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Math 220 Fall 2021, Lecture 22: Number theory I

1. Number theory I

1.1. Greatest common divisors (cont’d)

Last time, we proved:

Theorem 1.1.1 (Bezout’s theorem). Let a and b be two integers. Then, there exist
integers x and y such that

gcd (a, b) = xa + yb.

A pair (x, y) of two such integers was called a Bezout pair for (a, b).

Bezout’s theorem leads to several important properties of gcds. The first one is
the so-called universal property of the gcd:

Theorem 1.1.2 (universal property of the gcd). Let a, b, m ∈ Z. Then, we have
the equivalence

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) .

In other words, the common divisors of a and b are precisely the divisors of
gcd (a, b).

Proof of Theorem 1.1.2. We must prove the two implications

(m | a and m | b) =⇒ (m | gcd (a, b))

and
(m | gcd (a, b)) =⇒ (m | a and m | b) .

The second implication is easy: If m | gcd (a, b), then m | a (because m |
gcd (a, b) | a) and m | b (similarly).

It remains to prove the first implication: i.e., that

(m | a and m | b) =⇒ (m | gcd (a, b)) .

So let us assume that m | a and m | b. We must prove that m | gcd (a, b).
Bezout’s theorem yields that there exist two integers x and y such that gcd (a, b) =

xa + yb. Consider these x and y. We have m | a | xa and m | b | yb, so that
m | xa + yb (since a sum of two multiples of m is again a multiple of m). Since
xa + yb = gcd (a, b), we can rewrite this as m | gcd (a, b). And so we are done.

Here is another property of gcds:
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Theorem 1.1.3. Let s, a, b ∈ Z. Then,

gcd (sa, sb) = |s| · gcd (a, b) .

Proof. Let g = gcd (a, b) and h = gcd (sa, sb). So we must prove that h = |s| · g.
Note that h and g are nonnegative.

One good way to prove that two nonnegative integers p and q are equal is by
showing that p | q and q | p. Indeed, from p | q and q | p, we obtain |p| = |q| (by a
proposition we proved back in Lecture 18), and therefore p = q (since p and q are
nonnegative).

Thus, in order to prove h = |s| · g, it suffices to show that h | |s| · g and |s| · g | h.
Equivalently, it suffices to show that h | sg and sg | h (since signs do not matter in
divisibilities).

Let us prove that sg | h: Indeed, g = gcd (a, b) | a, so that sg | sa. Similarly,
sg | sb. Thus, by Theorem 1.1.2 (applied to sg, sa and sb instead of m, a and b), we
conclude that sg | gcd (sa, sb). In other words, sg | h (since h = gcd (sa, sb)).

Let us now prove that h | sg: We have h = gcd (sa, sb) | sa and h = gcd (sa, sb) |
sb. However, Bezout’s theorem says that there exist two integers x and y such that
gcd (a, b) = xa + yb. Consider these x and y. So g = gcd (a, b) = xa + yb. Now,
from h | sa | sxa and h | sb | syb, we obtain

h | sxa + syb (since a sum of two multiples of h is a multiple of h)
= s (xa + yb)︸ ︷︷ ︸

=g

= sg.

So we have shown that h | sg and sg | h. As we already explained, this completes
the proof.

The next theorem will be helpful later on:

Theorem 1.1.4. Let a, b, c ∈ Z satisfy a | c and b | c. Then, ab | gcd (a, b) · c.

Proof. Bezout’s theorem says that there exist two integers x and y such that gcd (a, b) =
xa + yb. Consider these x and y.

Now, b | c, so that ab | ac | xac. Also, a | c, so that ab | cb = bc | ybc. So both
xac and ybc are multiples of ab. Since the sum of two multiples of ab is again a
multiple of ab, we thus conclude

ab | xac + ybc = (xa + yb)︸ ︷︷ ︸
=gcd(a,b)

c = gcd (a, b) · c,

qed.
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1.2. Coprime integers

Now, we shall define an important relation between two integers: coprimality.

Definition 1.2.1. Two integers a and b are said to be coprime (or relatively
prime) if gcd (a, b) = 1.

Remark 1.2.2. This is a symmetric relation: If a and b are coprime, then b and a
are coprime (since gcd (b, a) = gcd (a, b)).

Example 1.2.3. (a) An integer n is coprime to 2 if and only if n is odd. In fact:

• If n is even, then gcd (n, 2) = 2, because 2 is a common divisor of n and 2
(and clearly there cannot be any larger common divisor, since a divisor of
2 cannot be larger than 2).

• If n is odd, then gcd (n, 2) = 1, since 2 is not a common divisor of n and 2
but 1 is.

(b) An integer n is coprime to 3 if and only if n is not divisible by 3.
(c) An integer n is coprime to 4 if and only if n is odd.
(d) An integer n is coprime to 5 if and only if n is not divisible by 5.

The following two theorems are useful properties of coprime integers:

Theorem 1.2.4. Let a, b, c ∈ Z satisfy a | c and b | c. Assume that a and b are
coprime. Then, ab | c. (In other words, a product of two coprime divisors of c is
again a divisor of c.)

Proof. Theorem 1.1.4 yields ab | gcd (a, b) · c. However, since a and b are coprime,
we have gcd (a, b) = 1. So this divisibility ab | gcd (a, b) · c becomes ab | 1 · c. In
other words, ab | c.

Theorem 1.2.5 (coprime cancellation theorem). Let a, b, c ∈ Z satisfy a | bc. As-
sume that a is coprime to b. Then, a | c.

Proof. Bezout’s theorem says that there exist two integers x and y such that gcd (a, b) =
xa + yb. Consider these x and y. Since a is coprime to b, we have gcd (a, b) = 1, so
that 1 = gcd (a, b) = xa + yb.

Now,

c = c · 1︸︷︷︸
=xa+yb

= c · (xa + yb) = cxa + cyb = acx︸︷︷︸
a multiple of a

+ bcy︸︷︷︸
a multiple of a

because a|bc|bcy

.

This is a multiple of a (since a sum of two multiples of a is again a multiple of a).
In other words, a | c.
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1.3. Prime numbers

Recall:

Definition 1.3.1. An integer n > 1 is said to be prime (or a prime) if the only
positive divisors of n are 1 and n.

So the numbers 2, 3, 5, 7, 11, 13, 17, . . . are primes. We have proved a while ago
that there are infinitely many primes.

We shall now show a simple but important property of primes:

Lemma 1.3.2 (black-or-white lemma). Let p be a prime. Let n ∈ Z. Then, n is
either divisible by p or coprime to p (but not both).

Proof. It is easy to see that n cannot be divisible by p and coprime to p at the same
time (because if n is divisible by p, then gcd (n, p) = p > 1, which means that n
cannot be coprime to p). Thus, it remains to show that n is always divisible by p or
coprime to p.

Assume the contrary. Thus, n is neither divisible by p nor coprime to p. The
number gcd (n, p) must be a positive divisor of p, and thus equals either 1 or p
(since p is prime, so the only positive divisors of p are 1 and p). However, it cannot
be 1, since n is not coprime to p. So it must be p.

Thus we have gcd (n, p) = p. Therefore, p = gcd (n, p) | n. This contradicts the
fact that n is not divisible by p. The lemma is thus proved.

(The name “black-or-white lemma” is my own invention; it refers to the idea that
a prime p separates the integers into its “friends” – meaning its multiples – and its
“enemies” – meaning the numbers coprime to p.)

As an application of the black-or-white lemma, we can prove a property of Pas-
cal’s triangle that you might have already noticed in Lecture 17: All entries in the

n = 7 row except for the two 1’s (i.e., all the binomial coefficients
(

7
1

)
,
(

7
2

)
, . . . ,

(
7
6

)
)

are divisible by 7; all entries in the n = 5 row except for the two 1’s are divisible by
5; likewise for the n = 3 and n = 2 rows. The pattern here can be generalized:

Theorem 1.3.3. Let p be a prime. Let k ∈ {1, 2, . . . , p − 1}. Then, p |
(

p
k

)
.

Proof. Apply the black-or-white lemma to n = k. Thus, we conclude that k is either
divisible by p or coprime to p. Since k cannot be divisible by p (because 0 < k < p),
we thus conclude that k is coprime to p. In other words, p is coprime to k.
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Next, recall the definition of binomial coefficients (Lecture 17). Thus,(
p
k

)
=

p (p − 1) (p − 2) · · · (p − k + 1)
k!

=
p · (p − 1) (p − 2) · · · (p − k + 1)

k · (k − 1)!since k! = 1 · 2 · · · · · (k − 1)︸ ︷︷ ︸
=(k−1)!

·k = (k − 1)! · k = k · (k − 1)!


=

p
k
· (p − 1) (p − 2) · · · (p − k + 1)

(k − 1)!︸ ︷︷ ︸
=

(
p − 1
k − 1

) =
p
k
·
(

p − 1
k − 1

)
.

Multiplying both sides of this by k, we obtain

k ·
(

p
k

)
= p ·

(
p − 1
k − 1

)
︸ ︷︷ ︸

∈Z

.

This shows that

p | k ·
(

p
k

)
.

Since p is coprime to k, we can thus apply the coprime cancellation theorem to

a = p and b = k and c =
(

p
k

)
. We conclude that p |

(
p
k

)
, qed.

Here are some further properties of primes:

Theorem 1.3.4 (prime divisor separation theorem). Let p be a prime. Let a, b ∈ Z

be such that p | ab. Then, p | a or p | b.

This is in contrast to the fact that generally, if an integer n divides a product ab,
it does not follow automatically that n | a or n | b. (For example, we have 6 | 4 · 9
but 6 ∤ 4 and 6 ∤ 9.) Theorem 1.3.4 says that primes behave better than that.

Proof of Theorem 1.3.4. Assume the contrary. So p ∤ a and p ∤ b.
The black-and-white lemma yields that p either divides a or is coprime to a.

Since p ∤ a, we thus see that p is coprime to a. Hence, we can use the coprime
cancellation theorem to obtain p | b from p | ab. This contradicts p ∤ b.

Corollary 1.3.5 (prime divisor separation theorem for k factors). Let p be a prime.
Let a1, a2, . . . , ak ∈ Z be such that p | a1a2 · · · ak. Then, there exists some i ∈
{1, 2, . . . , k} such that p | ai.



Math 220 Fall 2021, Lecture 22, version February 9, 2023 page 6

(In words: If a prime divides a product of several integers, then it must divide at
least one of the factors.)

Proof of Corollary 1.3.5. Induct on k. Use Theorem 1.3.4 in the induction step.

We are now ready to state what might be the most important property of primes:
the fact that each positive integer can be uniquely decomposed into a product of
some primes. For instance,

200 = 2 · 100 = 2 · 2 · 50 = 2 · 2 · 5 · 10 = 2 · 2 · 5 · 2 · 5︸ ︷︷ ︸
a product of primes

.

The word “uniquely” means here that any two ways to decompose a given positive
integer n as a product of primes are “equal up to reordering the factors”. For
example, we can also decompose 200 as 5 · 2 · 2 · 5 · 2.

Let us state this fact in full generality. We first introduce the terminology for it:

Definition 1.3.6. Let n be a positive integer. A prime factorization of n
means a finite list (p1, p2, . . . , pk) of primes (not necessarily distinct) such that
n = p1p2 · · · pk.

Theorem 1.3.7 (Fundamental Theorem of Arithmetic). Let n be a positive integer.
Then:

(a) There exists a prime factorization of n.
(b) This prime factorization is unique up to reordering its entries. In other

words, if (p1, p2, . . . , pk) and (q1, q2, . . . , qℓ) are two prime factorizations of n, then
(q1, q2, . . . , qℓ) can be obtained from (p1, p2, . . . , pk) by reordering the entries.

I will sketch the proof on zoom. (Part (a) has already been proved in Lecture 16.)
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