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Math 220 Fall 2021, Lecture 12: Mathematical
induction

1. Mathematical induction (cont’d)

1.1. What is induction? (cont’d)

Last time, we stated the following principle (our last deduction rule):

Principle of Mathematical Induction (or, short, Principle of Induc-
tion):

Let P (n) be a predicate that depends on a variable n, which is supposed
to be a nonnegative integer.

Assume that you have proved P (0).

Assume further that you have proved1

∀n ∈ N : (P (n) =⇒ P (n + 1)) .

Then, you can deduce that

∀n ∈ N : P (n) .

Intuitively, this should be fairly plausible. For example, you can deduce that
P (4) holds, because you have P (0) and P (0) =⇒ P (1) and P (1) =⇒ P (2) and
P (2) =⇒ P (3) and P (3) =⇒ P (4), so you can go from P (0) to P (4).

Let us see an example of a proof using the principle of mathematical induction.
We shall prove the following theorem:

Theorem 1.1.1. Let n ∈ N. Let sn be the sum of the first n positive integers. In
other words, let

sn := 1 + 2 + 3 + · · ·+ n.

Then,

sn =
n (n + 1)

2
.

Example 1.1.2. For example, for n = 5, we have sn = s5 = 1 + 2 + 3 + 4 + 5, and

the theorem claims that s5 =
5 · 6

2
. And indeed, you can easily check that both

sides are equal to 15.

1Recall that N means the set of all nonnegative integers, i.e., the set {0, 1, 2, . . .}.
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For another example, for n = 2, we have sn = s2 = 1 + 2, and the theorem

claims that s2 =
2 · 3

2
.

For another example, for n = 1, we have sn = s1 = 1, and the theorem claims

that s1 =
1 · 2

2
.

For another example, for n = 0, we have sn = s0 = 0, since it is agreed that
an empty sum (i.e., a sum with no addends) is 0 by definition. And the theorem

agrees again, since it claims that s0 =
0 · 1

2
.

Proof of the Theorem. We denote the predicate sn =
n (n + 1)

2
by P (n). So we want

to show that
∀n ∈ N : P (n) .

By the Principle of Mathematical Induction, we will achieve this once we have

• proved P (0);

• proved ∀n ∈ N : (P (n) =⇒ P (n + 1)).

Proving P (0) is easy: Indeed, P (0) is saying that s0 =
0 (0 + 1)

2
, and this can be

checked directly by computing both sides (s0 = 0 and
0 (0 + 1)

2
= 0).

Now it remains to prove ∀n ∈ N : (P (n) =⇒ P (n + 1)).
To do so, we let n ∈ N be arbitrary. We must prove P (n) =⇒ P (n + 1). So we

assume that P (n) holds. We must then prove that P (n + 1) holds.

We have assumed that P (n) holds. In other words, sn =
n (n + 1)

2
.

We need to prove that P (n + 1) holds. In other words, we need to prove that

sn+1 =
(n + 1) ((n + 1) + 1)

2
.

To do this, we compare

sn+1 = 1 + 2 + · · ·+ n + (n + 1) with
sn = 1 + 2 + · · ·+ n.

The first sum contains all addends of the second sum, but also a new addend,
which is n + 1. So

sn+1 = sn + (n + 1)

=
n (n + 1)

2
+ (n + 1)

(
since we assumed that sn =

n (n + 1)
2

)
=

n (n + 1) + 2 (n + 1)
2

=
(n + 2) (n + 1)

2

=
(n + 1) (n + 2)

2
=

(n + 1) ((n + 1) + 1)
2

.
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Thus, we have proved that P (n + 1) holds.
So we have proved the implication P (n) =⇒ P (n + 1). Since we have proved

it for all n ∈ N, we thus conclude that ∀n ∈ N : (P (n) =⇒ P (n + 1)). This is
precisely what was missing. So now we can apply the Principle of Mathematical
Induction, and conclude that ∀n ∈ N : P (n). The theorem is thus proved.

The above was an example of a proof by mathematical induction (or, for short,
a proof by induction, or just an induction proof). Such proofs are very frequent
in math. (Note that this is not what philosophers call “induction”.)

Here are some standard pieces of terminology that are commonly used in proofs
by induction. Let’s say you are proving a statement of the form ∀n ∈ N : P (n).

• The n is called the induction variable, and you say that you induct on n.
Actually, the induction variable doesn’t have to be called n. You can just as
well call it k or x or α or ✠ or Æ.

• The proof of P (0) is called the induction base or the base case. In our above

proof, the base case was showing that s0 =
0 (0 + 1)

2
.

• The proof of ∀n ∈ N : P (n) =⇒ P (n + 1) is called the induction step. In our

above proof, the induction step was when we assumed that sn =
n (n + 1)

2

and proved that sn+1 =
(n + 1) ((n + 1) + 1)

2
. In the induction step, the

assumption P (n) is called the induction assumption or the induction hy-
pothesis, and the claim P (n + 1) (that you are trying to prove) is called the
induction goal.

Let us rewrite our above proof using this language:

Proof of the Theorem. We induct on n.

Base case: The theorem holds for n = 0, because s0 =
0 (0 + 1)

2
can be checked

directly by computing both sides (s0 = 0 and
0 (0 + 1)

2
= 0).

Induction step: Let n ∈ N. We assume that the theorem holds for n (this is what
we previously called P (n)). We will now show that it also holds for n + 1 (this is
what we previously called P (n + 1)).

We have assumed that the theorem holds for n. In other words, sn =
n (n + 1)

2
.

We need to prove that the theorem holds for n + 1. In other words, we need to

prove that sn+1 =
(n + 1) ((n + 1) + 1)

2
.
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To do this, we compare

sn+1 = 1 + 2 + · · ·+ n + (n + 1) with
sn = 1 + 2 + · · ·+ n.

The first sum contains all addends of the second sum, but also a new addend,
which is n + 1. So

sn+1 = sn + (n + 1)

=
n (n + 1)

2
+ (n + 1)

(
since we assumed that sn =

n (n + 1)
2

)
=

n (n + 1) + 2 (n + 1)
2

=
(n + 2) (n + 1)

2

=
(n + 1) (n + 2)

2
=

(n + 1) ((n + 1) + 1)
2

.

Thus, we have proved that the theorem holds for n + 1. This completes the induc-
tion step, and thus the theorem is proved.

What does “1 + 2 + · · · + n” actually mean? Actually, sn = 1 + 2 + · · · + n is
defined recursively. That is, to define sn for a given n, we take the previous value
sn−1 and we add n to it (unless n = 0, in which case there is nothing to sum and we
just set s0 := 0). So the very definition of “1 + 2 + · · ·+ n” has the same structure
as our above proof by induction: Instead of giving you the result right away, it tells
you how to obtain each value from the preceding one. This is called a recursive
definition.

Let us see another recursive definition. We will define a famous sequence of
integers known as the Fibonacci sequence:

Definition 1.1.3. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of non-
negative integers defined recursively by setting

f0 := 0, f1 := 1, and
fn := fn−1 + fn−2 for each n ≥ 2.

Once again, this definition is recursive, so it doesn’t let you compute fn immedi-
ately in one step, but rather tells you how to compute fn if the previous entries of
this sequence have already been computed. But this still allows you to compute fn;
you just need to compute all previous entries first. Let us do this for the first 10 or
so entries:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.
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As we see, a recursive definition is a perfectly fine way of defining (e.g.) a
sequence of numbers. It lets you compute each entry of the sequence. Note that it
is important that fn is defined in terms of the previous entries – not in terms of fn
itself or of the next entries; that would be circular. So, for example, if we set

fn := fn+1 − fn−2 instead of fn := fn−1 − fn−2,

then we could not even compute f2, because we would need more and more un-
computed values.

Let us see some properties of the Fibonacci numbers (i.e., are the entries of the
Fibonacci sequence).

Theorem 1.1.4. For any n ∈ N, we have

f1 + f2 + · · ·+ fn = fn+2 − 1.

Example 1.1.5.

1 + 1 + 2 + 3 + 5 + 8 = 20 = 21 − 1;
1 + 1 + 2 + 3 + 5 + 8 + 13 = 33 = 34 − 1;

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 = 54 = 55 − 1.

Proof of the Theorem. We induct on n:
Base case: The theorem is true for n = 0, because it is saying that 0 = f2 − 1.
Induction step: Let n ∈ N.
Assume that the theorem is true for n. In other words, we assume that

f1 + f2 + · · ·+ fn = fn+2 − 1.

We must prove that the theorem is also true for n + 1. In other words, we must
prove that

f1 + f2 + · · ·+ fn+1 = f(n+1)+2 − 1.

To do so, we just compute

f1 + f2 + · · ·+ fn+1 = ( f1 + f2 + · · ·+ fn)︸ ︷︷ ︸
= fn+2−1

+ fn+1 = ( fn+2 − 1) + fn+1

= ( fn+2 + fn+1)︸ ︷︷ ︸
= fn+3

(by the recursive definition
of the Fibonacci sequence)

−1 = fn+3 − 1.

So the induction step is complete.
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Theorem 1.1.6. We have

fn+m+1 = fn fm + fn+1 fm+1 for any n, m ∈ N.

Proof. Next time. Idea: Induct on n (or on m if you wish).
Base case: We must show that the theorem holds for n = 0. In other words, we

must show that

f0+m+1 = f0 fm + f0+1 fm+1 for any m ∈ N.

But this follows by comparing

f0+m+1 = fm+1 with
f0︸︷︷︸
=0

fm + f0+1︸︷︷︸
= f1=1

fm+1 = 0 fm + 1 fm+1 = fm+1.

Induction step: Next time.
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