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Math 220 Fall 2021, Lecture 25: Cardinalities

1. Relations and functions

1.1. Jecitivities (injectivity, surjectivity and bijectivity)

Definition 1.1.1. Let f : X → Y be a function. Then:
(a) We say that f is injective (aka one-to-one) if for each y ∈ Y, there exists at

most one x ∈ X such that f (x) = y. In other words: We say that f is injective if
there are no two distinct elements x1, x2 ∈ X such that f (x1) = f (x2).

(b) We say that f is surjective (aka onto) if for each y ∈ Y, there exists at least
one x ∈ X such that f (x) = y.

(c) We say that f is bijective (aka a one-to-one correspondence) if for each
y ∈ Y, there exists exactly one x ∈ X such that f (x) = y. Thus, f is bijective if
and only if f is both injective and surjective.

Here are some examples:

• The function

f : R≥0 → R≥0,

x 7→ x2

is injective (because no two distinct numbers x1, x2 ∈ R≥0 have the same
square) and surjective (since each number y ∈ R≥0 is the square of some
number x ∈ R≥0). Thus, it is bijective.

• However, the function

f̂ : R → R≥0,

x 7→ x2

(which differs from f only in that it has been extended to the whole R as
opposed to R≥0 only) is not injective (since different real numbers can have
the same square: e.g., we have 52 = (−5)2), and thus not bijective either. It is
still surjective, though.

• The function

f̃ : R → R,

x 7→ x2

(which does the same as f̂ , but is a function to R rather than a function to
R≥0) is not surjective (since there are real numbers that are not squares of
any real number: for example, −1 is not a square of a real number). Nor is it
injective or bijective.
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1.2. Inverses

Bijective maps have a special role to play. Namely, they can be inverted:

Definition 1.2.1. Let f : X → Y be a function. An inverse of f means a map
g : Y → X such that

f ◦ g = idY and g ◦ f = idX .

(Recall that idP means the identity map on a set P – that is, the map from P to P
that sends each element to itself.)

In other words, an inverse of f means a map g : Y → X such that

f (g (y)) = y for each y ∈ Y, and
g ( f (x)) = x for each x ∈ X.

Roughly speaking, an inverse of f is therefore a map that both undoes f and is
undone by f .

Not every function has an inverse:

• Let f : {1, 2, 3} → {7, 8, 9} be the “add 6” function (i.e., the function that
sends each x to 6 + x). Then, f has an inverse: the “subtract 6” function (i.e.,
the function that sends each y to y − 6).

• Let f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} be the function that sends 1, 2, 3, 4, 5 to
2, 4, 5, 1, 3, respectively. Then, f has an inverse: namely, the function g that
sends 1, 2, 3, 4, 5 to 4, 1, 5, 2, 3, respectively. We can check that f (g (y)) = y
for each y ∈ {1, 2, 3, 4, 5}: For example, for y = 3, this is because f (g (3)) =
f (5) = 3. Similarly we can check that g ( f (x)) = x for each x ∈ {1, 2, 3, 4, 5}.

• Let f : {1, 2, 3, 4} → {1, 2, 3, 4} be the function that sends 1, 2, 3, 4 to 1, 2, 2, 3,
respectively. Then, f has no inverse. Indeed, if g was an inverse of f , then
f (2) = 2 would entail g (2) = 2, whereas f (3) = 2 would entail g (2) = 3;
but this would mean that g (2) has two different values 2 and 3 at the same
time.

More generally, if f : X → Y is to have an inverse, then f should be injective,
because if for an element y ∈ Y we have two different elements x1 and x2
satisfying f (x1) = y and f (x2) = y, then g (y) must be both x1 and x2 at the
same time.

• Let f : {1, 2, 3} → {1, 2, 3, 4} be the function that sends 1, 2, 3 to 1, 2, 3, re-
spectively. Then, f has no inverse. Indeed, if g was an inverse of f , then
we would have f (g (4)) = 4, which is impossible no matter what g (4) is
(because f sends nothing to 4).

More generally, if f : X → Y is to have an inverse, then f should be surjective,
because each y ∈ Y will satisfy y = f (g (y)) and thus be a value of f .
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We have learned from these examples that only bijective maps have a chance at
having inverses. This is actually sufficient as well: If a map is bijective, it has an
inverse. Let us summarize this as a theorem:

Theorem 1.2.2. Let f : X → Y be a map between two sets X and Y. Then, f has
an inverse if and only if f is bijective.

Proof. We must prove the equivalence

( f has an inverse) ⇐⇒ ( f is bijective) .

Let us prove the =⇒ and ⇐= directions separately:
=⇒: Assume that f has an inverse. We must show that f is bijective.
We assumed that f has an inverse. Let g be this inverse.
Let us show that f is injective. Let x1, x2 ∈ X satisfy f (x1) = f (x2). We must

prove that x1 = x2. Set y = f (x1); then, y = f (x2) as well (since f (x1) = f (x2)).
Since g is an inverse of f , we have x1 = g ( f (x1)) = g (y) (since f (x1) = y) and
x2 = g ( f (x2)) = g (y) (since f (x2) = y). Thus, x1 = g (y) = x2. This completes
our proof that f is injective.

Let us show that f is surjective. Let y ∈ Y. Then, y = f (g (y)) (since g is
an inverse of f ). Therefore, there exists an x ∈ X such that y = f (x) (namely,
x = g (y)). So we have proved for each y ∈ Y that there exists an x ∈ X such that
y = f (x). In other words, f is surjective.

So f is both injective and surjective, thus bijective. This proves the “=⇒” direc-
tion of our equivalence.
⇐=: Assume that f is bijective. We must show that f has an inverse.
Since f is bijective, for each y ∈ Y, there exists a unique x ∈ X such that f (x) =

y. Thus, we can define a map
g : Y → X

which sends each y ∈ Y to this unique x. It is easy to see that g is an inverse of f .
Thus, f has an inverse. This proves the “⇐=” direction of our equivalence.

So bijective maps are the same as invertible maps (i.e., maps that have an inverse).

Here are some more properties of inverses:

Theorem 1.2.3. Let f : X → Y be a map. Then, f has at most one inverse.

Proof. Let g1 and g2 be two inverses of f . We must show that g1 = g2.
Since g1 is an inverse of f , we have g1 ◦ f = idX and f ◦ g1 = idY.
Since g2 is an inverse of f , we have g2 ◦ f = idX and f ◦ g2 = idY.
Now, associativity of composition shows that (g1 ◦ f ) ◦ g2 and g1 ◦ ( f ◦ g2) are

the same map. Hence, we can simply drop the parentheses and write g1 ◦ f ◦ g2.
We have

g1 ◦ f ◦ g2︸ ︷︷ ︸
=idY

= g1 ◦ idY = g1,
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but also
g1 ◦ f︸ ︷︷ ︸
=idX

◦ g2 = idX ◦g2 = g2.

Comparing these two equalities, we obtain g1 = g2, qed.

Definition 1.2.4. Let f : X → Y be a map that has an inverse. Then, its inverse
(which, as we just showed, is unique) will be called f−1.

Example 1.2.5. Let R≥0 be the set of all nonnegative real numbers. Then:
(a) The function

f : R≥0 → R≥0,

x 7→ x2

has an inverse. This inverse f−1 is the function

f−1 : R≥0 → R≥0,

x 7→
√

x.

(b) However, the function

f̃ : R → R,

x 7→ x2

has no inverse (since it is neither injective nor surjective).
(c) But the function

g : R → R,

x 7→ x3

has an inverse.

Example 1.2.6. Let X be any set. The identity map idX : X → X is bijective. It is
its own inverse.

Theorem 1.2.7. Let f : X → Y be a map that has an inverse g : Y → X. Then, g
has an inverse, which is f .

Proof. Since g is an inverse of f , we have f ◦ g = idY and g ◦ f = idX. However, the
same two equalities can be read as saying that f is an inverse of g.
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Theorem 1.2.8 (socks-and-shoes formula). Let g : X → Y and f : Y → Z be two
bijective functions. Then, the composition f ◦ g : X → Z is bijective as well, and
its inverse is

( f ◦ g)−1 = g−1 ◦ f−1.

Proof. For any x ∈ X, we have

(
g−1 ◦ f−1

)
(( f ◦ g) (x)) = g−1

 f−1 ( f (g (x)))︸ ︷︷ ︸
=g(x)

 = g−1 (g (x)) = x.

For any z ∈ Z, we have

( f ◦ g)
((

g−1 ◦ f−1
)
(z)

)
= f

g
(

g−1
(

f−1 (z)
))

︸ ︷︷ ︸
= f−1(z)

 = f
(

f−1 (z)
)
= z.

Thus, g−1 ◦ f−1 is an inverse of f ◦ g. Hence, f ◦ g has an inverse, thus is bijective.

Remark 1.2.9. Note that g−1 ◦ f−1 is not the same as f−1 ◦ g−1. Indeed, f−1 ◦ g−1

might not even exist.

A surprising feature of the socks-and-shoes formula ( f ◦ g)−1 = g−1 ◦ f−1 is
that the order in which the inverses f−1 and g−1 appear on the right hand side is
different from the order in which f and g appear on the left hand side. However,
this is completely natural: If you want to undo two things you have done in some
order, then you should undo them in the opposite order! For example, if you have
put on your socks and then your shoes in the morning, then you need to first
take off the shoes and then the socks when you go to bed. This is what the name
“socks-and-shoes formula” refers to.

Remark 1.2.10. The converse of the socks-and-shoes formula is not true: A com-
position f ◦ g can be bijective even if neither f nor g is bijective.

Definition 1.2.11. Let X and Y be two sets. We say that these two sets X and Y
are isomorphic as sets (or, short, isomorphic) if there exists a bijective map from
X to Y.

What sets are isomorphic?
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Example 1.2.12. The sets {1, 2} and {1, 2, 3} are not isomorphic. In fact, there is
no surjective map f : {1, 2} → {1, 2, 3} (since a map from {1, 2} to {1, 2, 3} would
not have “enough arrows” to hit all three elements of {1, 2, 3}), and therefore no
bijective map f : {1, 2} → {1, 2, 3} either.

Example 1.2.13. The sets {1, 2, 3} and {7, 8, 9} are isomorphic, because we saw
above that there is a bijective map from {1, 2, 3} to {7, 8, 9} (namely, “add 6”).

Example 1.2.14. The sets {1, 2, 3} and {1, 3, 5} are isomorphic.

Example 1.2.15. The sets N and E := {all even nonnegative integers} are iso-
morphic, since the map

N → E,
n 7→ 2n

is bijective.

Example 1.2.16. The sets N and O := {all odd nonnegative integers} are iso-
morphic, since the map

N → O,
n 7→ 2n + 1

is bijective.

Example 1.2.17. Are the sets N and Z isomorphic? Yes, since there is a bijective
map f : N → Z that sends

0, 1, 2, 3, 4, 5, 6, . . . to
0, 1,−1, 2,−2, 3,−3, 4,−4, . . . , respectively.

Explicitly, this map f can be defined as follows:

f (2n) = −n and f (2n + 1) = n + 1 for each n ∈ N.

In other words,

f (n) =

{
−n/2, if n is even;
(n + 1) /2, if n is odd.

It is not hard to see that this map f is indeed bijective. So N and Z are isomor-
phic.
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Example 1.2.18. Are the sets N and Q isomorphic? Yes! But this is trickier to
prove.
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