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Math 533: Abstract Algebra I,
Winter 2021: Homework 1

Please solve at most 5 of the 10 problems!∗

Darij Grinberg

February 7, 2021

1 Exercise 1

1.1 Problem

Fix an integer m. An m-integer shall mean a rational number r such that there exists a
k ∈ N satisfying mkr ∈ Z.

For example:

• Each integer r is an m-integer (since mkr ∈ Z for k = 0).

• The rational number
5

12
is a 6-integer (since 6k · 5

12
∈ Z for k = 2), but neither a

2-integer nor a 3-integer (since multiplying it by a power of 2 will not “get rid of” the

∗I recommend solving as many problems as you can and wish, but I will only grade and score 5 solutions
per submission (and if you submit more, I get to pick which ones I grade).
Results stated in class, and claims of previous problems (even if you did not solve these previous prob-
lems), can be used without proof. For example, in solving Problem 5, you can use the result of Problem
2 without proof.
I expect approximately the level of detail that I give in class. Purely straightforward arguments (like
checking the ring axioms for a direct product of rings) need not be spelled out; I only expect a note of
their necessity.
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prime factor 3 in the denominator, and vice versa1).

• The 1-integers are the integers (since 1kr = r for all r).

• Every rational number r is a 0-integer (since 0kr ∈ Z for k = 1).

Let Rm denote the set of all m-integers. Prove that Rm is a subring of Q.

1.2 Remark

The ringRm is an example of a ring “between Z andQ” (in the sense that Z is a subring ofRm,
while Rm is a subring of Q). Note that R1 = Z and R0 = Q, whereas R2 = R4 = R8 = · · · is
the ring of all rational numbers that can be written in the form a/2k with a ∈ Z and k ∈ N.

1.3 Solution

...

2 Exercise 2

2.1 Problem

Let R be a ring.
An element a of R is said to be idempotent if it satisfies a2 = a.
An element a of R is said to be involutive if it satisfies a2 = 1.

(a) Let a ∈ R. Prove that if a is idempotent, then 1− 2a is involutive.

(b) Now, assume that 2 is cancellable in R; this means that if u and v are two elements
of R satisfying 2u = 2v, then u = v. Prove that the converse of the claim of part (a)
holds: If a ∈ R is such that 1− 2a is involutive, then a is idempotent.

(c) Now, let R = Z/4Z. Find an element a ∈ R such that 1 − 2a is involutive, but a is
not idempotent.

2.2 Remark

The idempotent elements of R are 0 and 1. The involutive elements of R are 1 and −1. A
matrix ring like Rn×n usually has infinitely many idempotent elements (viz., all projection
matrices on subspaces of Rn) and infinitely many involutive elements (viz., all matrices A
satisfying A2 = In; for instance, all reflections across hyperplanes are represented by such
matrices).

Part (a) of this exercise assigns an involutive element to each idempotent element of R.
If 2 is invertible in R (that is, if the element 2 · 1R has a multiplicative inverse), then this

1To make this more rigorous: If we had 2k · 5
12
∈ Z for some k ∈ N, then we would have 12 | 2k · 5, which

would entail that 3 | 12 | 2k · 5, and thus 3 would appear as a factor in the prime factorization of 2k · 5.
But this is absurd. Hence, 2k · 5

12
∈ Z cannot hold. Similarly, 3k · 5

12
∈ Z cannot hold.

Darij Grinberg 2 darij.grinberg@drexel.edu
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assignment is a bijection (as can be easily derived from part (b)). Note that this assignment,
when applied to a matrix ring Rn×n, is exactly the assignment you would expect from the
geometric point of view: To the orthogonal projection on a hyperplane H, it assigns the
reflection in the hyperplane H. Part (c) shows that we cannot drop the “2 is cancellable”
condition in part (b).

2.3 Solution

...

3 Exercise 3

3.1 Problem

In this exercise, we shall see how idempotent elements are responsible for rings decomposing
as direct products.

Let R be a ring, and let e be an idempotent element of R.

(a) Show that 1− e ∈ R is again idempotent.

Now, assume that R is commutative.

(b) Show that the principal ideal eR is itself a ring, with addition and multiplication
inherited from R and with zero 0R and with unity e. (This makes eR a subring of R
in the sense of [DF], but not in our sense, since its unity is not generally the unity of
R.)

(c) Show that the same holds for the principal ideal (1− e)R (except that its unity will
be 1− e instead of e).

(d) Consider the map

f : (eR)× ((1− e)R)→ R,

(a, b) 7→ a+ b.

Prove that this map f is a ring isomorphism.

3.2 Remark

Part (d) of this exercise shows that if a commutative ring R has an idempotent element e,
then R can be decomposed (up to isomorphism) as a direct product A × B of two rings A
and B (namely, A = eR and B = (1− e)R). If e is not one of the two trivial idempotents 0
and 1, then these two rings A and B will be nontrivial, so the decomposition really deserves
its name.2

2As an example, take R = Z/6Z, and let e be the idempotent element 3 = 3+ 6Z of R (this is idempotent
since 32 = 9 ≡ 3 mod 6 and thus 3

2
= 32 = 3). Then, eR =

{
0, 3
} ∼= Z/2Z and (1− e)R ={

0, 2, 4
} ∼= Z/3Z. Hence, the ring isomorphism R ∼= (eR) × ((1− e)R) becomes the ring isomorphism

Z/6Z ∼= (Z/2Z)× (Z/3Z) that we have seen in class (as an instance of the Chinese Remainder Theorem).

Darij Grinberg 3 darij.grinberg@drexel.edu



Solutions to homework set #1 page 4 of 9

Conversely, any direct product of two nontrivial rings has nontrivial idempotents: If R
and S are two rings, then (1R, 0S) and (0R, 1S) are two idempotent elements of the direct
product R× S.

Parts (b), (c) and (d) of the exercise can be generalized somewhat: Instead of requiring
R to be commutative, it suffices to require that er = re for all r ∈ R. We cannot, how-
ever, drop this requirement altogether (otherwise, matrix rings would decompose as direct
products – as they have lots of idempotent elements –, but typically they don’t).

3.3 Solution

...

4 Exercise 4

4.1 Problem

In set theory, the symmetric difference of two sets A and B is defined to be the set (A ∪B)\
(A ∩B) = (A \B) ∪ (B \ A). This symmetric difference is denoted by A4B.

Now, let S be any set. Let P (S) denote the power set of S (that is, the set of all subsets
of S). It is easy to check that the following ten properties hold:

A4B = B 4 A for any sets A and B;
A ∩B = B ∩ A for any sets A and B;

(A4B)4 C = A4 (B 4 C) for any sets A, B and C;
(A ∩B) ∩ C = A ∩ (B ∩ C) for any sets A, B and C;

A4∅ = ∅4 A = A for any set A;
A4 A = ∅ for any set A;
A ∩ S = S ∩ A = A for any subset A of S;
∅ ∩ A = A ∩∅ = ∅ for any set A;

A ∩ (B 4 C) = (A ∩B)4 (A ∩ C) for any sets A, B and C;
(A4B) ∩ C = (A ∩ C)4 (B ∩ C) for any sets A, B and C.

Therefore, P (S) becomes a commutative ring, where the addition is defined to be the
operation 4, the multiplication is defined to be the operation ∩, the zero is defined to be
the set ∅, and the unity is defined to be the set S. (The ten properties listed above show
that the axioms of a commutative ring are satisfied for (P (S) ,4,∩,∅, S). In particular,
the sixth property shows that every subset A of S has an additive inverse – namely, itself.
Of course, it is unusual for an element of a commutative ring to be its own additive inverse,
but in this example it happens all the time!)

The commutative ring P (S) has the property that a · a = a for every a ∈ P (S). (This
simply means that A ∩ A = A for every A ⊆ S.) Rings that have this property are called
Boolean rings . (Of course, P (S) is the eponymic example for a Boolean ring; but there are
also others.)

(a) Prove that the ring P (S) is isomorphic to the direct product (Z/2Z)S =
∏
s∈S

(Z/2Z).

Darij Grinberg 4 darij.grinberg@drexel.edu
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(b) Let F be the set of all finite subsets of S. Prove that F is an ideal of P (S).

(c) Assume that S is infinite. Prove that the ideal F is not principal.

(d) Instead, assume that S is finite. Prove that every ideal of P (S) is principal.

[Hint: For part (d), let I be an ideal of P (S), and pick a subset T ∈ I of largest size.
Argue that each subset of T must also belong to I. Conclude that every set in I must be a
subset of T .]

4.2 Solution

...

5 Exercise 5

5.1 Problem

Now we shall study Boolean rings in general.
A Boolean ring means a ring R such that every a ∈ R satisfies a2 = a (that is, every

a ∈ R is idempotent). (Keep in mind that rings must have a 1 according to our definition.)
Let R be a Boolean ring. Prove the following:

(a) We have 2a = 0 for each a ∈ R.

(b) We have −a = a for each a ∈ R.

(c) The ring R is commutative.

(d) If R is finite, then R ∼= (Z/2Z)n for some n ∈ N.

[Hint: In part (a), use a2 = a and (a+ 1)2 = a + 1. In part (c), expand (a+ b)2

(but don’t use the binomial formula, since you don’t know yet that ab = ba). Finally, for
part (d), use strong induction on |R| as follows: Pick some e ∈ R that is distinct from
0 and 1 (if no such e exists, the claim is obvious). Then, e is idempotent, so Exercise 3
(d) decomposes the ring R as a direct product of two smaller rings. You can use without
proof that direct products are associative up to isomorphism (so that A1×A2× · · ·×Am

∼=
(A1 × A2 × · · · × Ak)× (Ak+1 × Ak+2 × · · · × Am) for any rings A1, A2, . . . , Am).]

5.2 Solution

...

Darij Grinberg 5 darij.grinberg@drexel.edu
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6 Exercise 6

6.1 Problem

Let A be the 2× 2-matrix
(
0 1
1 1

)
over Z. Consider also the identity matrix I2 ∈ Z2×2.

Let F be the subset

{aA+ bI2 | a, b ∈ Z} =
{(

b a
a a+ b

)
| a, b ∈ Z

}
of the matrix ring Z2×2.

(a) Prove that A2 = A+ I2.

(b) Prove that the set F is a commutative subring of Z2×2.

Let (f0, f1, f2, . . .) be the Fibonacci sequence. This is the sequence of integers defined
recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

The first entries of this sequence are

n 0 1 2 3 4 5 6 7 8 9 10 11 12
fn 0 1 1 2 3 5 8 13 21 34 55 89 144

.

(c) Prove that An = fnA+ fn−1I2 for all positive integers n.

(d) Prove that fn+m = fnfm+1 + fn−1fm for all positive integers n and all m ∈ N.

Now, define a further matrix B ∈ F by B = (−1)A+ 1I2 = I2 − A.

(e) Prove that B2 = B + I2 and Bn = fnB + fn−1I2 for all positive integers n.

(f) Prove that An −Bn = fn (A−B) for all n ∈ N.

(g) Prove that fd | fdn for any nonnegative integers d and n.

[Hint: In part (b), don’t forget to check commutativity! It is not inherited from Z2×2,
since Z2×2 is not commutative.

One way to prove (d) is by comparing the (1, 1)-th entries of the two (equal) matrices
AnAm+1 and An+m+1, after first using part (c) to expand these matrices.

For part (g), compare the (1, 1)-th entries of the matrices Ad−Bd and Adn−Bdn, after
first proving that Ad −Bd | Adn −Bdn in the commutative ring F . Note that divisibility is
a tricky concept in general rings, but F is a commutative ring, which lets many arguments
from the integer setting go through unchanged.]

6.2 Solution

...
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7 Exercise 7

7.1 Problem

Let R be a ring. An element a ∈ R is said to be nilpotent if there exists an n ∈ N such that
an = 0. (For example, the residue class 6 in Z/8Z is nilpotent, since its 3-rd power is 0.)

(a) If a and b are two nilpotent elements of R satisfying ab = ba, then prove that a+ b is
nilpotent as well.

(b) Find a counterexample to part (a) if we don’t assume ab = ba.

(c) Assume that the ring R is commutative. Let N be the set of all nilpotent elements of
R. Prove that N is an ideal of R.

7.2 Remark

The ideal N in part (c) of this exercise is known as the nilradical of R.

7.3 Solution

...

8 Exercise 8

8.1 Problem

Let R be a ring. Prove the following:

(a) Let I and J be two ideals of a ring R. Then, I + J and I ∩ J and IJ are ideals of R
as well.

(b) Let I and J be two ideals of a ring R. Then, IJ ⊆ I ∩ J ⊆ I ⊆ I + J and IJ ⊆
I ∩ J ⊆ J ⊆ I + J .

(c) The set of all ideals of R is a monoid with respect to the binary operation +, with
neutral element {0R} = 0R. That is,

(I + J) +K = I + (J +K) for any three ideals I, J,K of R;
I + {0R} = {0R}+ I = I for any ideal I of R.

(d) The set of all ideals of R is a monoid with respect to the binary operation ·, with
neutral element R = 1R. That is,

(IJ)K = I (JK) for any three ideals I, J,K of R;
IR = RI = I for any ideal I of R.

[Hint: You can be terse here, as there is a lot to show, much of it straightforward. I
recommend using the notion of “(I, J)-products” from lecture 4; it is often easier to talk
abstractly about sums of (I, J)-products than to write them out as i1j1 + i2j2 + · · ·+ ikjk.
For the proof of (IJ)K = I (JK), I recommend first showing that any (IJ,K)-product
belongs to I (JK).]
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8.2 Solution

...

9 Exercise 9

9.1 Problem

Let R be a ring. Let a and b be two elements of R. Prove the following: If c is an inverse
of 1− ab, then 1 + bca is an inverse of 1− ba.

9.2 Remark

This yields a well-known result in functional analysis; see https://math.stackexchange.
com/questions/79217 .

9.3 Solution

...

10 Exercise 10

10.1 Problem

Let F be a field.

(a) Prove that if a, b ∈ F satisfy a2 = b2, then a = b or a = −b.

An element η ∈ F is called a square if there exists some α ∈ F such that η = α2. For
example, the squares in Z/7Z are the four elements 0, 1, 2, 4. (Indeed, this is equivalent to
the answer to Exercise 7 (a) on homework set #0.)

From now on, assume that 2 ·1F 6= 0F (that is, 1F +1F 6= 0F ). Note that this is satisfied
whenever F = Z/pZ for a prime p > 2 (but also for various other finite fields), but fails
when F = Z/2Z.

(b) Prove that a 6= −a for every nonzero a ∈ F .

From now on, assume that F is finite.

(c) Prove that the number of squares in F is
1

2
(|F |+ 1).

(d) Conclude that |F | is odd.

[Hint: For part (c), argue that each nonzero square in F can be written as α2 for
exactly two α ∈ F .]

Darij Grinberg 8 darij.grinberg@drexel.edu

https://math.stackexchange.com/questions/79217
https://math.stackexchange.com/questions/79217


Solutions to homework set #1 page 9 of 9

10.2 Solution

...
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