Math 220-002 Fall 2021 (Darij Grinberg): final exam due date: Sunday 2021-12-12 at noon on gradescope (https://www.gradescope.com/courses/313263). Please solve only 4 of the 6 exercises.

Exercise 1. Let $n \in \mathbb{N}$. Prove that

$$\underbrace{1+2+\dots+n}_{\substack{=\sum\limits_{k=1}^{n}k}} = \underbrace{n^2-(n-1)^2+(n-2)^2-(n-3)^2\pm\dots+(-1)^{n-1}1^2}_{\substack{=\sum\limits_{k=1}^{n}(-1)^{n-k}k^2}}.$$

Recall the notation $\prod_{k=i}^{j} a_k$ for a product $a_i a_{i+1} a_{i+2} \cdots a_j$. (If i > j, then this product is empty and understood to equal 1. If i = j, then this product has only one factor and equals a_i .)

Exercise 2. Prove the following:

(a) For each $n \in \mathbb{N}$, we have

$$\prod_{k=0}^{n} k! = \prod_{k=1}^{n} k! = \prod_{k=1}^{n} k^{n-k+1}.$$

(b) For each $n \in \mathbb{N}$, we have

$$\prod_{k=1}^{n} k^{k-1} = \prod_{k=1}^{n} \frac{n!}{k!}.$$

Exercise 3. Let *m* be a positive integer, and let $m_d m_{d-1} \cdots m_0$ be its decimal representation, so that m_0, m_1, \ldots, m_d are digits satisfying

$$m = m_d \cdot 10^d + m_{d-1} \cdot 10^{d-1} + \dots + m_0 \cdot 10^0.$$

Let *a* be the alternating sum of digits of *m*; this is defined by

$$a := m_0 - m_1 + m_2 - m_3 \pm \dots + (-1)^d m_d = \sum_{k=0}^d (-1)^k m_k.$$

Prove that $11 \mid m$ if and only if $11 \mid a$. (This is the classical divisibility test for divisibility by 11.)

Exercise 4. Let *n* be an integer such that n > 1 but *n* is not a prime. Let *d* be the smallest divisor of *n* that is larger than 1. Prove that $d \le \sqrt{n}$.

(You can use standard properties of inequalities – e.g., the equivalence $(u \le v) \iff (u^2 \le v^2)$ when *u* and *v* are positive.)

Exercise 5. Let *p* be a prime.

(a) Prove that $(a + 1)^p \equiv a^p + 1 \mod p$ for each integer *a*.

(b) Prove that $a^p \equiv a \mod p$ for each $a \in \mathbb{N}$.

(c) Prove that $a^p \equiv a \mod p$ for each integer *a*.

[**Hint:** The binomial formula and a certain property of $\binom{p}{k}$ can help.]

Exercise 6. Let *X*, *Y* and *Z* be three sets, and $f : Y \to Z$ and $g : X \to Y$ be two maps. Which of the following are true?

(a) If f and g are injective, then $f \circ g$ is injective.

(b) If $f \circ g$ is injective, then f is injective.

(c) If $f \circ g$ is injective, then g is injective.

(d) If f and g are surjective, then $f \circ g$ is surjective.

(e) If $f \circ g$ is surjective, then f is surjective.

(f) If $f \circ g$ is surjective, then g is surjective.

(g) If f and g are bijective, then $f \circ g$ is bijective.

(h) If $f \circ g$ is bijective, then f is bijective.

(i) If $f \circ g$ is bijective, then g is bijective.

(j) Pick **one** of the nine claims above and justify your answer (with a proof if the answer is "yes" and a counterexample if the answer is "no").

[Other than this, justifications are **not** required in this exercise!]