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Drexel University, Department of Mathematics

Math 533: Abstract Algebra I Winter 2021: Homework 2 student work

Exercise 1

Let R be a ring. Let a be a nilpotent element of R. (Recall that “nilpotent” means that there exists some
n ∈ N such that an = 0.)

(a) Prove that 1− a ∈ R is a unit.

Solution. Let a be a nilpotent element of R and let n ∈ N be such that an = 0. Set s = 1+ a+ a2 +
a3 + · · ·+ an−1 ∈ R. Then,

(1− a)s = (1− a)(1 + a+ a2 + a3 + · · ·+ an−1)

= 1(1 + a+ a2 + a3 + · · ·+ an−1) + (−a)(1 + a+ a2 + a3 + · · ·+ an−1)

= 1 + a+ a2 + a3 + · · ·+ an−1 − a− a2 − a3 − · · · − an−1 − an

= 1 + a− a+ a2 − a2 + a3 − a3 + · · ·+ an−1 − an−1 − an

= 1 + 0 + 0 + · · ·+ 0− an

= 1− an

= 1− 0 (by assumption since an = 0)

= 1.

Similarly,

s(1− a) = (1 + a+ a2 + a3 + · · ·+ an−1)(1− a)
= (1 + a+ a2 + a3 + · · ·+ an−1)1 + (1 + a+ a2 + a3 + · · ·+ an−1)(−a)
= 1 + a+ a2 + a3 + · · ·+ an−1 − a− a2 − a3 − · · · − an−1 − an

= 1 + a− a+ a2 − a2 + a3 − a3 + · · ·+ an−1 − an−1 − an

= 1 + 0 + 0 + · · ·+ 0− an

= 1− an

= 1− 0 (by assumption since an = 0)

= 1.

Hence s ∈ R is a multiplicative inverse for 1− a. Thus 1− a ∈ R is a unit.

(b) Let u ∈ R be a unit satisfying ua = au. Prove that u− a ∈ R is a unit.

Solution. Let a be a nilpotent element of R and n ∈ N be such that an = 0. Let u ∈ R be a unit
satisfying ua = au. Then u−1 ∈ R. Also, a commutes with u−1 (indeed, ua = au =⇒ u−1uau−1 =
u−1auu−1 =⇒ au−1 = u−1a). Hence, a commutes with u−k for any k ∈ N. Also, u commutes with
ak for any k ∈ N (since au = ua).

Define t = u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n ∈ R. Then,

(u− a)t = (u− a)(u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)

= u(u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)

+ (−a)(u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)

= 1 + au−1 + a2u−2 + · · ·+ an−2u−n+2 + an−1u−n+1

− au−1 − a2u−2 − a3u−3 − · · · − an−1u−n+1 − anu−n(
because u commutes with ak for any k ∈ N

)
= 1 + 0 + 0 + 0 + · · ·+ 0− anu−n

= 1− 0u−n (since by assumption an = 0)

= 1− 0
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= 1.

Similarly,

t(u− a) = (u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)(u− a)
= (u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)u

+ (u−1 + au−2 + a2u−3 + · · ·+ an−2u−n+1 + an−1u−n)(−a)
= 1 + au−1 + a2u−2 + · · ·+ an−2u−n+2 + an−1u−n+1

− au−1 − a2u−2 − a3u−3 − · · · − an−1u−n+1 − anu−n(
because a commutes with u−k for any k ∈ N

)
= 1 + 0 + 0 + 0 + · · ·+ 0− anu−n

= 1− 0u−n (since by assumption an = 0)

= 1− 0

= 1.

Hence t ∈ R is a multiplicative inverse for u− a. Thus u− a ∈ R is a unit.
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Exercise 2

Let R be a ring. We define a new binary operation ·̃ on R by setting

a ·̃ b = ba for all a, b ∈ R.

(Thus, ·̃ is the multiplication of R, but with the arguments switched.)

(a) Prove that the set R, equipped with the addition +, the multiplication ·̃, the zero 0R and the unity
1R, is a ring.

Solution. Addition: As the addition is the same as the original ring (R,+, ·) and so are the elements,
clearly (R,+, 0R) is still an abelian group.

Multiplication: The neutral element 1R is inherited from the original ring; it remains neutral for the
new multiplication ·̃, since it commuted with all elements of R.

Associativity: For any a, b, c ∈ R, we have

a ·̃ (b ·̃ c) = a ·̃ (cb)
= (cb)a

= c(ba) (by associativity of the original multiplication)
= c(a ·̃ b)
= (a ·̃ b) ·̃ c.

Thus the new multiplication ·̃ is associative. Distributivity: For any a, b, c ∈ R, we have

(a+ b) ·̃ c = c(a+ b)

= ca+ cb (by distributivity in the original ring)
= a ·̃ c+ b ·̃ c.

The other direction is analogous. Thus, the new multiplication ·̃ satisfies distributivity.
Multiplication by 0: We don’t strictly need to check the 0R ·̃ a = a ·̃ 0R = 0R axiom, but of course we
can (it follows from the corresponding axiom in the original ring).

Altogether, (R,+, ·̃) is a ring.

This new ring is called the opposite ring of R, and is denoted by Rop. Note that the sets R and Rop are
identical (so a map from R to R is the same as a map from R to Rop); but the rings R and Rop are generally
not the same (so a ring morphism from R to R is not the same as a ring morphism from R to Rop).

(b) Prove that the identity map id : R → R is a ring isomorphism from R to Rop if and only if R is
commutative.

Solution. (I) Suppose R is commutative. We shall show id : R→ R is a ring isomorphism from R to
Rop. For any a, b ∈ R we have

Addition: id(a+ b) = a+ b = id(a) + id(b).

Zero: id(0R) = 0R = 0Rop .

Multiplication: id(ab) = ab = ba = a ·̃ b = id(a) ·̃ id(b) since R is commutative.

Unity: id(1R) = 1R = 1Rop .

Invertibility: The identity map is clearly one-to-one and onto; thus invertible.

Altogether, the identity map is a ring isomorphism from R to Rop.

(II) Suppose id : R→ R is a ring isomorphism from R to Rop. Then, for all elements a, b ∈ R, we have
id(ab) = id(a) ·̃ id(b). Thus

ab = a ·̃ b = ba.

Hence R is commutative.

(I) and (II) together show the identity map id : R → R is a ring isomorphism from R to Rop if and
only if R is commutative.
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(c) Now, assume that R is the matrix ring Sn×n for some commutative ring S and some n ∈ N. Prove
that the map

R→ Rop, A 7→ AT

(where AT , as usual, denotes the transpose of a matrix A) is a ring isomorphism.

Solution. Define f : R→ Rop by f(A) = AT . We shall show this is a ring isomorphism. (Note I use
0 to represent the 0 matrix and I to represent the identity matrix; these two matrices are the additive
and multiplicative identities, respectively, for both rings.) For any A,B ∈ R, we have

Addition: f(A+B) = (A+B)T = AT +BT = f(A) + f(B).

Zero: f(0) = 0T = 0.

Multiplication:

f(AB) = (AB)T

= BTAT (a classical property of transposes, which relies on the commutativity of S)

= AT ·̃BT = f(A) ·̃ f(B).

Unity: f(I) = IT = I.

Invertibility: The map f is its own inverse. (This follows from the fact that (AT )T = A for any matrix
A.)

Altogether, we have that f is a ring isomorphism.

(d) Forget about S, and let R be an arbitrary ring again. Let M be a right R-module. Prove that M
becomes a left Rop-module if we define an action of Rop on M by

rm = mr for all r ∈ Rop and m ∈M.

(Here, the left hand side is to be understood as the image of (r,m) under the new action of Rop on
M , whereas the right hand side is the image of (m, r) under the original action of R on M .)

Solution. Since M is a right R-module, we must already have that (M,+, 0M ) is an abelian group.

Next, for any r, s ∈ R (thus also all r, s ∈ Rop) and m,n ∈M , we have
Right Distributivity: (r + s)m = m(r + s) = mr +ms = rm + sm by left distributivity in the right
R-module M .

Left Distributivity: r(m + n) = (m + n)r = mr + nr = rm + rn by right distributivity in the right
R-module M .

Associativity:

(r ·̃ s)m = (sr)m (by definition of ·̃)
= m(sr)

= (ms)r (by associativity in the right R-module M)

= (sm)r

= r(sm).

The facts that 0Rm = 0M , r0M = 0M , and 1m = m follow from M being a right R-module.

Altogether, we have that M is a left Rop-module.
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Exercise 3

Let R be an integral domain. Let a ∈ R and b ∈ R. Assume that a and b have an lcm ` ∈ R. Prove that a
and b have a gcd g ∈ R, which furthermore satisfies g` = ab.

Solution. The ring R is an integral domain; thus, it is commutative and has no zero divisors.

Trivial Case: If a = 0, then `, being a multiple of a, is also 0. Thus, in this case, b is a gcd of a and b and
satisfies b` = ab (since ` = 0 = a). This solves the problem in the case when a = 0. Similarly we can solve
the problem if b = 0.

Now assume a and b are nonzero. Thus, ab 6= 0 (since R is an integral domain). There exist m1,m2 ∈ R
such that

am1 = ` and bm2 = `

(since ` is a common multiple of a and b). Next, note that ab is a common multiple of a and b. Since ` is an
lcm of a and b, we thus conclude that there exists an element g ∈ R such that `g = ab. We want to show
that this element g is a gcd of a and b.

Note that `g = ab 6= 0, so that ` 6= 0.

Step 1: Show that g is a common divisor of a and b.

We have `g = ab and am1 = `. This gives

am1g = ab;

am1g − ab = 0;

a(m1g − b) = 0;

m1g − b = 0 (since R has no zero divisors and a 6= 0) ;

m1g = b.

Hence g | b.
Similarly, we have `g = ab and bm2 = `. This gives

bm2g = ab;

bm2g − ab = 0;

b(m2g − a) = 0 (since R is commutative) ;
m2g − a = 0 (since R has no zero divisors and b 6= 0) ;

m2g = a.

Hence g | a. Thus together, g is a common divisor of a and b.

Step 2: Show that every common divisor of a and b divides g.

Let d be a common divisor of a and b. Thus for some n1, n2 ∈ R, we have

dn1 = a and dn2 = b.

Then, dn1n2 is a common multiple of a and b (indeed, it equals an2 and n1b by commutativity of the ring
R). Since ` is an lcm of a and b, we thus conclude that there exists k ∈ R such that `k = dn1n2. Next,
from dn1 = a and dn2 = b, we obtain (dn1)(dn2) = ab = `g. However, since R is commutative, we have
(dn1)(dn2) = d(dn1n2) = d`k (because dn1n2 = `k). Comparing these two equalities, we find

d`k = `g;

d`k − `g = 0;

`(dk − g) = 0 (since R is commutative) ;
dk − g = 0 (since R has no zero divisors and ` 6= 0) ;

dk = g.

Hence d divides g. Since d was an arbitrary common divisor of a and b, every common divisor of a and b
divides g.

Steps 1 and 2 together show that g is a gcd of a and b. Furthermore, it satisfies g` = ab.
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Exercise 4

Let p be a prime number.

(a) Prove that if a and b are two integers such that a2 ≡ b2 mod p2, then a ≡ b mod p2 or a ≡ −b
mod p2 or a ≡ b ≡ 0 mod p.
Solution (sketched). First assume p 6= 2. Suppose a and b are two integers such that a2 ≡ b2

mod p2. This gives that p2 | (a2 − b2). Then since a2 − b2 = (a + b)(a − b) and p is prime, we have
three options:1

Option 1: p2 | (a+ b). Thus a ≡ −b mod p2.

Option 2: p2 | (a− b). Thus a ≡ b mod p2.

Option 3: p | (a− b) and p | (a+ b). Then, there exist integers n1 and n2 such that

a− b = pn1 and a+ b = pn2.

Adding these equalities, we get 2a = p(n1+n2). Since 2 divides the left-hand side, it must divide

the right-hand side. Since p is odd, we thus find 2 | (n1 + n2), so that m =
n1 + n2

2
∈ Z. Hence

a = pm for an integer m, so a ≡ 0 mod p. Then, since p | (a− b) =⇒ a ≡ b mod p, we also get
b ≡ 0 mod p. Altogether we have

a ≡ b ≡ 0 mod p.

Hence we have shown that one of the following must hold:

(1) a ≡ b mod p2 or (2) a ≡ −b mod p2 or (3) a ≡ b ≡ 0 mod p.

Now let’s prove this in the p = 2 case. Suppose a and b are two integers such that a2 ≡ b2 mod 4. If
a is even, then b must also be even. In this case a ≡ b ≡ 0 mod 2. Else, a is odd, in which case b is
also odd. Every odd number is one less or one more than a multiple of four. Thus we have four cases:

Case 1: a = 4k + 1 and b = 4l + 1 for some k, l ∈ Z.
Case 2: a = 4k − 1 and b = 4l − 1 for some k, l ∈ Z.
Case 3: a = 4k + 1 and b = 4l − 1 for some k, l ∈ Z.
Case 4: a = 4k − 1 and b = 4l + 1 for some k, l ∈ Z.

Cases 1 and 2 give a ≡ b mod 4 whereas cases 3 and 4 give a ≡ −b mod 4. Thus whenever a2 ≡ b2

mod 4, we have one of the following:

(1) a ≡ b mod 4 or (2) a ≡ −b mod 4 or (3) a ≡ b ≡ 0 mod 2.

In total, we have shown the statement for all prime p.

(b) Compute the number of squares in the ring Z/p2.
Solution (sketched). First, squaring any multiple of p in Z/p2 will give 0. Thus we want to take
out the multiples of p, of which there are p (including 0) in Z/p2. This takes care of the case when
a ≡ b ≡ 0 mod p. Then, of the remaining elements of Z/p2, any two distinct elements, say a and b,
will give the same square if and only if a = −b in Z/p2 (i.e. a ≡ −b mod p2).

Why must a and b be distinct? Suppose a ≡ −a mod p2. Then, for some integer k, we have
a + a = p2k, i.e., 2a = p2k. Since 2 divides the lefthand side, it must also divide the righthand
side. Since 2 is prime, 2 | p or 2 | k. In either case, 2 | pk. Then for l = pk

2 ∈ Z, we have
a = pl. Thus a ≡ 0 mod p. But this was the first case we took care of, so we have reached a
contradiction. Hence, a and b must be distinct.

Thus the number of squares in Z/p2 is given by

1︸︷︷︸
(corresponding to the square 0)

+
|Z/p2| − p

2︸ ︷︷ ︸
exactly two non-multiples of p will give the same square

= 1 +
p2 − p

2

=
p2 − p+ 2

2
.

(A generalization of (b) is found in [1].)

1Remark by Darij: Make sure you understand why! (Hint: Any integer not divisible by p is coprime to p and thus also
coprime to p2.)
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Exercise 5

Let p be a prime number.

(a) Prove that the only units of the ring Z/p that are their own inverses (i.e., the only m ∈ (Z/p)× that
satisfy m−1 = m) are 1 and −1.
Solution. Suppose m ∈ Z/p is its own inverse. Then m ·m = 1. Thus we have

m2 = 1;

m2 +−1 = 0;

m2 +m−m+−1 = 0;

m(m+ 1) +−1(m+ 1) = 0;

(m+−1)(m+ 1) = 0.

Since p is prime, Z/p is a field, so there are no zero divisors. Thus we have either

m+−1 = 0 =⇒ m = 1

or
m+ 1 = 0 =⇒ m = −1.

Hence the only elements of Z/p that are their own inverses are 1 and −1.

(b) Assume that p is odd. Let u =
p− 1

2
∈ N. Prove that u!2 ≡ − (−1)u mod p.

Solution. Wilson’s theorem ([2]) gives us that (p− 1)! ≡ −1 mod p, i.e. that in Z/p, we have

1 · 2 · 3 · · · p− 2 · p− 1 = −1.

Manipulating this (using u+ 1 = p− u), we get:

1 · 2 · · ·u · p− u · · · p− 2 · p− 1 = −1;
1 · 2 · · ·u · −u · · · −2 · −1 = −1;
1 · 2 · · ·u · −1u · u · · · 2 · 1 = −1;

−1u(1 · 2 · · ·u)2 = −1;
−1u · −1u(1 · 2 · · ·u)2 = −1u · −1;

(1 · 2 · · ·u)2 = −1 · −1u.

Thus we have shown that (u!)2 ≡ −(−1)u mod p.

student work
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Exercise 6

Recall the ring Z [i] of Gaussian integers. Let N : Z [i] → N be the map that sends each Gaussian integer
z = a+ bi ∈ Z [i] (with a, b ∈ Z) to a2+ b2 = |z|2. (This is the Euclidean norm on Z [i] that we have already
used several times.)

(a) Prove that if z and w are two Gaussian integers satisfying z | w in Z [i], then N (z) | N (w) in Z.
Solution. Suppose z = a1 + b1i and w = a2 + b2i (where a1, a2, b1, b2 ∈ Z) satisfy z | w. Since we
have z | w, there exists r = c+ di ∈ Z[i] such that zr = w. Thus we have

(a1 + b1i)(c+ di) = a2 + b2i;

(a1c− b1d) + (a1d+ b1c)i = a2 + b2i.

Hence
a1c− b1d = a2 and a1d+ b1c = b2.

Thus,

a22 + b22 = (a1c− b1d)2 + (a1d+ b1c)
2

= a21c
2 − 2a1cb1d+ b21d

2 + a21d
2 + 2a1cb1d+ b21c

2

= a21c
2 + b21d

2 + a21d
2 + b21c

2

= a21(c
2 + d2) + b21(c

2 + d2)

= (a21 + b21)(c
2 + d2).

Since r = c+ di ∈ Z[i], we have c, d ∈ Z and thus c2 + d2 ∈ Z. Hence

(a21 + b21) | (a22 + b22).

Now N(z) = N(a1 + b1i) = a21 + b21 and N(w) = N(a2 + b2i) = a22 + b22. Thus altogether we have

N(z) | N(w).

(b) Let z = a+ bi ∈ Z [i] with a, b ∈ Z. Assume that z 6= 0. Let n = b|z|c =
⌊√

a2 + b2
⌋
. Prove that every

divisor of z in Z [i] has the form c+ di with c, d ∈ {−n,−n+ 1, . . . , n}.
Solution. Part (a) tells us that any divisor v = c+ di of z = a+ bi in Z[i] must satisfy N(v) | N(z),
i.e. that

(c2 + d2) | (a2 + b2).

Since both quantities are nonnegative, and since a2 + b2 > 0 (because z 6= 0), we have then that

c2 + d2 ≤ a2 + b2;√
c2 + d2 ≤

√
a2 + b2.

Since |c| ≤
√
c2 + d2 and |d| ≤

√
c2 + d2, we thus obtain

−
√
a2 + b2 ≤ c ≤

√
a2 + b2 and −

√
a2 + b2 ≤ d ≤

√
a2 + b2.

Since v = c+ di ∈ Z[i], we have c, d ∈ Z. Hence we get that c, d ∈ {−n,−n+ 1, . . . , n}. Thus we have
shown that every divisor of z in Z [i] has the form c+ di with c, d ∈ {−n,−n+ 1, . . . , n}.

(c) Without recourse to the general theory of PIDs and UFDs, prove that every nonzero element of Z [i]
has an irreducible factorization.

Solution omitted.

(d) Let z ∈ Z [i]. Prove that we have the following logical equivalence:

(z is a unit of Z [i]) ⇐⇒ (N (z) = 1) ⇐⇒ (z ∈ {1, i,−1,−i}) .

Solution. Step 1: z is a unit of Z[i] =⇒ N(z) = 1.

Proof. Suppose z is a unit of Z[i]. Then z | 1. By part (a), we get N(z) | N(1). Thus if z = a + bi
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where a, b ∈ Z, then (a2+ b2) | 1 (in the normal Z division sense). This will only happen if a2+ b2 = 1
since a and b are real and thus a2 + b2 ≥ 0. Thus N(z) = 1.

Step 2: N(z) = 1 =⇒ z ∈ {1, i,−1,−i}.

Proof. Suppose N(z) = 1. Then, if we write z = a+ bi where a, b ∈ Z, then a2 + b2 = 1. Since a and
b are integers, this equality only holds if one of a2 and b2 is 0 and the other is 1. Thus we get the
following cases:

1. b2 = 0 and a2 = 1:

1.1 b = 0 and a = 1. Thus z = 1.
1.2 b = 0 and a = −1. Thus z = −1.

2. b2 = 1 and a2 = 0:

2.1 b = 1 and a = 0. Thus z = i.
2.2 b = −1 and a = 0. Thus z = −i.

Hence z ∈ {1, i,−1,−i}.

Step 3: z ∈ {1, i,−1,−i} =⇒ N(z) = 1.

Proof. Suppose z ∈ {1, i,−1,−i}. In all cases N(z) = a2 + b2 = 0 + 1 = 1.

Step 4: N(z) = 1 =⇒ z is a unit of Z[i].

Proof. Suppose N(z) = 1. By step 2, z ∈ {1, i,−1,−i}. In all cases, z is a unit:

a. If z = 1, its inverse is itself.

b. If z = i, its inverse is −i ∈ Z[i].
c. If z = −1, its inverse is itself.

d. If z = −i, its inverse is i ∈ Z[i].

Hence z is a unit of Z[i].

The four steps above have proven the equivalences:

(z is a unit of Z [i]) ⇐⇒ (N (z) = 1) ⇐⇒ (z ∈ {1, i,−1,−i}) .
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Exercise 7

Consider the ring
Z
[√
−3
]
=
{
a+ b

√
−3 | a, b ∈ Z

}
.

This ring is a subring of C, and thus is an integral domain.

Let u = 2 ∈ Z
[√
−3
]
and v = 1 +

√
−3 ∈ Z

[√
−3
]
. Further let a = 2u = 4 and b = 2v.

(a) Prove that both u and v are common divisors of a and b in Z
[√
−3
]
.

Solution. It is clear that u | a = 2u. Let’s show v | a: For r = 1−
√
−3 ∈ Z

[√
−3
]
,

vr = (1 +
√
−3)(1−

√
−3)

= 1−
√
−3
√
−3

= 1− (−3)
= 1 + 3

= 4

= a.

Hence v | a in Z
[√
−3
]
.

Next, it is clear that v | b = 2v and also that u = 2 | b = 2v. Thus since u and v both divide a in
Z
[√
−3
]
and they both divide b in Z

[√
−3
]
, they are common divisors of a and b in Z

[√
−3
]
.

(b) Prove that the only divisors of 4 in Z
[√
−3
]
are ±1, ±2, ±4, ±

(
1 +
√
−3
)
and ±

(
1−
√
−3
)
.

Note in this part I will use gcdZ to denote the usual gcd in the integer setting. This gcd is always a
nonnegative integer.

Solution. Suppose c+ d
√
−3 ∈ Z[

√
−3] (with c, d ∈ Z) satisfies (c+ d

√
−3) | 4 = a. Then,

4

c+ d
√
−3
∈ Z[
√
−3].

Rationalizing the denominator, we find

4

c+ d
√
−3

=
4

c+ d
√
−3
· c− d

√
−3

c− d
√
−3

=
4(c− d

√
−3)

c2 + 3d2
=

4c

c2 + 3d2
− 4d

c2 + 3d2
√
−3,

so that
4c

c2 + 3d2
− 4d

c2 + 3d2
√
−3 =

4

c+ d
√
−3
∈ Z[
√
−3].

In other words,
4c

c2 + 3d2
∈ Z and

4d

c2 + 3d2
∈ Z.

That is, c2 + 3d2 is a common divisor of 4c and 4d (over the integers). Therefore, (c2 + 3d2) |
gcdZ(4c, 4d). Set gcdZ(c, d) = g ∈ Z (so that gcdZ(4c, 4d) = 4g), and let k, l ∈ Z such that c = kg and
d = lg. Then we have

(c2 + 3d2) | 4g;
(|c|2 + 3|d|2) | 4g;

(|ckg|+ 3|dlg|) | 4g (since c = kg and d = lg) ;

|g|(|kc|+ 3|ld|) | 4g;
(|kc|+ 3|ld|) | 4

(here, we cancelled out |g|, which is legitimate since it is easily seen that g 6= 0). Since k, c, l, d ∈ Z, we
thus have two cases: either |ld| = 1 or |ld| = 0 (since otherwise |kc|+3|ld| > 4, which is a contradiction
to (|kc|+ 3|ld|) | 4):

1. If |ld| = 1, then |d| = 1 and (|kc|+ 3) | 4, so we have |kc| = 1. This means also |c| = 1, so we get
the following divisors of 4:
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(a) d = 1, c = 1: 1 +
√
−3.

(b) d = 1, c = −1: −1 +
√
−3.

(c) d = −1, c = 1: 1−
√
−3.

(d) d = −1, c = −1: −1−
√
−3.

2. If |ld| = 0, then d = 0 (since d = lg yields |d|2 = |dlg| = |ld||g| = 0). Further, |kc| | 4, so we have
c | 4, which gives the following (familiar) divisors of 4:

(a) ±1.
(b) ±2.
(c) ±4.

Thus all the divisors of a = 4 in Z[
√
−3] are ±1, ±2, ±4, ±

(
1 +
√
−3
)
and ±

(
1−
√
−3
)
.

(c) Prove that a and b have no gcd in Z
[√
−3
]
.

Solution. A gcd of a and b must be a common divisor of a and b, so first let’s check which of
the divisors of a = 4 (which we have found above, in part (b) of the exercise) are also divisors of
b = 2(1 +

√
−3):

1. It is clear that ±1, ±2, and ±(1 +
√
−3) are divisors of b.

2. It is clear that ±4 are not divisors of b since

b

4
=

2(1 +
√
−3)

4
=

1

2
+

1

2

√
−3 6∈ Z[

√
−3].

3. It remains to check ±(1−
√
−3). Note:

(1−
√
−3)(−1 +

√
−3) = −1 +

√
−3 +

√
−3 + 3 = 2 + 2

√
−3 = b.

Thus ±(1−
√
−3) are divisors of b.

In all we have that the common divisors of a and b are

±1,±2,±
(
1 +
√
−3
)
,±
(
1−
√
−3
)
.

Thus if a and b have a gcd it would be one of the above. Every common divisor must divide the gcd.
In particular, since 2 is a common divisor of a and b, it must divide the gcd. It is clear that in Z[

√
−3],

2 does not divide any of
±1,±

(
1 +
√
−3
)
,±
(
1−
√
−3
)
,

since in each case dividing by 2 over the complex numbers will yield a real part of ± 1
2 6∈ Z. Thus our

only remaining options for gcd of a and b are ±2. If ±2 is the gcd, 1 +
√
−3 must divide it. We have

±2
1 +
√
−3

=
±2

1 +
√
−3
· 1−

√
−3

1−
√
−3

=
±2(1−

√
−3)

1 + 3
=
±1
2

(1−
√
−3) 6∈ Z[

√
−3].

Thus ±2 cannot be the gcd either. Hence a and b have no gcd in Z[
√
−3].
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Exercise 8

Let R be a ring. Let I and J be two ideals of R such that I ⊆ J . Let J/I denote the set of all cosets
j + I ∈ R/I where j ∈ J . Prove the following:

(a) This set J/I is an ideal of R/I.

Solution. Step 1: We need to show that any α, β ∈ J/I satisfy α+ β ∈ J/I.
Let α, β ∈ J/I. Then, we can write α = a+I and β = b+I for some a, b ∈ J . Since J is an ideal of R,
we then have a+ b ∈ J . Thus (a+ b) + I ∈ J/I. But this is precisely how we define (a+ I) + (b+ I).
Thus (a + I) + (b + I) ∈ J/I. In other words, α + β ∈ J/I. This shows that J/I is closed under
addition.

Step 2: We need to show that any α ∈ R/I and β ∈ J/I satisfy αβ ∈ J/I and βα ∈ J/I.
Let α ∈ R/I and β ∈ J/I. Thus we can write α = a+ I and β = j + I with a ∈ R and j ∈ J . Since
J is an ideal of R, we then have aj ∈ J and ja ∈ J . Thus aj + I ∈ J/I and ja + I ∈ J/I. This is
precisely how we define (a+ I)(j + I) and (j + I)(a+ I), respectively. Thus (a+ I)(j + I) ∈ J/I and
(j + I)(a + I) ∈ J/I. In other words, αβ ∈ J/I and βα ∈ J/I. This shows that J/I is closed under
multiplication by elements in R/I.

Step 3: We need to show that 0R + I = 0R/I ∈ J/I.
Since J is an ideal, 0R ∈ J . Thus 0R + I ∈ J/I.

All steps above show that J/I is an ideal of R/I.

(b) We have (R/I) / (J/I) ∼= R/J (as rings). More concretely, there is a ring isomorphism R/J →
(R/I) / (J/I) that sends each residue class r = r + J to r + I = (r + I) + (J/I).

Solution. We want to show that f : R/J → (R/I) / (J/I) defined by

f(r + J) = (r + I) + (J/I)

is a ring isomorphism.

Well-definedness: If r + J and s + J (for some r, s ∈ R) are one and the same coset in R/J , then
(r + I) + (J/I) = (s+ I) + (J/I). Indeed, in this case, we have r − s ∈ J (since r + J = s + J) and
therefore (r + I)− (s+ I) = (r − s) + I ∈ J/I„ so that (r + I) + (J/I) = (s+ I) + (J/I). Thus, the
map f above is well-defined.

Addition: For any r + J, s+ J ∈ R/J , we have2

f((r + J) + (s+ J)) = f((r + s) + J)

=
(
[r + s] + I

)
+ (J/I)

=
(
[r + I] + [s+ I]

)
+ (J/I) (by definition of coset sum)

=
[
(r + I) + (J/I)

]
+
[
(s+ I) + (J/I)

]
(by definition of coset sum)

= f(r + J) + f(s+ J).

Multiplication: For any r + J, s+ J ∈ R/J ,

f((r + J)(s+ J)) = f((rs) + J)

=
(
[rs] + I

)
+ (J/I)

=
(
[r + I][s+ I]

)
+ (J/I) (by definition of coset multiplication)

=
[
(r + I) + (J/I)

][
(s+ I) + (J/I)

]
(by definition of coset multiplication)

= f(r + J)f(s+ J).

Zero: f(0R/J) = f(0R + J) = (0R + I) + (J/I) = 0R/I + (J/I) = 0(R/I)/(J/I).

2We shall use square brackets synonymously to regular parentheses.
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Unity: f(1R/J) = f(1R + J) = (1R + I) + (J/I) = 1R/I + (J/I) = 1(R/I)/(J/I).

Invertible: We will show that f is injective and surjective. This will then yield that f is invertible.

Injective: Suppose f(a) = f(b) for some a, b ∈ R/J . Then a = r + J and b = s + J for some
r, s ∈ R. Thus we have f(r+ J) = f(s+ J) for some r+ J, s+ J ∈ R/J . Then by definition of f
we have

(r + I) + (J/I) = (s+ I) + (J/I).

This means that (r+ I)− (s+ I) ∈ J/I, i.e. (r−s)+ I ∈ J/I. This means that (r−s)+ I = j+ I
for some j ∈ J . This yields (r − s)− j ∈ I ⊆ J , so that r − s is a sum of j with an element of J .
Thus, r− s is a sum of two elements of J (since j ∈ J). Therefore, r− s ∈ J (since J is an ideal).
In other words, r + J = s+ J . Hence a = b. Thus we have shown that f is injective.

Surjective: Let y ∈ (R/I)/(J/I). Then for some r ∈ R, we have y = (r+I)+(J/I) ∈ (R/I)/(J/I).
Since r ∈ R, we have r + J ∈ R/J and

f(r + J) = (r + I) + (J/I) = y.

Hence f is surjective.

All the above together gives that f is an invertible ring morphism, i.e., a ring isomorphism. Hence
(R/I) / (J/I) ∼= R/J (as rings).
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Exercise 9

Let R be a ring. Let S be a subring of R. Let I be an ideal of R. Define S + I to be the subset
{s+ i | s ∈ S and i ∈ I} of R. Prove the following:

(a) This subset S + I is a subring of R.

Solution. Closed under Addition: Let a, b ∈ S + I be arbitrary. Then for some s1, s2 ∈ S and
i1, i2 ∈ I, we have a = s1 + i1 and b = s2 + i2. Then

a+ b = s1 + i1 + s2 + i2

= (s1 + s2) + (i1 + i2)

= s3 + i3

for s3 = s1 + s2 ∈ S and i3 = i1 + i2 ∈ I since S is a subring (thus closed under addition) and I is
an ideal (thus also closed under addition). Hence a+ b = s3 + i3 ∈ S + I. Thus S + I is closed under
addition.

Closed under Multiplication: Let a, b ∈ S + I be arbitrary. Then for some s1, s2 ∈ S and i1, i2 ∈ I, we
have a = s1 + i1 and b = s2 + i2. Then

ab = (s1 + i1)(s2 + i2)

= (s1 + i1)s2 + (s1 + i1)i2

= s1s2 + i1s2 + s1i2 + i1i2.

Since I is an ideal it is closed under multiplication by any element of R (and thus any element of S),
so i1s2, s1i2, i1i2 ∈ I. Therefore i3 = i1s2 + s1i2 + i1i2 ∈ I. On the other hand, S, as a subring, is
closed under multiplication. Thus s3 = s1s2 ∈ S. Therefore we have

ab = s3 + i3 where s3 ∈ S and i3 ∈ I.

Hence S + I is closed under multiplication.

Contains Additive Inverses: Let a ∈ S + I be arbitrary. Then for some s ∈ S and i ∈ I, we have
a = s+ i. Then

−a = −(s+ i) = −s+ (−i).

Since S is a subring of R, we have −s ∈ S. Since I is an ideal of R, it is closed under multiplication
by elements of R. Thus −i = (−1)i ∈ I. Hence we have that −a = −s + (−i) ∈ S + I. Thus S + I
contains additive inverses.

Zero: 0R ∈ S as S is a subring and 0R ∈ I as I is an ideal. Thus 0R = 0R + 0R ∈ S + I.

Unity: 1R ∈ S as S is a subring and 0R ∈ I as I is an ideal. Thus 1R = 1R + 0R ∈ S + I.

All of the above shows that S + I is a subring of R.

(b) The set I is an ideal of the ring S + I.

Solution. Clearly I ⊆ S + I, since each i ∈ I satisfies i = 0R + i with 0R ∈ S. The rest of the claim
follows from I being an ideal of R and S + I being a subring of R. In fact, certainly I is still closed
under addition, closed under multiplication by elements of S + I (since they are also elements of R)
and contains the 0 of S + I since it is the same as the 0 of R.

(c) The set S ∩ I is an ideal of the ring S.

Solution. Clearly S ∩ I ⊆ S.
Closed under Addition: Since S is a subring and I an ideal, they are both closed under addition. Hence
we get that S ∩ I is also closed under addition.

Closed Under Multiplication by Elements of S: Let a ∈ S ∩ I be arbitrary. Then a ∈ S and a ∈ I.
For any b ∈ S, we have ab ∈ S and ba ∈ S since S is a ring (by part (a)) and thus closed under
multiplication. Further, b ∈ R since S ⊆ R. Thus ab ∈ I and ba ∈ I since I is an ideal of R and thus
closed under multiplication by elements of R. Altogether we have that ab ∈ S ∩ I and ba ∈ S ∩ I.
Hence we have that S ∩ I is closed under multiplication by elements in S.
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Zero: Since 0S ∈ S and 0S = 0R ∈ I, we have that 0S ∈ S ∩ I.

All of the above shows that S ∩ I is an ideal of S.

(d) We have (S + I) /I ∼= S/ (S ∩ I) (as rings). More concretely, there is a ring isomorphism S/ (S ∩ I)→
(S + I) /I that sends each residue class s = s+ (S ∩ I) to s = s+ I.

Solution. We want to show that f : S/ (S ∩ I)→ (S + I) /I defined by

f(s+ (S ∩ I)) = s+ I

is a ring isomorphism.

Well-definedness: If r + (S ∩ I) and s + (S ∩ I) (for some r, s ∈ S) are one and the same coset in
S/ (S ∩ I), then r+I = s+I. Indeed, in this case, we have r−s ∈ S∩I (since r+(S ∩ I) = s+(S ∩ I))
and therefore r − s ∈ I, so that r + I = s+ I. Thus, the map f above is well-defined.

Addition: For any s+ (S ∩ I), r + (S ∩ I) ∈ S/ (S ∩ I),

f((s+ (S ∩ I)) + (r + (S ∩ I))) = f((s+ r) + (S ∩ I))
= (s+ r) + I

= (s+ I) + (r + I) (by definition of coset sum)

= f(s+ (S ∩ I)) + f(r + (S ∩ I)).

Multiplication: For any s+ (S ∩ I), r + (S ∩ I) ∈ S/ (S ∩ I),

f((s+ (S ∩ I))(r + (S ∩ I))) = f((sr) + (S ∩ I))
= (sr) + I

= (s+ I)(r + I) (by definition of coset multiplication)
= f(s+ (S ∩ I))f(r + (S ∩ I)).

Zero: f(0S/(S∩I)) = f(0S + (S ∩ I)) = f(0R + (S ∩ I)) = 0R + I = 0S+I + I = 0(S+I)/I .

Unity: f(1S/(S∩I)) = f(1S + (S ∩ I)) = f(1R + (S ∩ I)) = 1R + I = 1S+I + I = 1(S+I)/I .

Invertible: We will show that f is injective and surjective. This will then yield that f is invertible.

Injective: Suppose f(a) = f(b) for some a, b ∈ S/(S∩I). Then a = s+(S∩I) and b = r+(S∩I) for
some r, s ∈ S. Thus we have f(s+(S∩I)) = f(r+(S∩I)) for some s+(S∩I), r+(S∩I) ∈ S/(S∩I).
Then by definition of f we have

s+ I = r + I.

This means that s − r ∈ I. Since r, s ∈ S, which is a ring, we also have s − r ∈ S. Thus
s− r ∈ S ∩ I. Therefore s+ (S ∩ I) = r + (S ∩ I). Hence a = b. This shows that f is injective.

Surjective: Let y ∈ (S + I)/I. Then for some r ∈ S + I, we have y = r + I ∈ (S + I)/I. Since
r ∈ S + I, for some s ∈ S and i ∈ I, we have r = s+ i. Thus

y = (s+ i) + I = (s+ I) + (i+ I) = (s+ I) + (0 + I) = s+ I.

Since s ∈ S, we have s+ (S ∩ I) ∈ S/(S ∩ I) and

f(s+ (S ∩ I)) = s+ I = y.

Hence f is surjective.

All the above together gives that f is an invertible ring morphism, i.e., a ring isomorphism. Hence
(S + I) /I ∼= S/ (S ∩ I) (as rings).
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