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Math 220 Fall 2021, Lecture 9: Quantifiers and logic

0.1. Quantifiers (cont’d)

Last time, we introduced the all-quantifier, which gives us a way to state that some-
thing is true for all elements of a set (or all objects of some type). The syntax is “
∀x ∈ S : P (x) ”.

Let us state some common statements as formulas using this quantifier:

• “The square of a real number is at least 0.” This becomes

∀x ∈ R : x2 ≥ 0.

(This is pronounced “for all x in the set R, we have x2 ≥ 0”.)

• “The cube function is strictly increasing” (aka “the greater the number, the
greater its cube”). This becomes

∀x, y ∈ R :
(

x < y =⇒ x3 < y3
)

.

(This is pronounced “for all x and y in the set R, we have the following: If
x < y, then x3 < y3”. You can shorten this to “if two real numbers x and y
satisfy x < y, then x3 < y3”.)

Instead of “∀x, y ∈ R”, you could also say “∀x ∈ R : ∀y ∈ R”.

• “The sine function is strictly increasing” (a false proposition). This becomes

∀x, y ∈ R : (x < y =⇒ sin x < sin y) .

This is false, because e.g., we have 0 < π but we don’t have sin 0 < sin π.

• “The sine function is strictly increasing on the interval [−π/2, π/2]” (a true
proposition). This becomes

∀x, y ∈ R : (−π/2 ≤ x < y ≤ π/2 =⇒ sin x < sin y)

or, alternatively,

∀x, y ∈ [−π/2, π/2] : (x < y =⇒ sin x < sin y)

• “The square of an odd integer is odd.” This becomes

∀m ∈ Z :
(

m is odd =⇒ m2 is odd
)

.
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• “The three altitudes of a triangle have a point in common.” To formalize
this, we assume that “triangle”, “point”, “line” and “perpendicular” are well-
defined, and there is a notation XY for the line connecting two points X and
Y, and a notation perp (P, ℓ) for the perpendicular from a point P to a line ℓ.
Then, the statement becomes

∀ABC triangle : perp (A, BC) ∩ perp (B, CA) ∩ perp (C, AB) ̸= ∅.

So much for the all-quantifier. There is another quantifier:

Definition 0.1.1. Let S be a set. Let P (x) be a predicate depending on a variable
x that belongs to the set S (for example, “x is even” when S = Z, or “x has 3
elements” when S = {sets}). Then, the statement “P (x) holds for at least one
x ∈ S” (aka “there exists some x ∈ S for which P (x) holds”) is written

“ ∃x ∈ S : P (x) ”.

This symbol ∃ stands for “exists”, and this kind of quantification is called exis-
tential quantification.

Example 0.1.2. The statement

“ ∃x ∈ Z : x2 = 5 ”

means “there is an integer x such that x2 = 5”, or, for short, “there is an integer
whose square is 5”. This is often restated as “5 is a perfect square”. Of course, it
is a false statement.

The statement
“ ∃x ∈ Q : x2 = 5 ”

means “there is a rational number x such that x2 = 5”. Still false.
The statement

“ ∃x ∈ R : x2 = 5 ”

means “there is a real number x such that x2 = 5”. This one is true, because
√

5
is such a real number.

Let us restate some common propositions as formulas using the existential quan-
tifier:

• “There is no real number whose square is negative”. This becomes

NOT
(
∃x ∈ R : x2 < 0

)
.

• “Each odd integer can be written as 2k + 1 for some integer k”. This becomes

∀n ∈ Z : (n is odd =⇒ (∃k ∈ Z : n = 2k + 1)) .
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Reading this literally, this is saying “For each n ∈ Z, the following holds: If n
is odd, then there exists some k ∈ Z such that n = 2k + 1.”.

Another way to formalize this statement would be

∀n ∈ {odd integers} : (∃k ∈ Z : n = 2k + 1) .

• “Each integer that is the square of a rational number is actually the square of
an integer.”. This becomes

∀n ∈ Z :
((

∃x ∈ Q : x2 = n
)
=⇒

(
∃y ∈ Z : y2 = n

))
.

Reading this literally, this is saying “For each n ∈ Z, the following holds: If
there exists an x ∈ Q such that x2 = n, then there exists a y ∈ Z such that
y2 = n”.

By the way, we could use the same letter for x and for y, since these two
statements are properly separated.

• “Any integer that is divisible by 2 and divisible by 3 is divisible by 6.” This
becomes

∀n ∈ Z : ((2 | n AND 3 | n) =⇒ (6 | n)) .

(Recall that “a | n” is notation for “n is divisible by a”.)

• “If any divisor of an integer n is even, then n is even.” This becomes

∀n ∈ Z : ((∃d ∈ Z : (d | n AND d is even)) =⇒ (n is even)) .

The last two of these examples illustrate a confusing quirk of language: The word
“any” can mean “all” or “exists” depending on its position in the context. So be
careful with this word.

Existential statements and for-all statements can be negated. When you negate
such a statement, the quantifier flips:

Theorem 0.1.3 (de Morgan’s laws for quantifiers). Let S be a set. Let P (x) be a
predicate depending on a variable x from this set S. Then:

(a) We have

(NOT (∀x ∈ S : P (x))) ⇐⇒ (∃x ∈ S : (NOT P (x))) .

In words: To say “it is not true that every x ∈ S satisfies P (x)” is tantamount to
saying “there exists some x ∈ S that satisfies NOT P (x)”.

(b) We have

(NOT (∃x ∈ S : P (x))) ⇐⇒ (∀x ∈ S : (NOT P (x))) .

In words: To say “it is not true that there exists an x ∈ S satisfying P (x)”
(usually, of course, one shortens this to “there exists no x ∈ S satisfying P (x)”)
is tantamount to saying “for all x ∈ S, we have NOT P (x)”.
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This is fairly intuitive by considering some examples: To say that “not all Cana-
dians speak French” is tantamount to saying that “there is some Canadian some-
where that does not speak French”. On the other hand, to say that “no Cana-
dian speaks French” is tantamount to saying that “whatever Canadian you find, he
doesn’t speak French”.

Remark 0.1.4. De Morgan’s laws for AND and OR are particular cases of de
Morgan’s laws for quantifiers. Indeed, if A1 and A2 are two statements, then

A1 AND A2 is equivalent to ∀i ∈ {1, 2} : Ai,

whereas
A1 OR A2 is equivalent to ∃i ∈ {1, 2} : Ai.

Now, there are a few more quantifiers in natural language. Mathematically, they
can be reduced to ∀ and ∃ quantifiers:

• How would you say “there are at least two”? For example, “there are at least
two integers x such that x2 = 4” can be formalized as

∃x, y ∈ Z :
(

x2 = 4 AND y2 = 4 AND x ̸= y
)

.

The “AND x ̸= y” part is important: The statement

∃x, y ∈ Z :
(

x2 = 4 AND y2 = 4
)

would mean that there exist two possibly equal integers whose square is 4;
but this would be no better than just saying that there exists one such integer.

Soon, when we speak about sizes of sets, we will learn a better way to for-
malize the above statement, namely∣∣∣{x ∈ Z | x2 = 4

}∣∣∣ ≥ 2.

• How would you say “there is exactly one” (i.e., “one and only one”)? For
example, “there is exactly one integer x such that x3 = 8” can be formalized
as(
∃x ∈ Z : x3 = 8

)
AND

(
∀x, y ∈ Z :

((
x3 = 8 AND y3 = 8

)
=⇒ x = y

))
.

This can be read as “there exists an x ∈ Z satisfying x3 = 8, and furthermore,
if x and y are two integers such that x3 = 8 and y3 = 8, then x = y”.

Again, using sizes of sets, this can be simplified to∣∣∣{x ∈ Z | x3 = 8
}∣∣∣ = 1.

Also, some people use a special quantifier “∃!” for “there is exactly one”.
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