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Math 220 Fall 2021, Lecture 21: Number theory |

1. Number theory I

1.1. Division with remainder (cont’d)

Last time, we haven't finished proving the following proposition:

Proposition 1.1.1. Let n € Z and let d be a positive integer. Then:
(a) We have n%d € {0,1,...,d — 1} and n%d = nmodd.
(b) We have d | n if and only if n%d = 0.
(©Ifce{0,1,...,d — 1} satisfies c = nmod d, then ¢ = n%d.
(d) We have n = (n//d)d + (n%d).

We proved parts (d) and (a); let us now prove (b) and (c):

Proof. We set
qg:=n//d and 7= n%d.

Then,n =gd+randg € Zandr € {0,1,...,n —1}.

(b) Again, this is an “if and only if” statement, and we shall prove its “=" and
“<=" directions separately:

—: Assume that d | n. We must prove that n%d = 0. In other words, we must
prove that r = 0.

Indeed, d | n yields that there is some ¢ € Z such that n = dc. Consider this c.
Therefore, (c,0) is a quo-rem pair of n and d (since n = dc = dc +0). However, (g,7)
is also a quo-rem pair of n and d (by its definition). Since there is only one quo-rem
pair of n and d (by the theorem from last time), this shows that (c,0) = (g,7). In
particular, 0 = r, so that 0 = r. In other words, r = 0. This proves the “="
direction (i.e., it proves that if d | n, then n%d = 0).

<=:If n%d = 0, then d | n because

n=qd+ _r =qd.
=n%d=0

This proves the “<=" direction. Thus, both directions are proved, so that part (b)
of the proposition holds.

() Letc € {0,1,...,d — 1} satisfy ¢ = nmod d. We must show that ¢ = n%d.

From ¢ = nmodd, we obtain d | ¢ — n. In other words, ¢ — n = de for some
e € Z. Consider this e. From ¢ —n = de, we obtain ¢ = n +de, so that n =
c —de = (—e)d + c. This (combined with ¢ € {0,1,...,d —1}) shows that (—e,c)
is a quo-rem pair of n and d. However, (g,7) is also a quo-rem pair of n and d (by
its definition). Since there is only one quo-rem pair of n and d (by the theorem
from last time), this shows that (—e,c) = (g,7). Hence, ¢ = r = n%d. So we are
done. O
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1.2. Greatest common divisors

Definition 1.2.1. Let 2 and b be two integers. Then:

(a) The common divisors of a and b are the integers that divide a and simul-
taneously divide b.

(b) The greatest common divisor of a and b is the largest among the common
divisors of @ and b, unless a = b = 0. In the latter case, it is defined to be 0.

We denote the greatest common divisor of a and b as ged (a,b), and we refer
to it as the ged of a and b.

Remark 1.2.2. Why is this well-defined (i.e., why is there a largest among the
common divisors of 4 and b ?), and why do we need the exception fora =b =0
?

The exception for a = b = 0 is necessary, because every integer is a com-
mon divisor of 0 and 0 (and therefore there is no largest among these common
divisors).

As to the first question, consider the case when not both a4 and b are 0. For
example, let’s assume a # 0. Then, any common divisor of a and b divides a and
therefore is at most |a|. Hence, there is a largest among these common divisors
(because 1 is always a common divisor). What we are using here is the fact that
any nonempty set of integers that is bounded from above has a largest element.

We collect some basic properties of gcds in the following proposition:

Proposition 1.2.3. (a) We have gcd (a,b) € N for any a,b € Z.

(b) We have gcd (4,0) = gecd (0,a) = |a| for any a € Z.

(c) We have ged (a,b) = ged (b, a) for any a,b € Z.

(d) If a,b,c € Z satisty b = cmod a, then ged (a,b) = ged (a, ¢).

(e) We have gcd (a,b) = ged (a,ua 4 b) for any a,b,u € Z.

(f) We have gcd (a,b) = ged (a, b%a) for any positive integer a and any b € Z.

(g) We have gcd (a,b) | a and ged (a,b) | b for any a,b € Z.

(h) We have gcd (—a,b) = ged (a,b) and ged (a, —b) = ged (a,b) for any a,b €
Z.

() If a,b € Z satisfy a | b, then ged (a,b) = |a|.

Proof. (a) Let a,b € Z. We must prove that gcd (a,b) € IN.
Indeed, otherwise, gcd (a,b) would be negative, so that — gcd (a,b) would be
a larger common divisor of 2 and b, which would contradict the definition of

ged (a,b).

(b) Let a € Z. The common divisors of a and 0 are just the divisors of a (since
every integer divides 0). Thus, the largest of them is |a| (unless a = 0). This proves
part (b).

(c) Leta,b € Z. The common divisors of a and b are exactly the common divisors
of b and a. From this, part (c) quickly follows.
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(d) Let a, b, c € Z satisfy b = c mod a. We must prove that ged (a,b) = ged (g, ¢).

Let d be a common divisor of a and b. Thus, d | a and d | b. In other words,
a = dx and b = dy for some integers x and y. Consider these x and y.

Now, b = cmod a. In other words, a | b — ¢. In other words, b — ¢ = am for some
m € Z. Consider this m.

Now, solving the equation b — ¢ = am for c, we obtain

c= —a m=dy—dxm=d(y—xm).

b
~—
=dy =dx

Thus, d | ¢. Therefore, d is a common divisor of a4 and c.
So we have shown that any common divisor of 4 and b must also be a common
divisor of a and c. In other words,

{common divisors of a and b} C {common divisors of a and c} .

However, the same argument can be made with the roles of b and ¢ swapped
(because the relation b = cmod a is symmetric in b and c). As a result, we obtain

{common divisors of @ and ¢} C {common divisors of 4 and b} .
Combining this with

{common divisors of a and b} C {common divisors of @ and c},
we obtain

{common divisors of @ and b} = {common divisors of a and c} .

In other words, the common divisors of 2 and b are precisely the common divisors
of a and c. Hence, the largest among the former divisors equals the largest among
the latter divisors. In other words, ged (a,b) = ged (4, c).

[Strictly speaking, the case a = 0 should be handled separatelyﬂ However, this
case is trivial, because in this case the assumption b = cmod a yields b = c.]

So part (d) is proved.

Part (e) follows from (d) because b = ua + bmod a.
Part (f) follows from (d) because b = b%a mod a.

The remaining parts of the proposition are easy. O

Note that parts (b), (c) and (f) of Proposition yield a pretty fast way of

Ibecause gcd (0,0) is not literally the largest among the common divisors of 0 and 0
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computing gecds: For example,

ged (93,18) = ged (18,93) (by part (c))
— ged (18, 93 /018) (by part (f))
=3
— ged (18,3)
= ged (3,18) (by part (c))
— gad (3, 1@\‘@) (by part (f))
=0
= gcd (3,0) = |3 (by part (b))
=3,

This method for computing ged (a,b) is known as the Euclidean algorithm. In
general, it proceeds as follows:

e Ifa > b, then swap a and b.
¢ If a < b, then replace b by its remainder b%a.

e If b = 0, then the gcd is |a].

Strictly speaking, this only covers the case when a4,b € IN. If a or b is negative,
we start out by replacing a by —a or b by —b or both.

This algorithm (and the proposition that it relies on) can be used not just to
compute ged (a,b) quickly, but also to prove some properties of the gcd. The most
important of these properties is the following theorem:

Theorem 1.2.4 (Bezout’s theorem). Let a and b be two integers. Then, there exist
integers x and y such that

ged (a,b) = xa + yb.

We will soon prove this theorem. First, a notation:

Definition 1.2.5. Let 2 and b be two integers. Then, a Bezout pair for (4, b) means
a pair (x,y) of two integers such that ged (a,b) = xa + yb.

So Bezout’s theorem says that for any two integers a and b, there exists a Bezout
pair for (a,b).
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Example 1.2.6. What is a Bezout pair for (2,3) ? Itis a pair (x,y) of two integers
such that ged (2,3) = x -2+ y - 3. Since ged (2,3) = 1, this simply means a pair
(x,y) of two integers such that 1 = x -2+ y - 3. For example, (2, —1) is such a
pair, because 1 = 2-2+ (—1) - 3. There are many other such pairs, for example
(5,—3),since 1 =5-2+ (-3) - 3.

Proof of Bezout’s theorem. We must show that for any a,b € Z, there exists a Bezout
pair for (a,b).

We will prove this by strong induction on a + b. Unfortunately, this doesn’t work
right away, since a + b can be arbitrarily small (keep in mind that 4 and b can be
negative). Thus, we can only use induction to prove the theorem for nonnegative
a and b. Once this is done, we will have to extend it to the case of arbitrary a and
b (possibly negative).

So let us first prove the theorem for nonnegative a,b. In other words, we will
prove the following claim:

Claim 1: Let n € IN. Then, for any two integers a,b € IN satisfying
a+ b = n, there is a Bezout pair for (a,b).

[Proof of Claim 1: Apply strong induction on n:

Induction step: Let n € IN. Assume that Claim 1 holds for all smaller nonnegative
integers instead of #; in other words, we assume that for any integers a,b € IN sat-
isfying a + b < n, there is a Bezout pair for (a,b). This is our induction hypothesis.

We now need to prove that for any two integers a,b € N satistying a +b = n,
there is a Bezout pair for (a,b).

So let us fix two such integers a,b € IN satisfying a + b = n.

Now, we have three cases:

Case 1: We have a = 0.

Case 2: We have 0 < a < b.

Case 3: We have a > b.

Let us first consider Case 1. In this case, 2 = 0, so that ged (a,b) = ged (0,b) =
|b| = b (since b > 0). We are looking for a Bezout pair for (a,b). In other words, we
are looking for a pair (x,y) of integers satisfying

ged (a,b) =x_a  +yb.

—b =0

This equation simplifies to
b=x-0+yb.

This is easily solved: e.g., take (x,y) = (0,1). So we are done in Case 1.
Let us consider Case 2. In this case, 0 < a < b. Hence,

ged (a,b) = ged (a,b—a)
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(by Proposition (d), since b = b — amod a). However, b —a € IN (since a < b)
and
a+(b—a)=b<a+b=n.

Thus, we can apply the induction hypothesis to the pair (a,b — a). So we conclude
that there exists a Bezout pair (u,v) for (a,b —a). Thus, u and v are two integers
such that

ged (a,b—a) =ua+v(b—a).

Since ged (a,b) = ged (a,b — a), we can rewrite this as
ged (a,b) =ua+v(b—a) =ua+vb—va= (u—wv)a+ vb.

This shows that (u — v, v) is a Bezout pair for (a,b). Thus, such a Bezout pair exists,
so we are done in Case 2.

Finally, we need to consider Case 3. Fortunately, the claim we are proving
(namely, that there exists a Bezout pair for (a,b)) is symmetric in 2 and b: In fact,
if (u,v) is a Bezout pair for (a,b), then (v, u) is a Bezout pair for (b,a) (because
Proposition (c) yields ged (a,b) = ged (b, a)). Thus, by swapping a with b, we
can turn a > b into b > g, that is, into a < b. (The sum a 4 b does not change when
we swap a and b, so it still remains n.) Hence, after this swap, we are either in Case
1 or in Case 2. So we are done in Case 3 as well.

Thus, in all three cases, we have shown that there exists a Bezout pair for (a,b);
this completes the induction step. Thus, Claim 1 is proved.]

Claim 1 shows that Bezout’s theorem holds when a,b € IN. (Indeed, if a,b € IN,
then we can set n = a + b and apply Claim 1.)

We need to prove the theorem for arbitrary a,b € Z. But this is easy: Replacing
a by —a (and x by —x), we can allow a to be negative; likewise, we can allow b to
be negative.

So Bezout’s theorem is proved. O

This proof of Bezout’s theorem encodes an algorithm for computing a Bezout
pair for (a,b) —in other words, not only for computing gcd (a, b) but also for writing
ged (a,b) as a sum xa + yb for some integers x and y. This is called the extended
Euclidean algorithm.
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