f . Thus J/I ⊂ ker f .

Thus J/I = ker f .

Hence, (2) becomes
(R/I)/(J/I) ∼= R/J.

Moreover, the isomorphism (R/I)/(J/I) → R/J constructed by the First Isomor-
phism Theorem for Rings sends each (r + I) + (J/I) = (r + I) + ker f ∈ (R/I)/(J/I)
to f(r + I) = r + J ∈ R/J . Hence, its inverse sends each r + J to (r + I) + (J/I), as
claimed in the exercise.

�
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Problem 9. Exercise 9: Let R be a ring. Let S be a subring of R. Let I be an ideal of R.
Define S + I to be the subset {s+ i | s ∈ S and i ∈ I} of R.

Prove the following:

(a) This subset S + I is a subring of R.

(b) The set I is an ideal of the ring S + I.

(c) The set S ∩ I is an ideal of the ring S.

(d) We have (S + I) /I ∼= S/ (S ∩ I) (as rings). More concretely, there is a ring iso-
morphism S/ (S ∩ I) → (S + I) /I that sends each residue class s = s + (S ∩ I) to
s = s+ I.

Solution.

(a) Since S is a subring of R and I is an ideal of R, first note that it is obvious that
S + I ⊂ R. Next it is clear that S + I := {s+ i|s ∈ S, i ∈ I} contains the unity of R,
the zero of R, and respects addition. Thus we will simply show that S + I respects
negation and multiplication.

Consider any a, b ∈ S + I. Thus, a = s1 + i1 and b = s2 + i2 for some s1, s2 ∈ S
and i1, i2 ∈ I. We then have

a− b = (s1 + i1)− (s2 + i2) = (s1 − s2) + (i1 − i2).

Note that s1 − s2 ∈ S as S is a ring, and i1 − i2 ∈ I as I is an ideal. Thus we have
(s1 − s2) + (i1 − i2) ∈ S + I. That is, a− b ∈ S + I. This shows that S + I is closed
under subtraction, hence closed under negation (since 0 ∈ S + I).

Consider any a, b ∈ S + I. Thus, a = s1 + i1 and b = s2 + i2 for some s1, s2 ∈ S
and i1, i2 ∈ I. Then,

ab = (s1 + i1)(s2 + i2) = s1s2 + s1i2 + i1s2 + i1i2.

Note s1s2 ∈ S as S is a ring and closed under multiplication. Also note s1i2 + i1s2 +
i1i2 ∈ I since I is an ideal and is therefore closed under multiplication with all elements
of R and closed under addition as well. Thus s1s2+ s1i2+ i1s2+ i1i2 ∈ S+ I. In other
words, ab ∈ S + I. Thus S + I is closed under multiplication.

Since S + I contains the unity of R, contains the zero of R, is closed under addi-
tion, is closed under negation, and is closed under multiplication, we conclude that
S + I is a subring of R.

(b) To be an ideal of S + I, the set I must be a subset of S + I such that

1. a+ b ∈ I for all a, b ∈ I;

2. ab ∈ I and ba ∈ I for all b ∈ I and all a ∈ S + I;

3. 0S+I ∈ I.

First note that it is obvious that I ⊂ S + I, since 0 ∈ S.

Next, since I is an ideal of R and S + I is a subring of R, we find that I inherits
the properties of closure under addition and containing 0R = 0S+I . Thus all we must
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check is for any b ∈ I and any a ∈ S + I that ab ∈ I and ba ∈ I.

Consider any b ∈ I and any a ∈ S + I. Write a ∈ S + I as a = s + i with s ∈ S and
i ∈ I. Then

ab = (s+ i)b = sb+ ib ∈ I

(indeed, since I is closed under multiplication with elements of R, we have sb ∈ I and
ib ∈ I, and therefore we get sb+ ib ∈ I because I is closed under addition). Similarly
ba ∈ I. We have now shown the properties necessary for I to be an ideal of S + I.

(c) To be an ideal of S, the set S ∩ I must be a subset of S such that

1. a+ b ∈ S ∩ I for all a, b ∈ S ∩ I;

2. ab ∈ S ∩ I and ba ∈ S ∩ I for all b ∈ S ∩ I and all a ∈ S;

3. 0S ∈ S ∩ I.

First note that it is clear S ∩ I ⊂ S.

It should also be clear, since S is a subring of R, that 0S = 0R and 0R ∈ S. Since I is
an ideal of R, we have 0R ∈ I. Thus 0R ∈ S ∩ I. In other words, 0S ∈ S ∩ I.

Next we will address (1), that is, the claim that S ∩ I is closed under addition. Let
a, b ∈ S ∩ I. Then a, b ∈ S and a, b ∈ I. Since S is closed under addition as a ring,
we find a + b ∈ S. Since I is an ideal of R, I is also closed under addition, so that
a+ b ∈ I. Thus a+ b ∈ S ∩ I.

Next we must prove (2), i.e., show that the product of an element of S ∩ I and
an element of S remains in S ∩ I. Let b ∈ S ∩ I and let a ∈ S. Then b ∈ S, b ∈ I, and
a ∈ S ⊂ R. Since I is an ideal of R, it is closed under multiplication with elements of
R; thus, ab, ba ∈ I. Since S a ring, it is closed under multiplication, so we conclude
from a ∈ S and b ∈ S that ab, ba ∈ S. Thus we have ab, ba ∈ S ∩ I.

We have now shown the properties necessary for S ∩ I to be an ideal of S.

(d) Consider the map f : S → (S + I)/I, s 7→ s + I. We will show that f is a ring
morphism. First note that S is a ring, as is (S + I)/I by parts (a) and (b). Next we
note that f clearly respects addition, multiplication, the zero, and the unity; therefore,
f is a ring morphism. Hence, by the First Isomorphism Theorem for Rings, we have

S/ ker f ∼= f(S). (3)

Next we will show that f is surjective, giving f(S) = (S + I)/I.

To show that f is surjective, we must show that every element of (S + I)/I
has a preimage in S. Let a+I ∈ (S+I)/I. Thus, a ∈ S+I, so that a = s+i
for some s ∈ S and i ∈ I. Hence, a+I = s+I (since a = s+i ∈ s+I). Now,
the definition of f shows that f(s) = s + I = a + I. This shows that a + I
has a preimage in S. Thus, we have shown that each element of (S + I)/I
has a preimage, so that f is surjective.

Since f is surjective, have f(S) = (S + I)/I, so that we can rewrite (3) as

S/ ker f ∼= (S + I)/I. (4)

As our last step to achieving the desired result, we will show that ker f = S ∩ I.
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Let s ∈ ker f . Then f(s) = 0 + I. But f(s) = s+ I, so s+ I = 0+ I. Thus
s ∈ I. Also note that the kernel is a subset of the domain S, thus s ∈ S.
Thus we have s ∈ S ∩ I. This proves that ker f ⊂ S ∩ I.

Let s ∈ S ∩ I. Then s ∈ S and s ∈ I. Then f(s) = s + I. Since s ∈ I,
we have s + I = 0 + I. Thus f(s) = 0 + I. Thus s ∈ ker f . This proves
S ∩ I ⊂ ker f .

Thus S ∩ I = ker f .

Hence, (4) rewrites as
S/(S ∩ I) ∼= (S + I)/I.

Moreover, the isomorphism S/(S ∩ I) → (S + I)/I constructed by the First Isomor-
phism Theorem for Rings sends each s+(S ∩ I) ∈ S/(S∩I) to f(s) = s+I ∈ (S+I)/I,
as claimed in the exercise.

�
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