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Math 220 Fall 2021, Lecture 22: Number theory |

1. Number theory I

1.1. Greatest common divisors (cont’d)

Last time, we proved:

Theorem 1.1.1 (Bezout’s theorem). Let a and b be two integers. Then, there exist
integers x and y such that

ged (a,b) = xa + yb.

A pair (x,y) of two such integers was called a Bezout pair for (a,b).

Bezout’s theorem leads to several important properties of gcds. The first one is
the so-called universal property of the ged:

Theorem 1.1.2 (universal property of the gcd). Let a,b,m € Z. Then, we have
the equivalence
(m|aand m | b) <= (m|gcd(a,b)).

In other words, the common divisors of a and b are precisely the divisors of

ged (a,b).
Proof of Theorem We must prove the two implications
(m|aand m|b) = (m | ged (a,b))
and
(m|ged(a,b)) = (m|aand m | D).

The second implication is easy: If m | gcd(a,b), then m | a (because m
ged (a,b) | a) and m | b (similarly).
It remains to prove the first implication: i.e., that

(m|aand m | b) = (m | gcd(a,b)).

So let us assume that m | a and m | b. We must prove that m | ged (a,b).

Bezout’s theorem yields that there exist two integers x and y such that ged (a,b) =
xa + yb. Consider these x and y. We have m | a | xa and m | b | yb, so that
m | xa+ yb (since a sum of two multiples of m is again a multiple of m). Since
xa + yb = ged (a,b), we can rewrite this as m | ged (a,b). And so we are done. [

Here is another property of gcds:
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Theorem 1.1.3. Lets,a,b € Z. Then,

ged (sa,sb) = |s| - ged (a,b) .

Proof. Let ¢ = ged (a,b) and h = ged (sa,sb). So we must prove that 1 = |s| - g.
Note that i and g are nonnegative.

One good way to prove that two nonnegative integers p and g4 are equal is by
showing that p | g and q | p. Indeed, from p | g and q | p, we obtain |p| = |q]| (by a
proposition we proved back in Lecture 18), and therefore p = g (since p and g are
nonnegative).

Thus, in order to prove h = |s| - g, it suffices to show that i | |s| - g and |s| - ¢ | h.
Equivalently, it suffices to show that i | sg and sg | h (since signs do not matter in
divisibilities).

Let us prove that sg | h: Indeed, ¢ = gcd (a,b) | a4, so that sg | sa. Similarly,
sg | sb. Thus, by Theorem (applied to sg, sa and sb instead of m, a and b), we
conclude that sg | gcd (sa, sb). In other words, sg | h (since h = ged (sa, sb)).

Let us now prove that / | sg: We have h = ged (sa, sb) | sa and h = ged (sa, sb) |
sb. However, Bezout’s theorem says that there exist two integers x and y such that
ged (a,b) = xa+ yb. Consider these x and y. So ¢ = ged (a,b) = xa + yb. Now,
from h | sa | sxa and h | sb | syb, we obtain

h | sxa+ syb (since a sum of two multiples of & is a multiple of h)
=s(xa+yb) = sg.
————
=8

So we have shown that & | sg and sg | . As we already explained, this completes
the proof. O

The next theorem will be helpful later on:
| Theorem 1.1.4. Leta,b,c € Z satisfy a | c and b | c. Then, ab | ged (a,b) - c.

Proof. Bezout's theorem says that there exist two integers x and y such that ged (a, b)
xa + yb. Consider these x and y.

Now, b | ¢, so that ab | ac | xac. Also, a | ¢, so that ab | cb = bc | ybc. So both
xac and ybc are multiples of ab. Since the sum of two multiples of ab is again a
multiple of ab, we thus conclude

ab | xac + ybc = (xa+yb)c = ged (a,b) - c,
N———
=gcd(a,b)
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1.2. Coprime integers

Now, we shall define an important relation between two integers: coprimality.

Definition 1.2.1. Two integers a and b are said to be coprime (or relatively
prime) if gcd (a,b) = 1.

Remark 1.2.2. This is a symmetric relation: If a2 and b are coprime, then b and a
are coprime (since ged (b, a) = ged (a, b)).

Example 1.2.3. (a) An integer 7 is coprime to 2 if and only if 7 is odd. In fact:

e If n is even, then ged (1,2) = 2, because 2 is a common divisor of n and 2
(and clearly there cannot be any larger common divisor, since a divisor of
2 cannot be larger than 2).

e If n is odd, then gcd (n,2) = 1, since 2 is not a common divisor of n and 2
but 1 is.

(b) An integer n is coprime to 3 if and only if n is not divisible by 3.
(c) An integer n is coprime to 4 if and only if n is odd.
(d) An integer n is coprime to 5 if and only if 7 is not divisible by 5.

The following two theorems are useful properties of coprime integers:

Theorem 1.2.4. Let a,b,c € Z satisfy a | c and b | c. Assume that a4 and b are
coprime. Then, ab | c. (In other words, a product of two coprime divisors of c is
again a divisor of c.)

Proof. Theorem yields ab | ged (a,b) - c. However, since a and b are coprime,
we have gcd (a,b) = 1. So this divisibility ab | ged (a,b) - ¢ becomes ab | 1-¢. In
other words, ab | c. O

Theorem 1.2.5 (coprime cancellation theorem). Let a,b,c € Z satisfy a | bc. As-
sume that a is coprime to b. Then, a | c.

Proof. Bezout’s theorem says that there exist two integers x and y such that ged (a, b
xa + yb. Consider these x and y. Since a is coprime to b, we have ged (a,b) =1, so
that 1 = ged (a,b) = xa + yb.

Now,
c=c- 1 =c-(xa b) = cxa+ cyb = acx bc
L (xa + yb) +ey acx,  + y
=xa+yb amultiple ofa 5 multiple of a

because a|bc|bcy

This is a multiple of a (since a sum of two multiples of a is again a multiple of a).
In other words, a | c. O
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1.3. Prime numbers

Recall:

Definition 1.3.1. An integer n > 1 is said to be prime (or a prime) if the only
positive divisors of n are 1 and n.

So the numbers 2,3,5,7,11,13,17,... are primes. We have proved a while ago
that there are infinitely many primes.
We shall now show a simple but important property of primes:

Lemma 1.3.2 (black-or-white lemma). Let p be a prime. Let n € Z. Then, n is
either divisible by p or coprime to p (but not both).

Proof. It is easy to see that n cannot be divisible by p and coprime to p at the same
time (because if n is divisible by p, then gcd (1, p) = p > 1, which means that n
cannot be coprime to p). Thus, it remains to show that 7 is always divisible by p or
coprime to p.

Assume the contrary. Thus, n is neither divisible by p nor coprime to p. The
number gecd (1, p) must be a positive divisor of p, and thus equals either 1 or p
(since p is prime, so the only positive divisors of p are 1 and p). However, it cannot
be 1, since n is not coprime to p. So it must be p.

Thus we have ged (1, p) = p. Therefore, p = ged (n, p) | n. This contradicts the
fact that n is not divisible by p. The lemma is thus proved. O

(The name “black-or-white lemma” is my own invention; it refers to the idea that
a prime p separates the integers into its “friends” — meaning its multiples — and its
“enemies” — meaning the numbers coprime to p.)

As an application of the black-or-white lemma, we can prove a property of Pas-
cal’s triangle that you might have already noticed in Lecture 17: All entries in the

7 7 7
n = 7 row except for the two 1’s (i.e., all the binomial coefficients ( 1) , ( 2) PR < 6>)

are divisible by 7; all entries in the n = 5 row except for the two 1’s are divisible by
5; likewise for the n = 3 and n = 2 rows. The pattern here can be generalized:

Theorem 1.3.3. Let p be a prime. Letk € {1,2,...,p —1}. Then, p | (Z)

Proof. Apply the black-or-white lemma to n = k. Thus, we conclude that k is either
divisible by p or coprime to p. Since k cannot be divisible by p (because 0 < k < p),
we thus conclude that k is coprime to p. In other words, p is coprime to k.
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Next, recall the definition of binomial coefficients (Lecture 17). Thus,

(P) _pp=1)(p-2)---(p—k+1) p-(p-1)(p—-2)---(p—k+1)

k k! - k-(k—1)!

sincek! =1-2----- (k=1)k=(k—-1)!-k=k-(k—1)!

J/

—(k-1)!

_p p=D(p-2)---(p—k+t1) _p (p—1
)

(k—1)! Tk \k-1

(r1
\k—1
Multiplying both sides of this by k, we obtain

k.(z):p.@.

cZ

()

Since p is coprime to k, we can thus apply the coprime cancellation theorem to

a=pandb=kandc= (Z) We conclude that p | (Z), ged. O

[

This shows that

Here are some further properties of primes:

Theorem 1.3.4 (prime divisor separation theorem). Let p be a prime. Leta, b € Z
be such that p | ab. Then, p | a or p | b.

This is in contrast to the fact that generally, if an integer n divides a product ab,
it does not follow automatically that n | 2 or n | b. (For example, we have 6 | 4-9
but 614 and 6 1 9.) Theorem says that primes behave better than that.

Proof of Theorem Assume the contrary. So pta and p { b.

The black-and-white lemma yields that p either divides a or is coprime to a.
Since p { a, we thus see that p is coprime to a. Hence, we can use the coprime
cancellation theorem to obtain p | b from p | ab. This contradicts p 1 b. O

Corollary 1.3.5 (prime divisor separation theorem for k factors). Let p be a prime.
Let aj,ay,...,ar € Z be such that p | ajap - --a;. Then, there exists some i €
{1,2,...,k} such that p | a;.




Math 220 Fall 2021, Lecture 22, version February 9, 2023 page 6

(In words: If a prime divides a product of several integers, then it must divide at
least one of the factors.)

Proof of Corollary Induct on k. Use Theorem in the induction step. O

We are now ready to state what might be the most important property of primes:
the fact that each positive integer can be uniquely decomposed into a product of
some primes. For instance,

200=2-100=2-2-50=2-2-5-10 = 5-2-5

2-2- .
a product of primes

The word “uniquely” means here that any two ways to decompose a given positive
integer n as a product of primes are “equal up to reordering the factors”. For

example, we can also decompose 200 as 5-2-2-5- 2.
Let us state this fact in full generality. We first introduce the terminology for it:

Definition 1.3.6. Let n be a positive integer. A prime factorization of n
means a finite list (p1, p2, ..., px) of primes (not necessarily distinct) such that

n:plpz...pk.

Theorem 1.3.7 (Fundamental Theorem of Arithmetic). Let n be a positive integer.
Then:

(a) There exists a prime factorization of 7.

(b) This prime factorization is unique up to reordering its entries. In other
words, if (p1, p2, .., px) and (41,92, - - ., q¢) are two prime factorizations of n, then
(41,92, - --,q¢) can be obtained from (p1, p2, ..., px) by reordering the entries.

I will sketch the proof on zoom. (Part (a) has already been proved in Lecture 16.)
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