DREXEL UNIVERSITY, DEPARTMENT OF MATHEMATICS

Math 533: Abstract Algebra I,
Winter 2021: Homework 1

Please solve at most 5 of the 10 problems!”

Darij Grinberg
February 7, 2021

1 EXERCISE 1

1.1 PROBLEM

Fix an integer m. An m-integer shall mean a rational number r such that there exists a
k € N satisfying m*r € Z.
For example:

e Each integer r is an m-integer (since m*r € Z for k = 0).

5 )
e The rational number T is a 6-integer (since 6" - 5 € Z for k = 2), but neither a

2-integer nor a 3-integer (since multiplying it by a power of 2 will not “get rid of” the

*I recommend solving as many problems as you can and wish, but I will only grade and score 5 solutions
per submission (and if you submit more, I get to pick which ones I grade).
Results stated in class, and claims of previous problems (even if you did not solve these previous prob-
lems), can be used without proof. For example, in solving Problem 5, you can use the result of Problem
2 without proof.
I expect approximately the level of detail that I give in class. Purely straightforward arguments (like
checking the ring axioms for a direct product of rings) need not be spelled out; I only expect a note of
their necessity.
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prime factor 3 in the denominator, and vice versaED.
e The l-integers are the integers (since 1%r = r for all 7).
e Every rational number r is a O-integer (since 0Fr € Z for k = 1).

Let R,, denote the set of all m-integers. Prove that R,, is a subring of Q.

1.2 REMARK

The ring R,, is an example of a ring “between Z and Q” (in the sense that Z is a subring of Rm,
while R,, is a subring of Q). Note that Ry = Z and Ry = Q, whereas Ry = Ry = Rg = is
the ring of all rational numbers that can be written in the form a/2* with a € Z and k € N.

1.3 SOLUTION

2 EXERCISE 2

2.1 PROBLEM

Let R be a ring.
An element a of R is said to be idempotent if it satisfies a® = a.
An element a of R is said to be involutive if it satisfies a? = 1.

(a) Let a € R. Prove that if a is idempotent, then 1 — 2a is involutive.

(b) Now, assume that 2 is cancellable in R; this means that if u and v are two elements
of R satisfying 2u = 2v, then u = v. Prove that the converse of the claim of part (a)
holds: If @ € R is such that 1 — 2a is involutive, then a is idempotent.

(c) Now, let R = Z/4Z. Find an element a € R such that 1 — 2a is involutive, but a is
not idempotent.

2.2 REMARK

The idempotent elements of R are 0 and 1. The involutive elements of R are 1 and —1. A
matrix ring like R"*™ usually has infinitely many idempotent elements (viz., all projection
matrices on subspaces of R") and infinitely many involutive elements (viz., all matrices A
satisfying A% = I,; for instance, all reflections across hyperplanes are represented by such
matrices).

Part (a) of this exercise assigns an involutive element to each idempotent element of R.
If 2 is invertible in R (that is, if the element 2 - 1z has a multiplicative inverse), then this

5
ITo make this more rigorous: If we had 2% - 2 € 7Z for some k € N, then we would have 12 | 2 . 5, which
would entail that 3 | 12 | 2% - 5, and thus 3 would appear as a factor in the prime factorization of 2¥ - 5.

5 5
But this is absurd. Hence, 2% - IE € Z cannot hold. Similarly, 3% - IE € Z cannot hold.

Darij Grinberg 2 darij.grinberg@drexel.edu



Solutions to homework set #1 page 3 of Ig

assignment is a bijection (as can be easily derived from part (b)). Note that this assignment,
when applied to a matrix ring R"*", is exactly the assignment you would expect from the
geometric point of view: To the orthogonal projection on a hyperplane H, it assigns the
reflection in the hyperplane H. Part (c) shows that we cannot drop the “2 is cancellable”
condition in part (b).

2.3 SOLUTION

3 EXERCISE 3

3.1 PROBLEM

In this exercise, we shall see how idempotent elements are responsible for rings decomposing
as direct products.
Let R be a ring, and let e be an idempotent element of R.

(a) Show that 1 —e € R is again idempotent.
Now, assume that R is commutative.

(b) Show that the principal ideal eR is itself a ring, with addition and multiplication
inherited from R and with zero O and with unity e. (This makes eR a subring of R
in the sense of [DE], but not in our sense, since its unity is not generally the unity of
R.)

(c) Show that the same holds for the principal ideal (1 — e) R (except that its unity will
be 1 — e instead of e).

(d) Consider the map

f:(eR)x((1—€e)R)— R,
(a,b) — a+b.

Prove that this map f is a ring isomorphism.

3.2 REMARK

Part (d) of this exercise shows that if a commutative ring R has an idempotent element e,
then R can be decomposed (up to isomorphism) as a direct product A x B of two rings A
and B (namely, A = eR and B = (1 — ¢) R). If e is not one of the two trivial idempotents 0
and 1, then these two rings A and B will be nontrivial, so the decomposition really deserves
its name ]

2As an example, take R = Z/6Z, and let e be the idempotent element 3 = 3 + 6Z of R (this is idempotent
since 32 = 9 = 3 mod 6 and thus 3° = 32 = 3). Then, eR = {0,3} = Z/2Z and (1—¢)R =
{0,2,4} = Z/3Z. Hence, the ring isomorphism R = (eR) x ((1 — e) R) becomes the ring isomorphism
7/67 = (Z/27) x (Z/37Z) that we have seen in class (as an instance of the Chinese Remainder Theorem).
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Conversely, any direct product of two nontrivial rings has nontrivial idempotents: If R
and S are two rings, then (1g,0g) and (Og, lg) are two idempotent elements of the direct
product R x S.

Parts (b), (c) and (d) of the exercise can be generalized somewhat: Instead of requiring
R to be commutative, it suffices to require that er = re for all » € R. We cannot, how-
ever, drop this requirement altogether (otherwise, matrix rings would decompose as direct
products — as they have lots of idempotent elements —, but typically they don’t).

3.3 SOLUTION

4 BEXERCISE 4

4.1 PROBLEM

In set theory, the symmetric difference of two sets A and B is defined to be the set (AU B)\
(ANB) = (A\ B)U (B\ A). This symmetric difference is denoted by A A B.

Now, let S be any set. Let P (.S) denote the power set of S (that is, the set of all subsets
of S). It is easy to check that the following ten properties hold:

AANB=BAA for any sets A and B,

ANB=BnNA for any sets A and B;
(AAB)AC=AAN(BAC) for any sets A, B and C,
(ANB)NC=An(BNC(C) for any sets A, B and C

ANG=0ANA=A for any set A;

ANA=02 for any set A;

ANS=5SNA=A for any subset A of S;

GNA=ANg =0 for any set A;
AN(BAC)=(ANB)A(ANC) for any sets A, B and C
(AAB)NC=(ANC)A(BNCQC) for any sets A, B and C.

Therefore, P (S) becomes a commutative ring, where the addition is defined to be the
operation A\, the multiplication is defined to be the operation N, the zero is defined to be
the set @, and the unity is defined to be the set S. (The ten properties listed above show
that the axioms of a commutative ring are satisfied for (P (S5),A,N, @,.S). In particular,
the sixth property shows that every subset A of S has an additive inverse — namely, itself.
Of course, it is unusual for an element of a commutative ring to be its own additive inverse,
but in this example it happens all the time!)

The commutative ring P (S) has the property that a - a = a for every a € P (S). (This
simply means that AN A = A for every A C S.) Rings that have this property are called
Boolean rings. (Of course, P (S) is the eponymic example for a Boolean ring; but there are
also others.)

(a) Prove that the ring P (S) is isomorphic to the direct product (Z/22)° = [] (Z/2Z).

seS
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(b) Let F be the set of all finite subsets of S. Prove that F' is an ideal of P (5).
(c) Assume that S is infinite. Prove that the ideal F' is not principal.

(d) Instead, assume that S is finite. Prove that every ideal of P (.S) is principal.

[Hint: For part (d), let / be an ideal of P (S), and pick a subset T" € I of largest size.
Argue that each subset of T' must also belong to I. Conclude that every set in I must be a

subset of T|

4.2 SOLUTION

5 EXERCISE 5

5.1 PROBLEM

Now we shall study Boolean rings in general.
A Boolean ring means a ring R such that every a € R satisfies a®> = a (that is, every
a € R is idempotent). (Keep in mind that rings must have a 1 according to our definition.)
Let R be a Boolean ring. Prove the following:

(a) We have 2a = 0 for each a € R.
(b) We have —a = a for each a € R.
(c) The ring R is commutative.

(d) If R is finite, then R = (Z/27)" for some n € N.

[Hint: In part (a), use > = @ and (a+1)°> = a + 1. In part (c), expand (a + b)>
(but don’t use the binomial formula, since you don’t know yet that ab = ba). Finally, for
part (d), use strong induction on |R| as follows: Pick some e € R that is distinct from
0 and 1 (if no such e exists, the claim is obvious). Then, e is idempotent, so Exercise 3
(d) decomposes the ring R as a direct product of two smaller rings. You can use without

proof that direct products are associative up to isomorphism (so that A; x Ay x -+ x A, =
(A1 X Ag X -+ X Ag) X (Ags1 X Agra X -+ X Ap,) for any rings Ay, As, ..., An).]

5.2 SOLUTION

Darij Grinberg ) darij.grinberg@drexel.edu
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6 EXERCISE 6

6.1 PROBLEM

Let A be the 2 x 2-matrix ((1) 1) over Z. Consider also the identity matrix I, € Z2*2.
Let F be the subset

b a
{aA—i—b[g]a,bEZ}_{(a a+b> |a,b€Z}

of the matrix ring Z2*2.

(a) Prove that A2 = A+ I,.

(b) Prove that the set F is a commutative subring of Z?*2.

Let (fo, f1, fa,...) be the Fibonacci sequence. This is the sequence of integers defined
recursively by

fo=0, fi=1, and fn= fu_1+ fno foralln > 2.

The first entries of this sequence are

n|0|1]2/3]4|5]6| 7 |8]9]10]11] 12
fonlO]1 1123|5813 |21 |34 55|89 144

(c) Prove that A" = f, A+ f,_11> for all positive integers n.
(d) Prove that f,1m = fufmi1 + fao1fm for all positive integers n and all m € N.

Now, define a further matrix B € F by B= (-1) A+ 1, = [, — A.

(e) Prove that B> = B + I, and B" = f,,B + f,,_1I, for all positive integers n.
(f) Prove that A® — B" = f,, (A — B) for all n € N.

(g) Prove that f; | fa4, for any nonnegative integers d and n.

[Hint: In part (b), don’t forget to check commutativity! It is not inherited from Z2*?
since Z2*? is not commutative.

One way to prove (d) is by comparing the (1, 1)-th entries of the two (equal) matrices
A" A and AL after first using part (c) to expand these matrices.

For part (g), compare the (1,1)-th entries of the matrices A? — B? and A% — B after
first proving that A? — B?| A% — B9 in the commutative ring F. Note that divisibility is
a tricky concept in general rings, but F is a commutative ring, which lets many arguments
from the integer setting go through unchanged.]

6.2 SOLUTION
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7 EXERCISE 7

7.1 PROBLEM

Let R be a ring. An element a € R is said to be nilpotent if there exists an n € N such that
a™ = 0. (For example, the residue class 6 in Z/8Z is nilpotent, since its 3-rd power is 0.)

(a) If @ and b are two nilpotent elements of R satisfying ab = ba, then prove that a + b is
nilpotent as well.

(b) Find a counterexample to part (a) if we don’t assume ab = ba.
(c) Assume that the ring R is commutative. Let N be the set of all nilpotent elements of

R. Prove that N is an ideal of R.

7.2 REMARK

The ideal N in part (c) of this exercise is known as the nilradical of R.

7.3 SOLUTION

8 EXERCISE 8

8.1 PROBLEM

Let R be a ring. Prove the following:

(a) Let I and J be two ideals of a ring R. Then, I + J and I N J and IJ are ideals of R
as well.

(b) Let I and J be two ideals of a ring R. Then, IJ CINJ CI C I+ Jand IJ C
INJCJCI+J.

(c) The set of all ideals of R is a monoid with respect to the binary operation +, with
neutral element {0z} = OR. That is,
(I+J)+K=1+(J+K) for any three ideals I, J, K of R;
I+{0g} ={0r}+1=1 for any ideal I of R.

(d) The set of all ideals of R is a monoid with respect to the binary operation -, with
neutral element R = 1R. That is,

(IJ)K =1(JK) for any three ideals I, J, K of R;
IR=RI=1 for any ideal I of R.

[Hint: You can be terse here, as there is a lot to show, much of it straightforward. I
recommend using the notion of “(I, J)-products” from lecture 4; it is often easier to talk
abstractly about sums of (7, J)-products than to write them out as 4171 + i2js + - - - + ik Jk-
For the proof of (IJ)K = I (JK), I recommend first showing that any (/.J, K)-product
belongs to I (JK).]
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8.2 SOLUTION

9 EXERCISE 9

9.1 PROBLEM

Let R be a ring. Let a and b be two elements of R. Prove the following: If ¢ is an inverse
of 1 — ab, then 1 + bca is an inverse of 1 — ba.

9.2 REMARK

This yields a well-known result in functional analysis; see https://math.stackexchange.
com/questions/79217|.

9.3 SOLUTION

10 EXERCISE 10
10.1 PROBLEM
Let F' be a field.
(a) Prove that if a,b € F satisfy a® = b?, then a = b or a = —b.

An element n € F is called a square if there exists some « € F such that n = o?. For
example, the squares in Z/7Z are the four elements 0,1,2,4. (Indeed, this is equivalent to
the answer to Exercise 7 (a) on homework set #0.)

From now on, assume that 2-1r # Op (that is, 1p+ 1p # Or). Note that this is satisfied
whenever F' = Z/pZ for a prime p > 2 (but also for various other finite fields), but fails
when F' = Z/27.

(b) Prove that a # —a for every nonzero a € F.

From now on, assume that F' is finite.
. 1
(c) Prove that the number of squares in F is 5 (|F|+1).

(d) Conclude that |F| is odd.

[Hint: For part (c), argue that each nonzero square in F can be written as o for
exactly two a € F'|
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10.2 SOLUTION
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