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DREXEL UNIVERSITY, DEPARTMENT OF MATHEMATICS

Math 533: Abstract Algebra I Winter 2021: Homework 2 student work

EXERCISE 1

bh

Let R be a ring. Let a be a nilpotent element of R. (Recall that “nilpotent” means that there exists some

n € N such that a™ = 0.)

(a) Prove that 1 —a € R is a unit.
Solution. Let a be a nilpotent element of R and let n € N be such that a™ = 0. Set s =1+ a+a? +
a’+---+a""!' € R. Then,
l1-—a)s=(1-a)l4+a+a®>+a®+---+a" )
=1(l+a+a*+a*+--+a" N+ (—a)1+a+a®>+a>+---+a"h)
=l+a+ad*+a*+ - +a"'—a—-ad>-a*— —a" 1 —a"
=l+a—a+a®*—d’+a*—a*+ - Fa" P —a" —a"

=1+40+0+-+0—a"

=1—a"
=1-0 (by assumption since ™ = 0)
=1.

Similarly,

s(l—a)=004a+ad*+a*+---+a""H(1 —a)
=(l+a+a®+a’+ - +ad" N+ (1+a+a*+a*+- +a" ") (—a)

=l4+a4+ad®+a>+---+a" ' —a—d>—-ad* - —a" ' —a"
=l4+a—-a+a*—a*+a*—a*+---+a" ' —a"t —a"
=1404+0+---+0—a"

=1-a"

=1-0 (by assumption since ™ = 0)

=1.

Hence s € R is a multiplicative inverse for 1 —a. Thus 1 — a € R is a unit.

(b) Let u € R be a unit satisfying ua = au. Prove that u — a € R is a unit.

Solution. Let a be a nilpotent element of R and n € N be such that ™ = 0. Let © € R be a unit
satisfying ua = au. Then u~! € R. Also, a commutes with u~! (indeed, ua = au = u=! !

uau - =
v lauu™! = au~! = u~'a). Hence, a commutes with «~* for any k € N. Also, u commutes with

a* for any k € N (since au = ua).

Definet =u'+au24+a?u2+ - -+a"2u " +a" ™" € R. Then,

(u—at=w—-a)(u ' +au2+adu>+ - +a" 2" f o)
—u(u ™ au? £ a?u? a2 g
+(—a)u T +au+aPu 4 a2 a )
—14au '+ au 24 4aq? 22 4 gn Lyt

1 2 2 1, —n+1

—au” " —a‘u adu3 - —a" "

—a"u”
(because u commutes with a® for any k € N)

=14+0+0+0+4+---+0—-a"u™"

=1—-0u"" (since by assumption a™ = 0)

=1-0
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Similarly,

Hu—a) = (=t +au=2 +a®u3 4+ -+ a" 20" 4 0"y (4 — a)
= (Uil + au”? + a?y "3 4+ 4 a2t + anflufn)u
+ (u71 + CLu72 + a2u73 4+ .4 an*2u7n+1 + a”flufn)(—a)
=1+ au_l + a2u_2 4+ an—Qu—n-‘rQ + a"‘lu_"‘H
1

—au"l— a2u72 o a3u73 . anflufnJrl —ay"

(because a commutes with «~* for any k € N)

=140404+0+---+0—a"u™"

=1—-0u™" (since by assumption a™ = 0)
=1-0
=1

Hence t € R is a multiplicative inverse for u — a. Thus u — a € R is a unit.
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EXERCISE 2

Let R be a ring. We define a new binary operation ~ on R by setting
a~b=ba for all a,b € R.
(Thus, ~ is the multiplication of R, but with the arguments switched.)

(a) Prove that the set R, equipped with the addition +, the multiplication ~, the zero Or and the unity
1g, is a ring.
Solution. Addition: As the addition is the same as the original ring (R, +, ) and so are the elements,
clearly (R, +,0pg) is still an abelian group.
Multiplication: The neutral element 1g is inherited from the original ring; it remains neutral for the

new multiplication -, since it commuted with all elements of R.

Associativity: For any a, b, c € R, we have

a~ (b7 ¢c) =a"~(cb)
= (cb)a
c(ba) (by associativity of the original multiplication)
c(a™b)
=(a"b)" e

Thus the new multiplication ~ is associative. Distributivity: For any a,b,c € R, we have
(a+b)“c=cla+b)
=ca+cb (by distributivity in the original ring)
=a-c+b-c
The other direction is analogous. Thus, the new multiplication ~ satisfies distributivity.

Multiplication by 0: We don’t strictly need to check the 0g~a = a~0r = O axiom, but of course we
can (it follows from the corresponding axiom in the original ring).

Altogether, (R, +,~) is a ring.

This new ring is called the opposite ring of R, and is denoted by R°P. Note that the sets R and R°P are
identical (so a map from R to R is the same as a map from R to R°P); but the rings R and R°P are generally
not the same (so a ring morphism from R to R is not the same as a ring morphism from R to R°P).

(b) Prove that the identity map id : R — R is a ring isomorphism from R to R°P if and only if R is
commutative.

Solution. (I) Suppose R is commutative. We shall show id : R — R is a ring isomorphism from R to
R°P. For any a,b € R we have

Addition: id(a +b) = a + b =id(a) +1d(b).

Zero: id(0g) = Og = Oper.

Multiplication: id(ab) = ab = ba = a~b = id(a) ~id(b) since R is commutative.
Unity: id(1z) = 1 = Lper.

Invertibility: The identity map is clearly one-to-one and onto; thus invertible.

Altogether, the identity map is a ring isomorphism from R to R°P.

(IT) Suppose id : R — R is a ring isomorphism from R to R°P. Then, for all elements a,b € R, we have
id(ab) = id(a)~id(b). Thus
ab=a"b=ba.

Hence R is commutative.

(I) and (II) together show the identity map id : R — R is a ring isomorphism from R to R°P if and
only if R is commutative.
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(c)

(d)

Now, assume that R is the matrix ring S™*" for some commutative ring S and some n € N. Prove
that the map
R — R°P, A AT

(where AT, as usual, denotes the transpose of a matrix A) is a ring isomorphism.

Solution. Define f : R — R by f(A) = AT. We shall show this is a ring isomorphism. (Note I use
0 to represent the 0 matrix and I to represent the identity matrix; these two matrices are the additive
and multiplicative identities, respectively, for both rings.) For any A, B € R, we have

Addition: f(A+ B) = (A+ B)T = AT + BT = f(A) + f(B).
Zero: f(0) =0T = 0.
Multiplication:

f(AB) = (AB)"
= BT AT (a classical property of transposes, which relies on the commutativity of .S)

— ATTBT = [(A)Tf(B).

Unity: f(I) =17 = I.

Invertibility: The map f is its own inverse. (This follows from the fact that (A7)T = A for any matrix
A)

Altogether, we have that f is a ring isomorphism.

Forget about S, and let R be an arbitrary ring again. Let M be a right R-module. Prove that M
becomes a left R°P-module if we define an action of R°®? on M by

rm = mr for all r € R°® and m € M.
(Here, the left hand side is to be understood as the image of (r,m) under the new action of R°P on
M, whereas the right hand side is the image of (m,r) under the original action of R on M.)
Solution. Since M is a right R-module, we must already have that (M, +,0,/) is an abelian group.

Next, for any r, s € R (thus also all r,s € R°P) and m,n € M, we have

Right Distributivity: (r + s)m = m(r + s) = mr + ms = rm + sm by left distributivity in the right
R-module M.

Left Distributivity: r(m 4+ n) = (m + n)r = mr + nr = rm + rn by right distributivity in the right
R-module M.

Associativity:

(r~s)m = (sr)m (by definition of ~)

= (ms)r (by associativity in the right R-module M)

The facts that Ogm = 0y, 700 = 0p7, and 1m = m follow from M being a right R-module.

Altogether, we have that M is a left R°P-module.
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EXERCISE 3

Let R be an integral domain. Let a € R and b € R. Assume that a and b have an lem ¢ € R. Prove that a
and b have a gcd g € R, which furthermore satisfies g¢ = ab.

Solution. The ring R is an integral domain; thus, it is commutative and has no zero divisors.

Trivial Case: If a = 0, then ¢, being a multiple of a, is also 0. Thus, in this case, b is a gcd of @ and b and
satisfies b¢ = ab (since £ = 0 = a). This solves the problem in the case when a = 0. Similarly we can solve
the problem if b = 0.

Now assume a and b are nonzero. Thus, ab # 0 (since R is an integral domain). There exist my,my € R
such that
ami =/ and bmo = ¢

(since £ is a common multiple of a and b). Next, note that ab is a common multiple of a and b. Since £ is an
lem of a and b, we thus conclude that there exists an element g € R such that £g = ab. We want to show
that this element g is a ged of a and b.

Note that £g = ab # 0, so that £ # 0.
Step 1: Show that g is a common divisor of a and b.
We have ¢g = ab and amy = ¢. This gives

ami1g = ab;

amy1g — ab = 0;

a(myg —b) = 0;
mig—b=0 (since R has no zero divisors and a # 0) ;
mig = b.
Hence g | b.
Similarly, we have £g = ab and bmo = £. This gives
bmog = ab;
bmog — ab = 0;
b(mag —a) =0 (since R is commutative) ;
mog —a =0 (since R has no zero divisors and b # 0) ;
mag = a.

Hence ¢ | a. Thus together, g is a common divisor of a and b.

Step 2: Show that every common divisor of a and b divides g.
Let d be a common divisor of a and b. Thus for some ny,ns € R, we have
dni = a and dny = b.

Then, dnins is a common multiple of a and b (indeed, it equals any and n1b by commutativity of the ring
R). Since ¢ is an lecm of a and b, we thus conclude that there exists k € R such that ¢k = dning. Next,
from dny = a and dny = b, we obtain (dn;)(dns) = ab = £g. However, since R is commutative, we have
(dni)(dng) = d(dnins) = dlk (because dning = £k). Comparing these two equalities, we find
dlk = lg;
dlk — Lg = 0;
Ldk—g)=0 (since R is commutative) ;
dk—g=0 (since R has no zero divisors and ¢ # 0) ;
dk = g.

Hence d divides g. Since d was an arbitrary common divisor of a and b, every common divisor of a and b
divides g.

Steps 1 and 2 together show that g is a ged of a and b. Furthermore, it satisfies g¢ = ab.
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EXERCISE 4

Let p be a prime number.
(a) Prove that if a and b are two integers such that a®> = b*> mod p?, then a = b mod p? or a = —b
mod p? or a =b=0 mod p.
Solution (sketched). First assume p # 2. Suppose a and b are two integers such that a? = b2
mod p?. This gives that p? | (a®> — b?). Then since a®> — b?> = (a + b)(a — b) and p is prime, we have
three optionsﬂ
Option 1: p? | (a+ b). Thus a = —b mod pZ.
Option 2: p? | (a — b). Thus a =b mod p.
Option 3: p | (a —b) and p | (a + b). Then, there exist integers n; and ny such that
a—b=pny and a+b=pns.
Adding these equalities, we get 2a = p(ny +n2). Since 2 divides the left-hand side, it must divide
the right-hand side. Since p is odd, we thus find 2 | (ny + n2), so that m = % € Z. Hence

a = pm for an integer m, so a =0 mod p. Then, since p | (a —b) = a =b mod p, we also get
b=0 mod p. Altogether we have
a=b=0 mod p.

Hence we have shown that one of the following must hold:
(1) a=b mod p? or (2) a=—b mod p? or (3)a=b=0 mod p.

Now let’s prove this in the p = 2 case. Suppose a and b are two integers such that a®> = b*> mod 4. If
a is even, then b must also be even. In this case a = b =0 mod 2. Else, a is odd, in which case b is
also odd. Every odd number is one less or one more than a multiple of four. Thus we have four cases:

Case 1: a =4k + 1 and b = 4l + 1 for some k,[ € Z.
Case 2: a =4k — 1 and b = 4l — 1 for some k,l € Z.
Case 3: a =4k + 1 and b = 4l — 1 for some k,l € Z.
Case 4: a =4k — 1 and b = 4l + 1 for some k,[ € Z.

Cases 1 and 2 give @ = b mod 4 whereas cases 3 and 4 give a = —b mod 4. Thus whenever a? = b?
mod 4, we have one of the following:

() a=b mod 4 or (2)a=-b mod4 or (3)a=b=0 mod 2.
In total, we have shown the statement for all prime p.

(b) Compute the number of squares in the ring Z/p?.

Solution (sketched). First, squaring any multiple of p in Z/p? will give 0. Thus we want to take
out the multiples of p, of which there are p (including 0) in Z/p?. This takes care of the case when
a=b=0 mod p. Then, of the remaining elements of Z/p?, any two distinct elements, say @ and b,
will give the same square if and only if @ = —b in Z/p? (i.e. a = —b mod p?).
Why must @ and b be distinct? Suppose a = —a mod p?. Then, for some integer k, we have
a+a = p?k, i.e., 2a = p?k. Since 2 divides the lefthand side, it must also divide the righthand
side. Since 2 is prime, 2 | p or 2 | k. In either case, 2 | pk. Then for | = % € 7Z, we have
a = pl. Thus a = 0 mod p. But this was the first case we took care of, so we have reached a
contradiction. Hence, @ and b must be distinct.

Thus the number of squares in Z/p? is given by

|Z/p?| —p p>—p
1 Ll B b -1
+ 5 +

(corresponding to the square 0)

exactly two non-multiples of p will give the same square
PP —p+2
B .

(A generalization of (b) is found in [I].)

L Remark by Darij: Make sure you understand why! (Hint: Any integer not divisible by p is coprime to p and thus also
coprime to p2.)
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EXERCISE 5
Let p be a prime number.

(a) Prove that the only units of the ring Z/p that are their own inverses (i.e., the only m € (Z/p)™ that
satisfy m~! = m) are T and —1.

Solution. Suppose m € Z/p is its own inverse. Then m - m = 1. Thus we have

m? =T1;

m? + =1 =0;

m? +m —m+ —1 = 0;
m(m+1) +—I(m+1) =0;
(m+-1)(m+1)=0.

Since p is prime, Z/p is a field, so there are no zero divisors. Thus we have either
m+—-1=0= m=1

or

m+1=0 —= m=—1.
Hence the only elements of Z/p that are their own inverses are 1 and —1.

-1
(b) Assume that p is odd. Let u = pT € N. Prove that u!> = — (-1)" mod p.

Solution. Wilson’s theorem ([2]) gives us that (p — 1)! = —1 mod p, i.e. that in Z/p, we have

1.2.3...p_2.p_1:_71.

Manipulating this (using u + 1 = p — u), we get:

1-2--u-p—u--p—2-p—1=—1;
1.9...u-=q.-.=2. =1 =_1.
1.9...5.-1".5.-.2.T = —1;
112w =1,
R L G IR S 73 R R
1-2---mw)?=—-1--1"

Thus we have shown that (u!)? = —(—1)* mod p.
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EXERCISE 6

Recall the ring Z [i] of Gaussian integers. Let N : Z[i] — N be the map that sends each Gaussian integer
2 =a+bi € Z[i] (with a,b € Z) to a® +b® = |z|>. (This is the Euclidean norm on Z [i] that we have already
used several times.)

(a)

(b)

(d)

Prove that if z and w are two Gaussian integers satisfying z | w in Z[i], then N (z) | N (w) in Z.
Solution. Suppose z = a1 + byi and w = as + bei (where ay,as,by,by € Z) satisfy z | w. Since we
have z | w, there exists r = ¢ 4+ di € Z[i] such that zr = w. Thus we have
(a1 + bli)(C + d’L) =az + bgi;
(alc — bld) + (ald + blc)i =as + bgl
Hence
aic— bid = as and ai1d + bic = bs.
Thus,
a3 + b3 = (ajc — b1d)? + (a1d + byc)?
=a?c? — 2aychid + b3d* + a2d® 4 2aichbyd 4 b3c?
=al® + V3d* + a2d® + bic?
= a3(c® +d%) +bi(c* + d%)
= (a? + 1) (c* + d?).
Since 7 = ¢ + di € Z[i], we have ¢,d € Z and thus ¢* + d* € Z. Hence
(af +07) | (a3 +03).
Now N(z) = N(ay + b1i) = a3 + b? and N(w) = N(ay + bei) = a3 + b3. Thus altogether we have

N(z) | N(w).

Let z = a+bi € Z[i] with a,b € Z. Assume that z # 0. Let n = ||z|| = |V/a? + b?|. Prove that every
divisor of z in Z [i] has the form ¢+ di with ¢,d € {—n,—n +1,...,n}.

Solution. Part (a) tells us that any divisor v = ¢+ di of z = a + bi in Z[i] must satisfy N(v) | N(z),
i.e. that
(2 +d?) | (a® +b?).

Since both quantities are nonnegative, and since a? + b? > 0 (because z # 0), we have then that
& +d* < a®+ b
Ve +d? < \a? + b2.

Since || < V% 4 d? and |d] < v/¢? + d?, we thus obtain

—Vaz+b2<c<Va?+0b? and —VaZ+b2<d<va?+0b2.

Since v = ¢+ di € Z]i], we have ¢,d € Z. Hence we get that ¢,d € {—n,—n+1,...,n}. Thus we have
shown that every divisor of z in Z [i] has the form ¢+ di with ¢,d € {—n,—n+1,...,n}.

Without recourse to the general theory of PIDs and UFDs, prove that every nonzero element of Z [i]
has an irreducible factorization.

Solution omitted.

Let z € Z [i]. Prove that we have the following logical equivalence:
(zisaunit of Z[i]) <= (N(2)=1) <= (z€{l,i,—1,—i}).

Solution. Step 1: z is a unit of Z[i] = N(z) = 1.
Proof. Suppose z is a unit of Z[i]. Then z | 1. By part (a), we get N(z) | N(1). Thus if z = a + b
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where a,b € Z, then (a® +b?) | 1 (in the normal Z division sense). This will only happen if a® 4+ b2 = 1
since a and b are real and thus a® + b® > 0. Thus N(z) = 1.

Step 2: N(z) =1 = z € {1,i,—1,—i}.

Proof. Suppose N(z) = 1. Then, if we write z = a + bi where a,b € Z, then a? + b> = 1. Since a and
b are integers, this equality only holds if one of a? and b? is 0 and the other is 1. Thus we get the
following cases:

1. > =0and a® = 1:
1.1 b=0and a=1. Thus z = 1.
1.2 b=0and a = —1. Thus z = —1.
2. > =1and a® =0:
2.1 b=1and a =0. Thus z = i.
2.2 b=—1and a =0. Thus z = —i.

Hence z € {1,4,—1,—i}.

Step 3: z € {1,i,—1,—i} = N(z)=1.

Proof. Suppose z € {1,1,

Step 4: N(z) =1 = z is a unit of Z[i].

—1,—i}. In all cases N(z) =a? +b*=0+1=1.

Proof. Suppose N(z) = 1. By step 2, z € {1,4,—1, —i}. In all cases, z is a unit:

a. If z
b. If 2
CIfz
d. If 2z

o

1, its inverse is itself.
i, its inverse is —i € Z[i].
—1, its inverse is itself.

—i, its inverse is i € Z[i].

Hence z is a unit of Z[i].

The four steps above have proven the equivalences:

(zisaunit of Z[i]) < (N (2)

1)

—

(ze{l,i,—1,—i}).
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EXERCISE 7

Consider the ring
Z[V-3] ={a+b/-3]a,beZ}.

This ring is a subring of C, and thus is an integral domain.
Letu=2€Z [\/—3 andv=14++/-3€Z [\/—3]. Further let a = 2u =4 and b = 2v.

(a) Prove that both u and v are common divisors of a and b in Z [\/—3].
Solution. It is clear that u | a = 2u. Let’s show v | a: For r =1 — /=3 € Z [V/=3],

vr = (14++v/=-3)(1—+v=3)

=1-V-3V-3
=1-(-3)
=1+3

=4

Hence v | a in Z [v/=3].

Next, it is clear that v | b = 2v and also that u = 2 | b = 2v. Thus since u and v both divide a in
Z [\/—3 and they both divide b in Z [\/—3 , they are common divisors of ¢ and b in Z [\/—3].
(b) Prove that the only divisors of 4 in Z [\/73] are +1, +£2, +4, + (1 + \/73) and + (1 — \/73).

Note in this part I will use ged, to denote the usual ged in the integer setting. This ged is always a
nonnegative integer.

Solution. Suppose ¢+ dv/—3 € Z[\/—3] (with ¢, d € Z) satisfies (¢ + dv/—3) | 4 = a. Then,

4

TS € Z|V-3].

Rationalizing the denominator, we find

4 B 4 c—dy=3 4(c—dv-3)  4c  4d /3
ctdy/—3 c+d/—3 c—dy—3 = 2+3d®> = 2+3d% 2+3d

so that

4c 4d 4
— V—3=—"7"—"-—¢€Z[V-3|.
2 +3d2 2+ 3d? c+dv-3 €zl )
In other words,
4c 4d
- cZ d - € Z.
4 3d? < an c® + 3d? <

That is, ¢* + 3d* is a common divisor of 4c and 4d (over the integers). Therefore, (¢? + 3d?) |
gedy (4e,4d). Set gedy (e, d) = g € Z (so that gedy(4e, 4d) = 4g), and let k,1 € Z such that ¢ = kg and
d =1lg. Then we have

(c* +3d%) | 4g;

(lel* +3]d|*) | 4g;
(|ckg| + 3|dlg|) | 49 (since ¢ = kg and d = lg) ;
|lg(|ke| + 3|id]) | 4g;

(|ke| + 3|d]) | 4

(here, we cancelled out |g|, which is legitimate since it is easily seen that g # 0). Since k,¢,l,d € Z, we
thus have two cases: either |ld| =1 or |Id| = 0 (since otherwise |kc|+3|ld| > 4, which is a contradiction
to (|ke| + 3Jid]) | 4):

1. If |ld| = 1, then |d| = 1 and (|kc| + 3) | 4, so we have |kc| = 1. This means also |c¢| = 1, so we get
the following divisors of 4:
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(a) d=1,c=1: 1++/-3.
by d=1,c=—1: =14++/=3.
(c)d=—-1,c=1: 1—+/-3.

(d) d=-1,¢=—-1: =1 —+/-3.
2. If |Id| = 0, then d = 0 (since d = lg yields |d|?> = |dlg| = |Id||g| = 0). Further, |kc| | 4, so we have
¢ | 4, which gives the following (familiar) divisors of 4:

(a) 1.
(b) £2.
(c) +4.

Thus all the divisors of a =4 in Z[y/—3] are £1, £2, +4, + (1 + \/73) and + (1 — \/73).

(c) Prove that a and b have no ged in Z [v/=3].

Solution. A gcd of @ and b must be a common divisor of a and b, so first let’s check which of
the divisors of a = 4 (which we have found above, in part (b) of the exercise) are also divisors of

b=2(1++-3):
1. It is clear that +£1, £2, and +(1 4+ +/—3) are divisors of b.

2. It is clear that +4 are not divisors of b since

b 21+v-3) 1 1
1= 1 —§+§\/—73¢Z[\/_73}

3. It remains to check +(1 —+/—3). Note:
(1-VB)(-1+V=3)=—14+V-3+V-3+3=2+2/-3=0b.
Thus +(1 — v/—3) are divisors of b.

In all we have that the common divisors of a and b are
£1,42,+ (1+v-3),+ (1 - vV-3).

Thus if @ and b have a gcd it would be one of the above. Every common divisor must divide the ged.
In particular, since 2 is a common divisor of a and b, it must divide the ged. It is clear that in Z[v/—3],

2 does not divide any of
+1,+(14+v-3),£(1-v=3),

since in each case dividing by 2 over the complex numbers will yield a real part of :I:% ¢ 7. Thus our
only remaining options for ged of a and b are +2. If £2 is the ged, 1 + v/—3 must divide it. We have

+2 2 1-v=3 _ £20-+v-3)  +1 .~ —
ITv3 1+v93 1-v3 113 21 V=3) 221V

Thus +2 cannot be the ged either. Hence a and b have no ged in Z[v/—3].
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EXERCISE &

Let R be a ring. Let I and J be two ideals of R such that I C J. Let J/I denote the set of all cosets
j+1I € R/I where j € J. Prove the following:

(a)

(b)

This set J/I is an ideal of R/I.
Solution. Step 1: We need to show that any «, 8 € J/I satisfy a + 8 € J/I.

Let o, B € J/I. Then, we can write « = a+ I and § = b+ I for some a,b € J. Since J is an ideal of R,
we then have a +b € J. Thus (a+b)+ I € J/I. But this is precisely how we define (a + I)+ (b+ I).
Thus (a +I)+ (b+ 1) € J/I. In other words, « + 8 € J/I. This shows that J/I is closed under
addition.

Step 2: We need to show that any o € R/I and 8 € J/I satisfy a8 € J/I and fa € J/I.

Let o € R/I and 8 € J/I. Thus we can write « =a+ I and f = j+ I with a € R and j € J. Since
J is an ideal of R, we then have aj € J and ja € J. Thus aj + I € J/I and ja+ I € J/I. This is
precisely how we define (a + I)(j +I) and (5 + I)(a + I), respectively. Thus (a+I)(j+ 1) € J/I and
(j4+ I)(a+1) € J/I. In other words, af € J/I and Sa € J/I. This shows that J/I is closed under
multiplication by elements in R/I.

Step 3: We need to show that Op + I = 0g/; € J/I.
Since J is an ideal, Og € J. Thus O + I € J/I.

All steps above show that J/I is an ideal of R/I.

We have (R/I)/(J/I) = R/J (as rings). More concretely, there is a ring isomorphism R/J —
(R/I)/(J/I) that sends each residue class7=r+Jtor+ 1= (r+ 1)+ (J/I).

Solution. We want to show that f: R/J — (R/I)/(J/I) defined by

fr+J)=@+1)+ (J/I)
is a ring isomorphism.

Well-definedness: If r + J and s + J (for some r,s € R) are one and the same coset in R/J, then
(r+I)+ (J/I) = (s+ 1)+ (J/I). Indeed, in this case, we have r — s € J (since r + J = s + J) and
therefore (r+1)—(s+1)=(r—s)+ 1€ J/I,sothat (r+1)+ (J/I)=(s+ 1)+ (J/I). Thus, the
map f above is well-defined.

Addition: For any r + J,s + J € R/J, we haveﬂ

flr+ )+ (s+J)=f((r+s)+J)
= ([r + 5] + I) + (J/I)
- ([r 1)+ s+ n) +(J/I)  (by definition of coset sum)
= [(r +1)+ (J/I)] + [(s +1)+ (J/I)] (by definition of coset sum)
= fr+J)+ f(s+J).
Multiplication: For any r + J,s + J € R/J,
F(r+ D) (s + ) = f((rs) +J)

= ([rs] +I) + (J/I)

- ([r +I)[s + I]) 4+ (J/I)  (by definition of coset multiplication)

- [(r v 1)+ (J/I)} [(s + )+ (J/I)} (by definition of coset multiplication)

= fr+J)f(s+J).

Zero: f(Ogyy) = f(Or +J) = (Op + 1) + (J/I) = Oy + (J/I) = Ory1)/(1/1)-

2We shall use square brackets synonymously to regular parentheses.

student work



Solutions to homework set #2 page 13 of

Unity: f(1gys) = f(Ar+J) = Ar+1)+ (J/I) =1g/ + (J/I) = L(r/n/00/1)-

Invertible: We will show that f is injective and surjective. This will then yield that f is invertible.

Injective: Suppose f(a) = f(b) for some a,b € R/J. Then a = r+ J and b = s + J for some
r,s € R. Thus we have f(r+J) = f(s+ J) for some r + J,s+ J € R/J. Then by definition of f

we have

(r+D+(J/I)=(s+ 1)+ (J/I).

This means that (r+1)—(s+1I) € J/I,ie. (r—s)+1 € J/I. This means that (r—s)+I=j+1
for some j € J. This yields (r —s) —j € I C J, so that r — s is a sum of j with an element of J.
Thus, r — s is a sum of two elements of J (since j € .J). Therefore, r — s € J (since J is an ideal).
In other words, r + J = s + J. Hence a = b. Thus we have shown that f is injective.

Surjective: Let y € (R/I)/(J/I). Then for some r € R, we have y = (r+1)+(J/I) € (R/I)/(J/I).
Since r € R, we have r + J € R/J and

fr+J)=@+1)+(J/I)=y.

Hence f is surjective.

All the above together gives that f is an invertible ring morphism, i.e., a ring isomorphism. Hence
(R/I)/(J/I) = R/J (as rings).
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EXERCISE 9

Let R be a ring. Let S be a subring of R. Let I be an ideal of R. Define S 4+ I to be the subset
{s+i|s€ Sandie€l} of R. Prove the following:

(a)

(b)

(c)

This subset S + I is a subring of R.

Solution. Closed under Addition: Let a,b € S + I be arbitrary. Then for some si,s2 € S and
i1,10 € I, we have a = s1 + 71 and b = so +i5. Then

a+b:$1+i1+52+i2
= (51 + s2) + (i1 +12)
= s3+13
for s3 = s1 + s € S and i3 = i1 + i € I since S is a subring (thus closed under addition) and I is

an ideal (thus also closed under addition). Hence a +b = s3 + i3 € S+ I. Thus S + I is closed under
addition.

Closed under Multiplication: Let a,b € S + I be arbitrary. Then for some s1,s2 € S and 41,12 € I, we
have a = s1 + i1 and b = s9 + i5. Then

ab = (51 + il)(SQ + ig)
= (81 +141)82 + (51 + i1)i2

= 8189 + i182 + Slig + ’ilig.

Since [ is an ideal it is closed under multiplication by any element of R (and thus any element of S),
SO 1189, S162,9112 € I. Therefore i3 = i159 + s192 + 4192 € I. On the other hand, S, as a subring, is
closed under multiplication. Thus s3 = s152 € S. Therefore we have

ab = s3 + i3 where s3 € S and i3 € 1.
Hence S 4 I is closed under multiplication.

Contains Additive Inverses: Let a € S + I be arbitrary. Then for some s € S and ¢ € I, we have
a =s+14. Then

—a=—(s+1) =—s+ (—i).

Since S is a subring of R, we have —s € S. Since [ is an ideal of R, it is closed under multiplication
by elements of R. Thus —i = (—1)i € I. Hence we have that —a = —s+ (—i) € S+ 1. Thus S + 1
contains additive inverses.

Zero: Or € S as S is a subring and Og € I as [ is an ideal. Thus O =0r +0r € S+ 1.
Unity: 1g € S as S is a subring and O € I as I is an ideal. Thus 1lp =1 +0r € S+ 1.

All of the above shows that S + I is a subring of R.

The set I is an ideal of the ring S + I.

Solution. Clearly I C S + I, since each i € [ satisfies i = 0g + ¢ with Og € S. The rest of the claim
follows from I being an ideal of R and S + I being a subring of R. In fact, certainly I is still closed
under addition, closed under multiplication by elements of S + I (since they are also elements of R)
and contains the 0 of S + I since it is the same as the 0 of R.

The set SN[ is an ideal of the ring S.
Solution. Clearly SNI C S.

Closed under Addition: Since S is a subring and I an ideal, they are both closed under addition. Hence
we get that S NI is also closed under addition.

Closed Under Multiplication by Elements of S: Let a € S NI be arbitrary. Then a € S and a € I.
For any b € S, we have ab € S and ba € S since S is a ring (by part (a)) and thus closed under
multiplication. Further, b € R since S C R. Thus ab € I and ba € I since I is an ideal of R and thus
closed under multiplication by elements of R. Altogether we have that ab € SN I and ba € SN I.
Hence we have that S NI is closed under multiplication by elements in S.
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(d)

Zero: Since 0g € S and 0g = 0r € I, we have that 0g € SN 1.

All of the above shows that S NI is an ideal of S.

We have (S + I) /I = S/(SNI) (as rings). More concretely, there is a ring isomorphism S/ (SN 1T) —
(S + 1) /I that sends each residue class s=s+ (SNI)tos=s+1I.

Solution. We want to show that f:S/(SNI)— (S+1I)/I defined by
fs+(SNI)=s+1
is a ring isomorphism.

Well-definedness: If 4+ (SNI) and s + (SNI) (for some r,s € S) are one and the same coset in
S/(SNI), then r+1I = s+1. Indeed, in this case, we have r—s € SNI (since r+(SNI)=s+(SNI))
and therefore r — s € I, so that r + [ = s+ I. Thus, the map f above is well-defined.

Addition: For any s+ (SNI),r+(SNI)eS/(SNI),

f(s+(SND))+(r+(SNI)))=f((s+r)+(SNI))
=(s+r)+1
=+ +(r+1) (by definition of coset sum)
=f(s+(SNI))+ f(r+(SNI)).

Multiplication: For any s+ (SNI),r+(SNI)e S/ (SNI),
f(s+(SND)(r+(SND))) = f((sr) +(SNT))
=(sr)+1

=(s+D)(r+1) (by definition of coset multiplication)
=f(s+(SNI))f(r+(SNI)).

Zero: f(0s/(snry) = f(0s+(SNI))=fOr+(SNI))=0r+1=0s47+1=0(541)1-
Unity: f(1s/snp) = f(ls +(SN1) = f(Ar+(SNTI)) =1p+T=1ls11+1 =511

Invertible: We will show that f is injective and surjective. This will then yield that f is invertible.

Injective: Suppose f(a) = f(b) for some a,b € S/(SNI). Then a = s+(SNI) and b = r+(SNI) for
some r, s € S. Thus we have f(s+(SNI)) = f(r+(SNI)) for some s+(SNI),r+(SNI) € S/(SNI).
Then by definition of f we have

s+1=r+1

This means that s — r € I. Since r,s € S, which is a ring, we also have s —r € S. Thus
s—reSNnI. Therefore s+ (SNI)=r+(SNI). Hence a = b. This shows that f is injective.

Surjective: Let y € (S + I)/I. Then for some r € S+ I, we have y = r+ 1 € (S+I)/I. Since
reS+1, for some s € S and ¢ € I, we have r = s +¢. Thus

y=(+i)+I=6+D)+0E+1)=(s+1)+0+1)=s+1.
Since s € S, we have s + (SNI) e S/(SNI) and
fs+(SNI)=s+1=y.

Hence f is surjective.

All the above together gives that f is an invertible ring morphism, i.e., a ring isomorphism. Hence
(S+1)/I=5/(SNI) (as rings).
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