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Math 220 Fall 2021, Lecture 8: Quantifiers

0.1. Sets (cont’d)

Definition 0.1.1. Two sets S and T are said to be disjoint if they have no element
in common, i.e., if S ∩ T = ∅.

For example, the sets {2, 4} and {1, 7} are disjoint. But the sets {2, 4} and {2, 7}
are not.

We notice that our notions of union and intersection can be extended to multiple
sets:

Definition 0.1.2. Let S1, S2, . . . , Sk be k sets. Then,

S1 ∪ S2 ∪ · · · ∪ Sk = {x | x lies in some Si}
= {x | x ∈ S1 OR x ∈ S2 OR · · · OR x ∈ Sk}
= ((((S1 ∪ S2) ∪ S3) ∪ S4) ∪ · · · ) ∪ Sk.

When k = 0, this is the empty set.

Definition 0.1.3. Let S1, S2, . . . , Sk be k sets with k > 0. Then,

S1 ∩ S2 ∩ · · · ∩ Sk = {x | x lies in all Si}
= {x | x ∈ S1 AND x ∈ S2 AND · · · AND x ∈ Sk}
= ((((S1 ∩ S2) ∩ S3) ∩ S4) ∩ · · · ) ∩ Sk.

This makes no sense for k = 0.

Here is another important way of combining sets:

Definition 0.1.4. Let S and T be two sets. Then, we define S × T to be set of all
ordered pairs (s, t), where s ∈ S and t ∈ T.

Okay, but what is an “ordered pair”?
An ordered pair (short: pair) is a list consisting of two objects. Unlike a set,

an ordered pair has a well-defined order – i.e., it has a well-defined first entry
and a well-defined second entry. For example, (2, 3) and (3, 2) are two different
ordered pairs, even though {2, 3} and {3, 2} are the same set. Also, the two
entries in an ordered pair can be equal.

The set S × T is called the Cartesian product (or just product) of S and T.

Example 0.1.5. We have

{1, 2} × {7, 8, 9} = {(s, t) | s ∈ {1, 2} and t ∈ {7, 8, 9}}
= {(1, 7) , (1, 8) , (1, 9) , (2, 7) , (2, 8) , (2, 9)}
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and

{1} × {7, 8, 9} = {(s, t) | s ∈ {1} and t ∈ {7, 8, 9}}
= {(1, 7) , (1, 8) , (1, 9)}

and

∅× {7, 8, 9} = {(s, t) | s ∈ ∅ and t ∈ {7, 8, 9}}
= ∅ (since there exists no s ∈ ∅)

and
{1, 2} × {1, 2} = {(1, 1) , (1, 2) , (2, 1) , (2, 2)} .

Claim: The set

R × R = {(x, y) | x ∈ R and y ∈ R} = {pairs of two real numbers}

is a model for the plane, called the Cartesian plane. In what sense? In the sense
that a point in a given plane can be specified by a pair of two real numbers (viz.,
its Cartesian coordinates with respect to a fixed coordinate system), and thus we
can think of the plane as the set of all pairs of real numbers.

The notion of a Cartesian product can, too, be generalized to k sets:

Definition 0.1.6. Let S1, S2, . . . , Sk be k sets. Then, the Cartesian product S1 ×
S2 × · · · × Sk is defined to be the set of all k-tuples (s1, s2, . . . , sk) with s1 ∈ S1
and s2 ∈ S2 and · · · and sk ∈ Sk.

A k-tuple just means a list consisting of k objects, with a well-defined order
(i.e., it has a first entry, a second entry, and so on, and a k-th entry). (Again, the
objects don’t have to be distinct.)

Example 0.1.7. We have

{1, 2} × {1, 2} × {1, 2}
= {(1, 1, 1) , (1, 1, 2) , (1, 2, 1) , (1, 2, 2) , (2, 2, 2) , (2, 2, 1) , (2, 1, 2) , (2, 1, 1)} .

So R × R × R is the set of all 3-tuples (aka triples) of real numbers. These
correspond to points in space, just as the pairs correspond to points in a plane.

Minor pedantic warning: The set A × (B × C) is not the same as A × B × C and
also not the same as (A × B) × C. Indeed, the first set consists of nested pairs
(a, (b, c)), while the second consists of triples (a, b, c), and the third consists of
nested pairs ((a, b) , c). All of these structures carry the exact same information,
but they are organized differently.
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Definition 0.1.8. Let S be a set, and k a nonnegative integer. Then,

Sk := S × S × · · · × S︸ ︷︷ ︸
k times

.

This is called the k-th (Cartesian) power of S.
In particular, S0 is the Cartesian product of no sets. By definition, this is a

one-element set, consisting only of the empty list (). So it can be written

S0 = {()} .

Finally, there is one more way of transforming sets:

Definition 0.1.9. Let S be a set. Then, P (S) denotes the set of all subsets of S.
This is called the powerset (or power set) of S.

Example 0.1.10. We have

P ({1, 2, 3}) = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3} , ∅} .

0.2. Quantifiers

Let us return to propositions. Most of the propositions we have seen include words
like “Let n be an integer” or “for each integer” or “for all positive integers”. We
have so far been treating these words as context. But actually, they are part of
mathematical language – known as quantifiers. Let us explain what they mean.

Definition 0.2.1. Let S be a set. Let P (x) be a predicate depending on a variable
x that is supposed to belong to the set S. (For instance, “x is even” is a predicate
for S = Z. For another example, “x has 3 elements” is a predicate for S = {sets},
at least if we pretend that {sets} is really a well-defined set.)

Then, the statement “P (x) holds for all x ∈ S” (aka “for every x ∈ S, we have
P (x)”, aka “for each x ∈ S, we have P (x)”) is formally written

“ ∀x ∈ S : P (x) ”,

and it is called the “universal quantification of P (x) over the set S”.

Note that P (x) (taken alone) is a predicate – i.e., its meaning depends on x.
However, “ ∀x ∈ S : P (x) ” is a proposition; its meaning does not depend on the
context for x.
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Example 0.2.2. What does it mean to say

“ ∀x ∈ Z : x (x − 1) ≥ 0 ”?

It means that for each integer x, we have x (x − 1) ≥ 0. This proposition is true,
by the way.

What does it mean to say

“ ∀x ∈ Q : x (x − 1) ≥ 0 ”?

It means that for each rational number x, we have x (x − 1) ≥ 0. This proposition

is false (just take x =
1
2

).

Sometimes, we omit the “∈ S” part in a universal quantification – i.e., we just
write “ ∀x : P (x) ” instead of “ ∀x ∈ S : P (x) ”. As we saw in the example above,
this is dangerous, unless S is clear from the context.

As we hinted above, S doesn’t really need to be a set. It just needs to be some
collection of things. For example, S can be the collection of all sets. This is not itself
a set, but it is meaningfull to say “For all sets x”, so we can pretend that we are
saying “ ∀x ∈ {sets} ”.

There are some variant notations. First of all, instead of the colon in “ ∀x ∈ S :
P (x) ”, some people put a comma or a period; i.e., they write “ ∀x ∈ S, P (x) ” or
“ ∀x ∈ S . P (x) ”.

You can write “ ∀x integer” instead of “ ∀x ∈ Z”. For instance,

∀ x set : x ∈ P (x) .

This is simply saying that each set x satisfies x ∈ P (x), i.e., x is a subset of x.
Normally, people use uppercase letters for sets, so they would write

∀ X set : X ∈ P (X)

instead. It doesn’t matter how we call the variable, as long as the name we use
for it is not simultaneously being used for something else (e.g., we cannot say
“∀ 2 ∈ Z”).

We can quantify over several variables at the same time. The meaning of that is
analogous to the meaning of quantifying over one variable. For instance,

“ ∀x, y ∈ Q : (x + y)2 = x2 + 2xy + y2 ”

is saying that the equation (x + y)2 = x2 + 2xy + y2 holds for every two rational
numbers x and y.

Instead of saying “for all”, we often say “for every” or “for each”. (Sometimes we
can also say “for any”, but this is somewhat slippery; the word “any” has different
meanings in different context.)
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