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Math 220 Fall 2021, Lecture 13: Mathematical
induction

1. Mathematical induction (cont’d)

1.1. What is induction? (cont’d)

Recall the Principle of Mathematical Induction:

Principle of Mathematical Induction (or, short, Principle of Induc-
tion):

Let P (n) be a predicate that depends on a variable n, which is supposed
to be a nonnegative integer.

Assume that you have proved P (0).

Assume further that you have proved

∀n ∈ N : (P (n) =⇒ P (n + 1)) .

Then, you can deduce that

∀n ∈ N : P (n) .

Recall also the Fibonacci sequence ( f0, f1, f2, . . .), which is defined by f0 = 0 and
f1 = 1 and fn = fn−1 + fn−2 for all n ≥ 2. Here are its first few values:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

We now shall finish the proof that we started at the end of last lecture:

Theorem 1.1.1 (addition theorem for Fibonacci numbers). We have

fn+m+1 = fn fm + fn+1 fm+1 for any n, m ∈ N.

Proof. Induct on n. In other words, we apply the Principle of Induction to the
predicate

P (n) = “∀m ∈ N : fn+m+1 = fn fm + fn+1 fm+1”.

Base case: We must show that the theorem holds for n = 0. In other words, we
must show that

f0+m+1 = f0 fm + f0+1 fm+1 for any m ∈ N.
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But this follows by comparing

f0+m+1 = fm+1 with
f0︸︷︷︸
=0

fm + f0+1︸︷︷︸
= f1=1

fm+1 = 0 fm + 1 fm+1 = fm+1.

Induction step: Let n ∈ N. We assume (as our induction hypothesis) that P (n)
holds, i.e., that

fn+m+1 = fn fm + fn+1 fm+1 for any m ∈ N.

Let us rewrite this as

fn+q+1 = fn fq + fn+1 fq+1 for any q ∈ N. (1)

We need to show that P (n + 1) holds, i.e., that

f(n+1)+m+1 = fn+1 fm + f(n+1)+1 fm+1 for any m ∈ N.

For any m ∈ N, we have

f(n+1)+m+1 = fn+m+2 = fn+(m+1)+1

= fn fm+1 + fn+1 f(m+1)+1 (by (1), applied to q = m + 1)

= fn fm+1 + fn+1 fm+2︸︷︷︸
= fm+1+ fm

= fn fm+1 + fn+1 ( fm+1 + fm)

= fn fm+1 + fn+1 fm+1 + fn+1 fm = ( fn + fn+1)︸ ︷︷ ︸
= fn+2

= f(n+1)+1

fm+1 + fn+1 fm

= f(n+1)+1 fm+1 + fn+1 fm = fn+1 fm + f(n+1)+1 fm+1,

and we are done – i.e., we have proved that P (n + 1) holds. So the theorem is
proved.

Note that the theorem we just proved had two ∀-quantified variables n and m.
We chose to induct on n. We could just as well have inducted on m. We cannot,
however, induct on both n and m at the same time (unless we nest two inductions
into one another – which is called a “double induction”).

Theorem 1.1.2. If a, b ∈ N satisfy a | b, then fa | fb.

Proof. We might try to induct on a. So we apply the Principle of Induction to the
predicate

P (a) := (∀b ∈ N : (a | b) =⇒ ( fa | fb)) .
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Unfortunately, it is not clear how to do the induction step here. Indeed, a | b has
nothing to do with a + 1 | b. So inducting on a does not work.

Inducting on b does not work either.
Fortunately, we can induct on variables that are not in the statement (as long as

these variables are nonnegative integers). All we have to do is restate the claim.
In our current case, we restate the claim as follows: We define P (n) to be the
statement

(∀a ∈ N : ( fa | fna)) for each n ∈ N.

If we can prove this statement P (n) for all n ∈ N, then the theorem will follow,
because a | b entails that b = na for some n ∈ N.

Now, this statement P (n) is susceptible to induction. Namely, we prove it by
inducting on n.

Base case: We must prove P (0). In other words, we must prove ∀a ∈ N : ( fa | f0).
But this is clear, since f0 = 0 is divisible by every integer.

Induction step: Let n ∈ N. Assume that P (n) is true. We must prove P (n + 1).
We have assumed that P (n) is true, i.e., that ∀a ∈ N : ( fa | fna).
We must prove that P (n + 1) is true, i.e., that ∀a ∈ N :

(
fa | f(n+1)a

)
.

Let a ∈ N be arbitrary. By our assumption, we have fa | fna. Thus, fna = fac for
some integer c.

We want to show that fa | f(n+1)a. In other words, we want to show that f(n+1)a =
fad for some integer d.

We have

f(n+1)a = fna+a = fna+(a−1)+1 = fna︸︷︷︸
= fac

fa−1 + fna+1 fa

(
by the addition formula fx+y+1 = fx fy + fx+1 fy+1, which

holds for all x, y ∈ N by the previous theorem

)
= fac fa−1 + fna+1 fa = fa (c fa−1 + fna+1) .

Thus, f(n+1)a = fad for some integer d (namely, for d = c fa−1 + fna+1). Therefore,
fa | f(n+1)a. We have thus proved P (n + 1). Hence, the theorem is proved.

Did you spot the little mistake? We have applied the addition formula fx+y+1 =
fx fy + fx+1 fy+1 to x = na and y = a − 1. However, a − 1 /∈ N when a = 0. So we
need to treat the case a = 0 separately. Fortunately, this case is trivial: In this case,
fna = fn·0 = f0 = 0, which is divisible by every integer, including fa.

So the correct proof of P (n + 1) would look as follows:
“Let a ∈ N be arbitrary. We are in one of the following two cases:
Case 1: We have a = 0.
Case 2: We have a ̸= 0.
In Case 1, we have a = 0. Therefore, fna = fn·0 = f0 = 0 is divisible by fa. Hence,

P (n + 1) is proved.
In Case 2, we have a ̸= 0. Therefore, a ≥ 1 (since a ∈ N). Hence, a − 1 ∈ N. By

our assumption, we have fa | fna. Thus, fna = fac for some integer c.
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We want to show that fa | f(n+1)a. In other words, we want to show that f(n+1)a =
fad for some integer d.

We have

f(n+1)a = fna+a = fna+(a−1)+1 = fna︸︷︷︸
= fac

fa−1 + fna+1 fa

 by the addition formula fx+y+1 = fx fy + fx+1 fy+1 (which
holds for all x, y ∈ N by the previous theorem),

applied to x = na and y = a − 1


= fac fa−1 + fna+1 fa = fa (c fa−1 + fna+1) .

Thus, f(n+1)a = fad for some integer d (namely, for d = c fa−1 + fna+1). Therefore,
fa | f(n+1)a. We have thus proved P (n + 1).

So we have proved P (n + 1) in both Cases 1 and 2. Thus, P (n + 1) is always
true.”

This is awkward to write: We needed a case distinction only to dispatch of a
case that is essentially obvious. There is a shorthand for such case distinctions. It
is called “WLOG” (short for “without loss of generality”). The idea is that the
case a = 0 is so trivial that you can essentially treat it as an afterthought. If you
can prove the theorem for all a ̸= 0, then you know that the theorem is true for all
a ∈ N. You can reflect this in your proof by saying “We assume WLOG that a ̸= 0
(because in the case a = 0, we have fna = fn·0 = f0 = 0 which is divisible by fa)”.
Formally speaking, this is saying that the case a = 0 is clear (by the explanation
provided) and therefore you will be only working in the case a ̸= 0 from here
on.

In general, the word “WLOG” is used to dispose of cases that either are trivial,
or are straightforward adaptations of other cases. Here is an example of the latter:

Theorem 1.1.3. For any two reals x and y, we have x2 + y2 ≥ 2xy.

Proof. We are in one of the following two cases:
Case 1: We have x ≥ y.
Case 2: We have x < y.
In Case 1, we have x ≥ y. Now,(

x2 + y2
)
− 2xy = (x − y)2 = (x − y)︸ ︷︷ ︸

≥0

(x − y)︸ ︷︷ ︸
≥0

≥ 0.

Case 2 reduces to Case 1 by swapping x and y.

Instead of splitting this proof into two cases as we just did, we could just as well
have said “WLOG assume that x ≥ y (since the case x < y can be reduced to the
case x ≥ y by swapping x and y)”.

Here are some more induction proofs:
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Theorem 1.1.4. For any n ∈ N, we have 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1.

Proof. We induct on n (i.e., we apply the Principle of Mathematical Induction using
the variable n).

Base case: The theorem is true for n = 0, since the empty sum equals 0 (and since
20 − 1 also equals 0).

Induction step: Let n ∈ N. Assume that

20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1.

We must prove that
20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

We have

20 + 21 + 22 + · · ·+ 2n

=
(

20 + 21 + 22 + · · ·+ 2n−1
)

︸ ︷︷ ︸
=2n−1

(by the induction hypothesis)

+2n

= 2n − 1 + 2n = 2n + 2n︸ ︷︷ ︸
=2·2n=2n+1

−1 = 2n+1 − 1,

which is precisely what we need. So the induction is complete.

More generally:

Theorem 1.1.5. Let x and y be any two numbers. Then, for any n ∈ N, we have

(x − y)
(

xn−1 + xn−2y + xn−3y2 + · · ·+ x2yn−3 + xyn−2 + yn−1
)
= xn − yn.

The big sum in the parentheses is the sum of all products of the form xiyj where
i and j are nonnegative integers with i + j = n − 1.

For example, for n = 2, this says

(x − y) (x + y) = x2 − y2.

For n = 3, this says
(x − y)

(
x2 + xy + y2

)
= x3 − y3.

For n = 4, this says

(x − y)
(

x3 + x2y + xy2 + y3
)
= x4 − y4.
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