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Math 533: Abstract Algebra I,
Winter 2021: Homework 0

Darij Grinberg
January 16, 2023

1 EXERCISE 1

1.1 PROBLEM

How many semesters (or quarters) of abstract algebra have you taken (include Galois theory,
representation theory, group theory)?

1.2 SOLUTION SKETCH

I've gotten answers ranging from 1 to 5.

2 EXERCISE 2

2.1 PROBLEM

How familiar are you with the notions of

1. ring;
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10.
11.
12.

. normal subgroup of a group;

Jordan canonical form (aka Jordan normal form) of a matrix;
quotient vector space V/W;

. exact sequence;

determinant;

Cayley—Hamilton theorem:;

. greatest common divisor of two (univariate) polynomials;
complex number;

Gaussian integer;

primitive n-th root of unity;

discrete Fourier transform?

(Write in a number between 0 (for “never seen it”) and 5 (for “remember the important

properties and could recall their proofs in 15 minutes without looking up”) for each one.)

2.2 SOLUTION SKETCH

Here are the answers I got, with some comments of mine:

1.

ring: 4, 0, 5, 3,4, 5,3, 3, 3,5, 5, 1.

Some spread here (but hopefully not so much any more now).

. normal subgroup of a group: 3, 3, 3, 3, 4, 2, 2, 3, 2, 5, 5, 2.

I asked this one to assess how much you remembered of group theory. I don’t actually
think normal subgroups will appear in this course (except in the trivial sense: every
subgroup of an abelian group is normal).

Jordan canonical form (aka Jordan normal form) of a matrix: 4, 5, 5, 5, 5, 4, 4, 3, 3,
5, 5, 4.

Nice! This should make the rational canonical form (which is a generalization of the
Jordan normal form to fields that are not algebraically closed) much less mysterious.

quotient vector space V/W: 3,0,0,1,3,1,1,1,2,5, 1, 0.

Had you done your undergrad in Germany, you would have seen it in your first semester
)

Quotient vector spaces are “like Z/n but for vector spaces”. We’ll soon learn about

quotient rings and quotient modules; quotient vector spaces are a particular case of
the latter.

. exact sequence: 1, 2,0,0,2,0,1,0,1, 4,1, 0.

If exact sequences are to appear in this course (and that’s an “if”), it will be the
short ones only. Their proper habitat is courses on homological algebra and algebraic
topology.
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6.

10.

11.

12.

determinant: 5, 5, 5, 5, 5, 5,4, 4,4, 5, 5, 5.
Reassuring!
Cayley—Hamilton theorem: 4, 4, 5, 4, 5,4, 4,1, 3,5, 5, 4.

I don’t expect anyone to remember the proof — at least not the algebraic one.

. greatest common divisor of two (univariate) polynomials: 4, 1, 3, 4, 3, 4,4, 4, 5, 5, 2,

3.

This will come useful to us pretty soon.

complex number: 5, 3.5, 5,4, 5,5, 4,4, 4,5,5, 4.

Very nice.

Gaussian integer: 0, 2,5, 2,1,1,1,0,4, 3, 1, 1.

Should be more now. The Gaussian integers are one of the nicest rings around as far
as good properties are concerned, and we’ll soon see how they can be used.

primitive n-th root of unity: 3, 3, 5, 2, 4, 5, 4, 3, 3, 5, 0, 3.

There are conflicting definitions of a “primitive n-th root of unity” in the literature.
The one I prefer (alas, not the one in Dummit and Foote) is the following: A primitive
n-th root of unity in a field means an element x of the field such that ™ = 1 while the
n — 1 powers o', 2%, ... 2" ! are distinct from 1. For example, the imaginary unit 4
of the field C is a primitive 4-th root of unity.

discrete Fourier transform: 1, 0, 3, 1, 3,1, 2, 1, 0, 5, 0, 2.

Not sure if I'll get there in this course, but it is a nice application of the n-th roots of
unity.

(a)
(b)
(c)

3 EXERCISE 3

3.1 PROBLEM
Factor the polynomial a® + b® + ¢ — 3abc.
Factor the polynomial bc (b — ¢) + ca (¢ — a) + ab(a — b).

How general have your methods been? Did you use tricks specific to the given poly-
nomials, or do you have an algorithm for factoring any polynomial (say, with integer
coefficients)?
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3.2 SOLUTION SKETCH

(a) The answer is
a® 4+ b* + ¢ — 3abc = (a + b+ c) (a® + b* + ¢ — bc — ca — ab) .

This is if you want to factor the polynomial over Z (i.e., into polynomials with integer
coefficients). Over C, you can factor it further:

a®+b° +¢* = 3abc = (a+ b+ c) (a+ Cb+ ¢%c) (a+ b+ (o),

where ¢ = >™/3 = _1+T\/§Z

(b) The answer is

be(b—c)+ca(c—a)+ab(a—b)=(a—0b)(a—c)(b—rc).

(c) All of the above factorizations can be found using specialized tricks:

For instance, in part (a), it helps to rewrite a® + b® + ¢3 — 3abc in terms of the three
elementary symmetric polynomials e, = a+b+c, ea = ab+ac+bc and ez = abe (it is a famous
result of Gauss that any symmetric polynomial in a, b, c can be expressed as a polynomial
in ey, €9, ez, and there is an algorithm that finds such an expression); once this is done, the
a + b+ c factor immediately leaps to the eye. The other factor, a® 4+ b? + ¢ — bc — ca — ab,
is irreducible over Z (you can check this easily by substituting distinct constants for b and
¢ and checking that the resulting quadratic in a has no real roots); over C you can factor it
using the usual methods for solving quadratic equations (treating b and ¢ as constants).

I discussed ways of finding the factorization in (b) on https://math.stackexchange.
com/a/3127648// . The simplest one is to observe that the polynomial vanishes for b = ¢
and therefore must be divisible by b — ¢. (Do you see why?)

The more interesting question is how to factor polynomials in general. There is no fully
general algorithm for factoring polynomials over an arbitrary field, even if the polynomials
are univariate (see https://mathoverflow.net/a/350877/ for a brief outline). However,
Kronecker found an algorithm for factoring polynomials in any number of variables over
Z. A brief outline of the algorithm can be found in https://math.stackexchange.com/a/
3127648/|, but you may want to find it yourself. It is based on the following two ideas:

1. If f € Z[z] is a polynomial in one variable x with integer coefficients, and if g € Z [z]
is a polynomial that divides f in Z [z], then the integer g (n) divides f (n) for each
n € Z. Unless f = 0, there are only finitely many n € Z for which f (n) = 0.

2. If f € Z]xy,29,...,2,] is a polynomial in n > 1 variables x,z,,...,x, with in-
teger coefficients, and if ¢ € Z[x1,%s,...,z,] is a polynomial that divides f, then
the polynomial g (xl, To, ... Tp_1, xﬁ_l) divides f (xl, Lo, .oy Tp_1, xfb_l) in the ring

Z|xy, 19, ..., 2, 1] for any k € N. (Essentially, this is saying that setting x, := 2% _,

does not break divisibility.) Can you find a sufficiently high & that ensures the converse
also holds?
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4 BEXERCISE 4

4.1 PROBLEM
Simplify /2 + /5 + v/2 — /5.

4.2 SOLUTION SKETCH

The answer is 1.

You can find this numerically, but how to prove it?

First proof: One way is to set u = V245 and v = v/2 — /5. We must then show
that w +v = 1. The definitions of u and v yield ©* = 2 4+ /5 and v* = 2 — /5, so that
ud 4 v = (2+\/5) + (2—\/5) =4 and v?v® = (2+\/§) (2—\/5) =4 —5 = —1. Hence,
(uv)3 = w303 = —1, so that uv = —1 (here we are taking the cube root, which is unique

because u and v are real numbers). Now, the binomial formula yields

3_ .3 2 2., ,3_ .3, 3 4
(u+v)” =u’ + 3uv+3uv” +v° =u’ +v° +3 uvl (u+v)=4-3(u+v).
=4 =—

In other words, u + v is a solution of the cubic equation z*> = 4 — 3z. How do you
solve this cubic equation? If you try to apply Cardano’s formulal you get right back to the
expression f/ 2+5 + {0’/ 2 — /5 you started with, which is not very useful. However, if
you already know what you are looking for (viz., you want to show that v + v = 1), you
already know that 1 is a root of the cubic #* — (4 — 3z); polynomial division then shows
that 2 — (4 —3z) = (x — 1) (x + 2% +4), and this entails that 1 is the only real root of
this cubic (since the factor x + 2 + 4 has no real roots). In other words, 1 is the only real
solution of the cubic equation 2® = 4 — 3z. Since u + v is a solution of this equation, we
thus conclude that v+ v =1, qed.

Remark: If you have no computer to tell you that the answer is conspicuously close to
1, you can still find it using the rational root test, once you suspect that u + v might be
rational.

1 3
Second proof: A straightforward computation shows that (5 (1 + \/5)) = 2+ /5.

1 1
Thus, V24 V5 = 5 (1 + \/5) Similarly, v/2 — /5 = 5 (1 — \/5) Adding the latter two

equalities together yields {)’/2 +v5+ {’/2 — V5 = (1 + \/5) + % (1 — \/5) =1, qed.

1
Remark: Guessing the identity (5 (1 + \/5)> = 2+ /5 is far from straightforward,

WD | =

however!
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5 EXERCISE 5

5.1 PROBLEM

Let n € N. Let aq,as,...,a, be n integers, and let by, bs, ..., b, be n further integers. The
Gaussian elimination tells you how to solve the system

a1y + Aoy + - - + apy, = 0;
bll'l—f—bgl'g—f—"'—l—bnl'nzo
for n unknowns i, xs,...,x, € Q. The answer, in general, will have the form “all Q-

linear combinations (i.e., linear combinations with rational coefficients) of a certain bunch
of vectors”. (More precisely, “a certain bunch of vectors” are n — 2 or n — 1 or n vectors with

rational coordinates, depending on the rank of the 2 x n-matrix (Zl ZQ o Z” )
1 02 - by
Now, how can you solve the above system for n unknowns =1, z,...,x, € Z 7 Will the

answer still be “all Z-linear combinations (i.e., linear combinations with integer coefficients)
of a certain bunch of vectors”?
What about more general systems of linear equations to be solved for integer unknowns?

5.2 SOLUTION SKETCH

Yes, the answer will still be “all Z-linear combinations (i.e., linear combinations with integer
coefficients) of a certain bunch of vectors”. We will see why after we have introduced the
Smith normal form (a variant of Gaussian elimination for PIDs instead of fields).

6 EXERCISE 6

6.1 PROBLEM

You are given a 4 x 4-grid of lamps, each of which is either on or off. For example, writing
1 for “on” and 0 for “oft”, it may look as follows:

010

1
0
1
1

) Y QS [

110
010
1711

In a single move, you can toggle any lamp (i.e., turn it on if it was off, or turn it off if it
was on); however, this will also toggle every lamp adjacent to it. (“Adjacent to it” means
“having a grid edge in common with it”; thus, a lamp will have 2 or 3 or 4 adjacent lamps.)
For example, if we toggle the second lamp (from the left) in the topmost row in the above
example grid, then we obtain

0
1
1

k==
—| oo -

1
0
1
1

0

(where the boldfaced numbers correspond to the lamps that have been affected by the move).
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Assume that all lamps are initially off. Can you (by a strategically chosen sequence of
moves) achieve a state in which all lamps are on?

[Remark: You can play this game (albeit with a 5 x 5-grid) on https://codepen.io/
wintlu/pen/ZJJLGzZ .|

6.2 SOLUTION SKETCH

This is easier than I thought — four moves suffice:

0/(0(01]0 1/1/1/0 1117110 111711 11111
0/(0(01]0 . 071010 _ 11,00 . 11111 - 111111
00|00 0/0]010 1/1(0(0 111(0|1 11111
00|00 0/0]010 10,00 110[01]0 11111

The case of a 5 x 5-grid is much less obvious, but the answer is still that the desired
state can be achieved. The same holds for any n x m-grid, and more generally for any (finite
undirected) graph grid. This is an illustration of linear algebra over the finite field Z/2
(that is, linear algebra where the scalars are not real numbers but elements of Z/2). Indeed,
a state of our grid can be viewed as a vector over Z/2 (that is, a vector with entries in
7,/2); then, a move corresponds to the addition of a certain fixed vector to it. See §6.1.4 in
https://www.cip.ifi.lmu.de/ grinberg/t/19s/notes.pdf for how to use this model to
solve the problem in general. (We'll learn the prerequisites for that solution soon, although
many of you probably know them already.)

7 EXERCISE 7

7.1 PROBLEM

(a) How many of the numbers 0,1, ...,6 appear as remainders of a perfect square divided
by 7 7

(b) How many of the numbers 0, 1, ..., 13 appear as remainders of a perfect square divided
by 14 7

What about replacing 7 or 14 by n? Can you do better than just squaring them all?
[For example, 3 of the numbers 0,1,...,4 appear as remainders of a perfect square
divided by 5 — namely, the three numbers 0, 1,4.|

7.2 SOLUTION SKETCH

We will use the notation u%n for the remainder obtained when dividing an integer u by a
positive integer n. For example, 16%7 = 2.

(a) The following table shows the remainders of some perfect squares divided by 7:

E 0|1 /2(3[4]5|6|7[8[9]10|11]12 |13
P70 1422410142 |2 |4]1
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You see that these remainders repeat every 7 columns, because (k4 7)* %7 = k*%7 for

every integer k (this follows from (k + 7)2 = k*mod7, which in turn is a consequence
of k+ 7 = kmod7). Thus, we only need to count the remainders obtained from any 7
consecutive integers — for example, from 0, 1,...,6. There are 4 of these remainders (namely,
0,1,2,4).

(b) The following table shows the remainders of some perfect squares divided by 14:

E|0(1]2|314|5|6|7|8|9]10(11]12]13
%14 0149211878112 ]9 |41

As in part (a), we see that there are 8 of these remainders (namely, 0,1,2,4,7,8,9,11).
Remark: We can simplify our counting by observing the symmetry (14 — k)2 %14 =
k*%14 for each integer k (so it suffices to only scan the first 8 squares 0%, 1%,...,7%).

What about the general question: Given a positive integer n, how many of the numbers
0,1,...,n—1 appear as remainders of a perfect square divided by n ? Here is an outline of
a solution:

1. Rewrite the question as “How many elements of the finite ring Z/n are squares?”.
(Here, a square means an element of the form a?, where a € Z/n.)

2. Solve this question when n = p’ for some prime p and some 7 € N. The answers will
be different depending on whether p is 2 or not.

3. Use the Chinese Remainder Theorem to solve the case of general n.

1
Note that the answer will not always be {%—‘ , although we got this answer in both
parts (a) and (b) of the problem.

8 EXERCISE 8

8.1 PROBLEM

Solve the following system of equations:

a2 +b+c=1;
V+cta=1;
Fta+b=1

for three complex numbers a, b, c.

8.2 SOLUTION SKETCH

Let (a,b,c) be a solution. Subtracting the equations a®* +b+c =1 and b* + c+a =1 from

one another, we obtain
aA+b—b—a=0.
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The left hand side of this equation factors as (a — b) (a + b — 1); thus, we have
(@a—=b)(a+b—-1)=0.

In other words,
a—b=0ora+b—1=0.

Similarly, we have
b—c=0o0orb+c—1=0.

Similarly, we have
c—a=0orc+a—1=0.

Thus, we are in one of the following eight cases:

Case 1: Wehavea—b=0and b—c=0and ¢c—a = 0.

Case 2: We havea—b=0andb—c=0and c+a—1=0.

Case 3: We havea—b=0andb+c—1=0and c—a =0.

Case 4: Wehavea —b=0and b+c—1=0and c+a—1=0.

Case 5: Wehavea+b—1=0and b—c=0and ¢ —a =0.

Case 6: Wehavea+b—1=0andb—c=0and c+a—1=0.

Case 7: Wehavea+b—1=0andb+c—1=0and ¢c—a =0.

Case 8: Wehavea+b—1=0andb+c—1=0andc+a—1=0.

In each of the eight cases, we are left with a system of 3 linear equations in 3 unknowns,
which we can solve. Here are the details:

In Case 1, the system of linear equations yields a = b = ¢. Hence, in our original equation
a®+b+c = 1, we can replace all three unknowns by c. Thus, we obtain ¢? 4+ ¢+ c = 1. This
is a quadratic equation in ¢, and its solutions are v/2 — 1 and —v/2 — 1. Hence, we obtain
the solutions

(a,b,c):<\/§—1, V2 -1, \/5—1) and
(a,b,¢) = (—\/5—1, V21, —\/5—1).

Check that these two solutions are indeed solutions of the original system!
1, 1, 1) However, this
2°2°2

does not satisfy the original equation a® + b+ ¢ = 1. Hence, we do not get any solution in
Case 2.

Case 3, too does not contribute any solutions.

In Case 4, the system of linear equations yields a =1 — c and b = 1 — ¢. Hence, in our
original equation a? 4+ b + ¢ = 1, we can replace the unknowns a and b by 1 — ¢. Thus, we
obtain (1 —¢)* + (1 —¢) + ¢ = 1. This is a quadratic equation in ¢, and its solution is 1.
Thus, ¢ = 1 and therefore a =1 —c=1—1 =0 and similarly b = 0. Hence, we obtain the
solution

In Case 2, the system of linear equations yields (a,b,c) = <

(a,b,c) =(0,0,1).

Again, check that this satisfies the original system!
Case 5 does not contribute any solutions.
Cases 6 and 7 contribute the solutions

(a,b,c) = (1,0,0) and (a,b,¢) =(0,1,0),

respectively.
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111

27272

linear equations yield this solution, but it fails to satisfy the original system).
Thus, altogether, our system has the five solutions

(Va-1,v2-1, va-1), (-v2-1, -v2-1, —v2-1),
(1,0,0), (0,1,0), (0,0,1).

Finally, Case 8 contributes the fake solution (a,b,c) = ( ) (in the sense that the

Remark: Systems of polynomial equations in general can be rather hard to solve. The
one in this exercise was chosen to be susceptible to a simple trick (as we have seen above);
but wiggle one of the coefficients a little bit (e.g., replacing one of the three 1’s by a 2), and
the answer gets much more complicated. The fact that all three equations are quadratic
does not save us: A system of quadratic equations can be as complicated as a univariate
equation of arbitrarily high degree.

There is a general way of solving systems of polynomial equations, assuming that you
can solve univariate polynomial equations. This is known as elimination theory, and can be
done either using resultants or using Grobner bases (which we should see near the end of
the course). Note that this is not what we have done in our above solution.

9 EXERCISE 9

9.1 PROBLEM

n
m

The following triangular table shows the binomial coefficients < > forn € {0,1,...,7} and

m e {0,1,...,n}:

k=0
vd
k=1
n=0 — 1 N
k=2
n=1 — 1 1 N
k=3
n=2 — 1 2 1 N
k=4
n=3 — 1 3 3 1 N
k=5
n=4 — 1 4 6 4 1 N
k=6
n=>5 — 1 5 10 10 5 1 N
k=T
n=6 — 1 6 15 20 15 6 1 v
n="7 — 1 7 21 35 35 21 7 1

(This is part of what is known as Pascal’s triangle.)
Now, in this table, let us replace each even number by a 0 and each odd number by a 1.
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We obtain
k=0
v
k=1
n=0 — 1 N
k=2
n=1 — 1 1 v
k=3
n=2 — 1 0 1 v
k=4
n=3 — 1 1 1 1 N
k=5
n=4 — 1 0 0 0 1 v
k=6
n=5 — 1 1 0 0 1 1 N
k=7
n=6 — 1 0 1 0 1 0 1 v
n="7 — 1 1 1 1 1 1 1 1

This looks rather similar to the third evolutionary stage of Sierpinski’s triangle:

A

(Each 0 in the above table corresponds to a white A triangle, and each 1 corresponds to a
black A triangle.)
Where does this similarity come from?

9.2 SOLUTION SKETCH

Seehttp://larryriddle.agnesscott.org/ifs/siertri/Pascal.htm. (Follow the “proof”
link for the proof, and then the “proof” link from there to a proof of Lucas’s theorem if you
want to know. Note that the proof of Lucas’s theorem is a beautiful illustration of the
usefulness of working with polynomials modulo p — i.e., of working modulo an ideal.)

10 EXERCISE 10

10.1 PROBLEM
A conic means a curve of the form
{(z,y) eR* | aa® + by + cy* + dz + ey + f = 0},

where a, b, ¢, d, e, f are six real numbers such that (a,b,c,d, e, f) # (0,0,0,0,0,0). Examples
of conics are

e any circle, e.g., the unit circle {(z,y) € R? | 2? + ¢y* = 1};
e more generally, any ellipse;

e any parabola, e.g., {(z,y) € R? | 22 + y = 0};
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e any hyperbola, e.g., {(z,y) € R? | zy = 1} or {(z,y) € R? | 2% — y* = 1};
e the union of any two lines, e.g., {(z,y) € R? | zy = 0}.
A conic is said to be nondegenerate if it is not the union of two lines.

(a) What is the maximum number of points in which a nondegenerate conic can intersect
a line?

(b) What is the maximum number of points in which two nondegenerate conics can inter-
sect each other?

10.2 SOLUTION SKETCH

(a) The maximum number is 2.

Proof idea. 1t is easy to see that the value 2 can be achieved (just pick the unit circle as
the conic, and the x-axis as the line). It thus remains to prove that a nondegenerate conic
always intersects a line in at most 2 points.

Indeed, we observe that any invertible affine coordinate transformation (i.e., any in-
vertible coordinate transformation of the form (z,y) — (az + By + 7, 0x + ey + ¢), where
a, B,7,6,¢, p are constants) sends a conic to a coni(ﬂ, and sends a line to a line; thus, it
sends a nondegenerate conic to a nondegenerate conic.

Now, consider a nondegenerate conic C' and a line L. We must prove that C intersects
L in at most 2 points.

Indeed, we can always find an invertible affine coordinate transformation that transforms
L into the x-axis (in fact, we can even find a congruence transformation with this property).
This transformation will transform the nondegenerate conic C' into a new nondegenerate
conic C’. In order to prove that C intersects L in at most 2 points, it thus suffices to show
that C” intersects the x-axis in at most 2 points.

Let the nondegenerate conic C” be given by the equation P (z,y) = 0, where the poly-
nomial P (z,y) is ax® +bxy + cy? +dx + ey + f. Then, the intersections of C’” with the x-axis
are the points (0,y) with cy? +ey+ f = 0. Thus, we see that there are at most 2 such points
unless ¢ = e = f = 0 (since a nonzero quadratic equation has at most 2 solutions). But the
case ¢ = e = f cannot occur, because in this case the polynomial P (x,y) would simplify to
P (z,y) = ax®+bxy+dz = x (ax + by + d), which would entail that the conic C" is degener-
ate (in fact, C’ is the union of the x-axis with the line with equation ax + by + d = 0 in this
case). Hence, we conclude that C” intersects the x-axis in at most 2 points. Consequently,
undoing our coordinate transformation, we conclude that C intersects L in at most 2 points.
This completes the proof.

(b) To be pedantic, the answer is 0o, since you can take two identical nondegenerate
conics.

Let’s now answer the real question: What is the maximum number of points in which
two distinct nondegenerate conics can intersect each other?

I claim that this maximum number is 4.

I thought there would be a simple algebraic proof, but I cannot find it now!

Remark: Both parts (a) and (b) of the problem are particular cases of | Bézout’s theorem
for algebraic curves in the plane, which states that two algebraic curves of degrees p and

IThis is easy to see from the definition of a conic: Essentially, a conic is the set of points at which a
given nonzero degree-2 polynomial vanishes. But an affine coordinate transformation sends a degree-2
polynomial to a degree-2 polynomial.
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q (in R?, or in C?, or more generally in the Cartesian plane F? defined over any field F)
intersect in at most pq points unless they have a whole algebraic curve in common.
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