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Math 504 Lecture 25

1. Positive and nonnegative matrices ([HorJoh,
Chapter 8]) (cont'd)

1.1. The Perron theorems (cont’d)

1.1.1. Lemmas for the proofs

Before we prove the Perron and Perron-Frobenius theorems, we need to state a few
lemmas. First, recall the corollary:

Corollary 1.1.1. Let A € R"*" satisfy A > 0 and n > 0. Let x1,x,...,x, be any
n positive reals. Then,

n

1’1’111’12 Al]<p <ma 2

ieln]
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Corollary 1.1.2. Let A € R"*" satisfy A > 0 and n > 0.
Let x € R" satisty x > 0.
Let « be a nonnegative real. Then:
(@) If Ax > ax, then p (A) > a.
(b) If Ax > ax, then p (A) >
(o) If Ax < ax, then p (A) § .
(d) If Ax < ax, thenp (A) <«

: 11 1\"
Proof. Write x asx = | —, —,...,— | ; then, xq,x2,...,x, > 0.
X1 Xp Xp
(a) Assume that Ax > ax. The old corollary yields
min A
ze[n] Z i = (4)-
Thus,
(A)>rn1n2 A = min x; ilA > min x; E—oc
P ze[n X; K i€[n] l =1 X; K E box; .
N, e’
=(the i-th entry of Ax)>—

(since Ax>ax)

(b) Use the same argument as before, but with > sign.
(c) Analogous, but now use the other half of the old corollary.
(d) Analogous. O

Corollary 1.1.3. Let A € R"*" satisfy A > 0Oand n > 0 and p(A) = 1. Let
w € R" satisfy w > 0 and w # 0.

(a) We always have Aw > 0.

(b) If Aw > w, then Aw = w > 0.

Proof. (a) For each i, the i-th entry of Aw is Z Ajjw; (where w; is the j-th entry
j=1

of w). This is a sum of nonnegative addends, and at least one of these addends

is actually positive (since w # 0 entails that w; > 0 for some j, and then we also

have A;; > 0 because A > 0). So this sum is positive. Thus we have shown that all

entries of Aw are positive. In other words, Aw > 0.

(b) Assume that Aw > w. Let z := Aw — w. Then, z > 0. Hence, if we had z # 0,
then part (a) (applied to z instead of w) would yield Az > 0, so that A (Aw — w) >
0.

Part (a) yields Aw > 0. If we had AAw > Aw, then part (b) of the preceding
corollary (applied to x = Aw and « = 1) would yield p (A) > 1, which would
contradict p (A) = 1. So we cannot have AAw > Aw. In other words, we cannot
have A (Aw — w) > 0. Thus, we cannot have z # 0 (by the previous paragraph). So
z = 0 and therefore Aw = w (since z = Aw — w). This also entails w = Aw > 0 by
part (a). So part (b) is proved. O
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| Definition 1.1.4. Fix n > 0. Lete = (1,1,...,1)".

Remark 1.1.5. (a) An n x n-matrix A satisfies Ae = e if and only if all row sums
of A equal 1.

(b) An n x n-matrix A satisfies e’ A = e’ if and only if all column sums of A
equal 1.

Lemma 1.1.6 (crucifix lemma, special case). Let A € R"*" satisfy A > 0 and
Ae =e. Lety € R" satisfy yTA = yT and y > 0 and yTe = 1 (that is, the sum of
all entries of y is 1). Then,

A" — eyT as m — oo.

Proof. The entries of the vector y are nonnegative reals (since ¥ > 0) and their sum
is 1 (since y’e = 1). Thus, all these entries lie in the interval [0,1].

From Ae = e, we conclude that all row sums of A equal 1. Since A > 0, this
implies that all entries A; ; of A satisfy

O<AZ’/]' <1

Let
pi=1-—min{A;; | i,j € [n]}.

Then, 0 < u < 1 (by the previous inequality).
Claim 1: For each i € [n] and each proper subset K of [1], we have

Y Ak <
kekK

[Proof of Claim 1: Let i € [n]. Let K be a proper subset of [n]. Then,

ZAi,kzl_ ZAi,k < 1—min{Ai,j | i,je [Tl]} = U,
kek @K _

Zmin{Ai,j | i,je [n]}
(since there exists at least one k¢K)

so Claim 1 is proved.]
Now, we claim:

Claim 2: For any i,j € [n] and any m € IN, we have

(4 —ar),

m

<p.
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Once Claim 2 is proved, it will follow easily that (A™ — ey ) —+ 0asm — oo
(because 0 < u < 1), so that A™ — ey and the lemma will thus follow.
[Proof of Claim 2: We induct on m:

Base case: We need to show that ‘ (I —ey"), ].) < 1for all i,j. This follows from the
fact that the entries of y lie in the interval [0, 1] (because (I, — eyT)l.’]. =dij— yj €

€[0,1]
[—1,1]).
Induction step: Let p € IN. Assume (as the induction hypothesis) that Claim 2
holds for m = p. We must now show that it also holds for m = p + 1.
Let B := AP —ey! and C := AP™! —ey?. So our IH says that ‘Bi,j] < uP for all
i,j. Our goal is to show that |Ci,j{ < pﬁ’*l forall i, j.
Fix i,j. We have

AB=A (AP —ey") = AP — AcyT = APt — ey’ = C.

=e
Hence, C = AB, so that

n

=) Aik Bij =Y Aik|Brj| — Z Ajk

=1~ P
k >0 ke

where
P:={ke[n] | By;j>0} and N:={ke[n] | By <0}.

However, the entries of the j-th column of B cannot all have the same sign (i.e.,
both subsets P and N of [n] are proper). The reason for this is that

yTB:yT<Ap_eyT>: yTA?  — yTeyT =yT —yT =0

S ~
—yT =1
(since yT A=yT)
== (look at the j-th entry)

]

I\/{Q
o

and that yT is a nonzero nonnegative vector, so there is a nontrivial linear combi-
nation of the entries of the j-th column of B with nonnegative coefficients that is
0.

So both subsets P and N of [n] are proper.

Now, from

n

=) Az‘k Bij =Y Aix|Bejl — Y Aix

k=1~ keP keN
>0
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we obtain

< max { Z Aik }Bk,j ’ Z Ak |Bk,j| } ’

Cijl = | X Aik |Brj| — ) Aik |Brjl
keP keN keP keN

since any two nonnegative reals x and y satisfy |x — y| < max {x,y}. Thus,

Cij| < ) Aik|By;
keK

4

where K is either P or N. In either case, K is a proper subset of [n]. Therefore,

Cij| < Y Aix |Bij| <P Y A < pPu=pPth
——

kek kek
S‘up N —
(by TH) <pu
(by Claim 1)
This completes the induction step. Thus, Claim 2 is proved.] O

Lemma 1.1.7 (crucifix lemma, general case). Let A € R"*" satisfy A > 0. Let
x € R" satisfy Ax = x and x > 0. Let y € R" satisfy y’A = y' and y > 0 and
yTx = 1. Then,

A™ — xyT as m — oo.

Proof. Let x1,x3,...,x, be the entries of x; then x; > 0.

Let D = diag (x1,x2,...,x). Then, De = x.

Now, apply the previous lemma to D~'AD and Dy instead of A and y. Details
are LTTR. [

Proof of Perron’s theorem. (a) Recall the corollary we had a while ago, which said
that if A > 0 satisfies A;; > 0 for some i € [n], then p (A) > 0. This clearly applies,
since A > 0. So part (a) is proved.
1

Next, knowing that p (A) > 0, we can replace A by MA. This way, p (A)
becomes 1, but nothing else significantly changes. So we have p (A) = 1 now.

Next, we shall show that there is a positive 1-eigenvector of A. Indeed, from
p (A) =1, we see that A has an eigenvalue A with |[A| = 1. Consider this A. Pick

any nonzero A-eigenvector z = (z1, 2, . . .,zn)T € C" of A. Then, Az = Az. Hence,

Azl = [A]- [z = |Az] = [Az] = [A] -|z] = [2].
—~—~

=|A| =1

Hence, applying part (b) to the last corollary, we conclude that A |z| = |z| > 0.
Thus, |z| is a positive 1-eigenvector of A.

We have thus constructed a positive 1-eigenvector of A. The same argument
(applied to AT instead of A) yields a positive 1-eigenvector of AT, and thus (by
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transposing it) a positive left 1-eigenvector of A. Let these two eigenvectors be x
and y. Thus, x € R" satisfies Ax = x and x > 0, and y € R" satisfies yTA = yT
and y > 0. Moreover, by scaling y appropriately, we can achieve y'x = 1. Thus,
the crucifix lemma yields

A" — xyT as m — oo.

This proves part (e).

Remains to prove the uniqueness claims in parts (¢) and (d), and also parts
(b) and (f). We can do this in one fell swoop if we can show the following: If
A, Ag, ..., Ay are the eigenvalues of A, then only one of these eigenvalues has ab-
solute value > 1.

This follows easily from A™ — xy!. Indeed, let (U, T) be the Schur triangular-
ization of A. Then,

A=UTU* =UTu,

and the diagonal entries of T are the eigenvalues A1, Ay, ..., A, of A. Hence,
m
AT — (uw—l) —urmu-l.
Hence, taking the limit as m — oo, we get
xyl =UT*Uu},

where T® = U~ xy"U is a triangular matrix with diagonal entries AL, A, ..., A%.
This shows that all A1, Ay,...,A,; have absolute value < 1, and the ones that have
absolute value 1 must equal 1. Moreover, if more than one of the A;s would equal
1, then UT®U~! would have rank > 1, but then it could not equal xy” (since
rank (xyT) < 1). Qed. O

Theorem 1.1.8 (Perron theorem). Let A € R"*" satisfy A > 0 and n > 0. Then:

(a) We have p (A) > 0.

(b) The number p (A) is an eigenvalue of A and has algebraic multiplicity 1
(and therefore geometric multiplicity 1 as well).

(c) There is a unique p (A)-eigenvector x = (x1,xa,...,%,)" € C" of A with
x1 +x2 +--- 4+ x, = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (yl,yz,...,yn)T € C" such that yTA =
o (A)yT and x1y; + xay2 + - - - + x4y, = 1. This vector y is also positive.

(e) We have

1 n T
—A) — X as m — oo.
(p (A) /

(f) The only eigenvalue of A that has absolute value p (A) is p (A) itself.
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