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Math 504 Lecture 25

1. Positive and nonnegative matrices ([HorJoh,
Chapter 8]) (cont’d)

1.1. The Perron theorems (cont’d)

1.1.1. Lemmas for the proofs

Before we prove the Perron and Perron–Frobenius theorems, we need to state a few
lemmas. First, recall the corollary:

Corollary 1.1.1. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0. Let x1, x2, . . . , xn be any
n positive reals. Then,

min
i∈[n]

n

∑
j=1

xi

xj
Ai,j ≤ ρ (A) ≤ max

i∈[n]

n

∑
j=1

xi

xj
Ai,j.
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Corollary 1.1.2. Let A ∈ Rn×n satisfy A ≥ 0 and n > 0.
Let x ∈ Rn satisfy x > 0.
Let α be a nonnegative real. Then:
(a) If Ax ≥ αx, then ρ (A) ≥ α.
(b) If Ax > αx, then ρ (A) > α.
(c) If Ax ≤ αx, then ρ (A) ≤ α.
(d) If Ax < αx, then ρ (A) < α.

Proof. Write x as x =

(
1
x1

,
1
x2

, . . . ,
1
xn

)T
; then, x1, x2, . . . , xn > 0.

(a) Assume that Ax ≥ αx. The old corollary yields

min
i∈[n]

n

∑
j=1

xi

xj
Ai,j ≤ ρ (A) .

Thus,

ρ (A) ≥ min
i∈[n]

n

∑
j=1

xi

xj
Ai,j = min

i∈[n]
xi

n

∑
j=1

1
xj

Ai,j︸ ︷︷ ︸
=(the i-th entry of Ax)≥

α

xi
(since Ax≥αx)

≥ min
i∈[n]

xi ·
α

xi
= α.

(b) Use the same argument as before, but with > sign.
(c) Analogous, but now use the other half of the old corollary.
(d) Analogous.

Corollary 1.1.3. Let A ∈ Rn×n satisfy A > 0 and n > 0 and ρ (A) = 1. Let
w ∈ Rn satisfy w ≥ 0 and w 6= 0.

(a) We always have Aw > 0.
(b) If Aw ≥ w, then Aw = w > 0.

Proof. (a) For each i, the i-th entry of Aw is
n
∑

j=1
Ai,jwj (where wj is the j-th entry

of w). This is a sum of nonnegative addends, and at least one of these addends
is actually positive (since w 6= 0 entails that wj > 0 for some j, and then we also
have Ai,j > 0 because A > 0). So this sum is positive. Thus we have shown that all
entries of Aw are positive. In other words, Aw > 0.

(b) Assume that Aw ≥ w. Let z := Aw−w. Then, z ≥ 0. Hence, if we had z 6= 0,
then part (a) (applied to z instead of w) would yield Az > 0, so that A (Aw− w) >
0.

Part (a) yields Aw > 0. If we had AAw > Aw, then part (b) of the preceding
corollary (applied to x = Aw and α = 1) would yield ρ (A) > 1, which would
contradict ρ (A) = 1. So we cannot have AAw > Aw. In other words, we cannot
have A (Aw− w) > 0. Thus, we cannot have z 6= 0 (by the previous paragraph). So
z = 0 and therefore Aw = w (since z = Aw− w). This also entails w = Aw > 0 by
part (a). So part (b) is proved.
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Definition 1.1.4. Fix n > 0. Let e = (1, 1, . . . , 1)T.

Remark 1.1.5. (a) An n× n-matrix A satisfies Ae = e if and only if all row sums
of A equal 1.

(b) An n× n-matrix A satisfies eT A = eT if and only if all column sums of A
equal 1.

Lemma 1.1.6 (crucifix lemma, special case). Let A ∈ Rn×n satisfy A > 0 and
Ae = e. Let y ∈ Rn satisfy yT A = yT and y ≥ 0 and yTe = 1 (that is, the sum of
all entries of y is 1). Then,

Am → eyT as m→ ∞.

Proof. The entries of the vector y are nonnegative reals (since y ≥ 0) and their sum
is 1 (since yTe = 1). Thus, all these entries lie in the interval [0, 1].

From Ae = e, we conclude that all row sums of A equal 1. Since A > 0, this
implies that all entries Ai,j of A satisfy

0 < Ai,j ≤ 1.

Let
µ := 1−min

{
Ai,j | i, j ∈ [n]

}
.

Then, 0 ≤ µ < 1 (by the previous inequality).

Claim 1: For each i ∈ [n] and each proper subset K of [n], we have

∑
k∈K

Ai,k ≤ µ.

[Proof of Claim 1: Let i ∈ [n]. Let K be a proper subset of [n]. Then,

∑
k∈K

Ai,k = 1− ∑
k/∈K

Ai,k︸ ︷︷ ︸
≥min{Ai,j | i,j∈[n]}

(since there exists at least one k/∈K)

≤ 1−min
{

Ai,j | i, j ∈ [n]
}
= µ,

so Claim 1 is proved.]
Now, we claim:

Claim 2: For any i, j ∈ [n] and any m ∈N, we have∣∣∣∣(Am − eyT
)

i,j

∣∣∣∣ ≤ µm.
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Once Claim 2 is proved, it will follow easily that
(

Am − eyT)
i,j → 0 as m → ∞

(because 0 ≤ µ < 1), so that Am → eyT, and the lemma will thus follow.
[Proof of Claim 2: We induct on m:
Base case: We need to show that

∣∣∣(In − eyT)
i,j

∣∣∣ ≤ 1 for all i, j. This follows from the

fact that the entries of y lie in the interval [0, 1] (because
(

In − eyT)
i,j = δi,j− yj︸︷︷︸

∈[0,1]

∈

[−1, 1]).
Induction step: Let p ∈ N. Assume (as the induction hypothesis) that Claim 2

holds for m = p. We must now show that it also holds for m = p + 1.
Let B := Ap − eyT and C := Ap+1 − eyT. So our IH says that

∣∣Bi,j
∣∣ ≤ µp for all

i, j. Our goal is to show that
∣∣Ci,j

∣∣ ≤ µp+1 for all i, j.
Fix i, j. We have

AB = A
(

Ap − eyT
)
= Ap+1 − Ae︸︷︷︸

=e

yT = Ap+1 − eyT = C.

Hence, C = AB, so that

Ci,j =
n

∑
k=1

Ai,k︸︷︷︸
>0

Bk,j = ∑
k∈P

Ai,k
∣∣Bk,j

∣∣− ∑
k∈N

Ai,k
∣∣Bk,j

∣∣ ,

where

P :=
{

k ∈ [n] | Bk,j > 0
}

and N :=
{

k ∈ [n] | Bk,j < 0
}

.

However, the entries of the j-th column of B cannot all have the same sign (i.e.,
both subsets P and N of [n] are proper). The reason for this is that

yTB = yT
(

Ap − eyT
)
= yT Ap︸ ︷︷ ︸

=yT

(since yT A=yT)

− yTe︸︷︷︸
=1

yT = yT − yT = 0

=⇒ (look at the j-th entry)
n

∑
k=1

yk︸︷︷︸
≥0

Bk,j = 0

and that yT is a nonzero nonnegative vector, so there is a nontrivial linear combi-
nation of the entries of the j-th column of B with nonnegative coefficients that is
0.

So both subsets P and N of [n] are proper.
Now, from

Ci,j =
n

∑
k=1

Ai,k︸︷︷︸
>0

Bk,j = ∑
k∈P

Ai,k
∣∣Bk,j

∣∣− ∑
k∈N

Ai,k
∣∣Bk,j

∣∣ ,
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we obtain

∣∣Ci,j
∣∣ = ∣∣∣∣∣∑k∈P

Ai,k
∣∣Bk,j

∣∣− ∑
k∈N

Ai,k
∣∣Bk,j

∣∣∣∣∣∣∣ ≤ max

{
∑
k∈P

Ai,k
∣∣Bk,j

∣∣ , ∑
k∈N

Ai,k
∣∣Bk,j

∣∣} ,

since any two nonnegative reals x and y satisfy |x− y| ≤ max {x, y}. Thus,∣∣Ci,j
∣∣ ≤ ∑

k∈K
Ai,k

∣∣Bk,j
∣∣ ,

where K is either P or N. In either case, K is a proper subset of [n]. Therefore,∣∣Ci,j
∣∣ ≤ ∑

k∈K
Ai,k

∣∣Bk,j
∣∣︸ ︷︷ ︸

≤µp

(by IH)

≤ µp ∑
k∈K

Ai,k︸ ︷︷ ︸
≤µ

(by Claim 1)

≤ µpµ = µp+1.

This completes the induction step. Thus, Claim 2 is proved.]

Lemma 1.1.7 (crucifix lemma, general case). Let A ∈ Rn×n satisfy A > 0. Let
x ∈ Rn satisfy Ax = x and x > 0. Let y ∈ Rn satisfy yT A = yT and y ≥ 0 and
yTx = 1. Then,

Am → xyT as m→ ∞.

Proof. Let x1, x2, . . . , xn be the entries of x; then xi > 0.
Let D = diag (x1, x2, . . . , xn). Then, De = x.
Now, apply the previous lemma to D−1AD and Dy instead of A and y. Details

are LTTR.

Proof of Perron’s theorem. (a) Recall the corollary we had a while ago, which said
that if A ≥ 0 satisfies Ai,i > 0 for some i ∈ [n], then ρ (A) > 0. This clearly applies,
since A > 0. So part (a) is proved.

Next, knowing that ρ (A) > 0, we can replace A by
1

ρ (A)
A. This way, ρ (A)

becomes 1, but nothing else significantly changes. So we have ρ (A) = 1 now.
Next, we shall show that there is a positive 1-eigenvector of A. Indeed, from

ρ (A) = 1, we see that A has an eigenvalue λ with |λ| = 1. Consider this λ. Pick
any nonzero λ-eigenvector z = (z1, z2, . . . , zn)

T ∈ Cn of A. Then, Az = λz. Hence,

A︸︷︷︸
=|A|

|z| = |A| · |z| ≥ |Az| = |λz| = |λ|︸︷︷︸
=1

· |z| = |z| .

Hence, applying part (b) to the last corollary, we conclude that A |z| = |z| > 0.
Thus, |z| is a positive 1-eigenvector of A.

We have thus constructed a positive 1-eigenvector of A. The same argument
(applied to AT instead of A) yields a positive 1-eigenvector of AT, and thus (by
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transposing it) a positive left 1-eigenvector of A. Let these two eigenvectors be x
and y. Thus, x ∈ Rn satisfies Ax = x and x > 0, and y ∈ Rn satisfies yT A = yT

and y > 0. Moreover, by scaling y appropriately, we can achieve yTx = 1. Thus,
the crucifix lemma yields

Am → xyT as m→ ∞.

This proves part (e).
Remains to prove the uniqueness claims in parts (c) and (d), and also parts

(b) and (f). We can do this in one fell swoop if we can show the following: If
λ1, λ2, . . . , λn are the eigenvalues of A, then only one of these eigenvalues has ab-
solute value ≥ 1.

This follows easily from Am → xyT. Indeed, let (U, T) be the Schur triangular-
ization of A. Then,

A = UTU∗ = UTU−1,

and the diagonal entries of T are the eigenvalues λ1, λ2, . . . , λn of A. Hence,

Am =
(

UTU−1
)m

= UTmU−1.

Hence, taking the limit as m→ ∞, we get

xyT = UT∞U−1,

where T∞ = U−1xyTU is a triangular matrix with diagonal entries λ∞
1 , λ∞

2 , . . . , λ∞
n .

This shows that all λ1, λ2, . . . , λn have absolute value ≤ 1, and the ones that have
absolute value 1 must equal 1. Moreover, if more than one of the λis would equal
1, then UT∞U−1 would have rank > 1, but then it could not equal xyT (since
rank

(
xyT) ≤ 1). Qed.

———–

Theorem 1.1.8 (Perron theorem). Let A ∈ Rn×n satisfy A > 0 and n > 0. Then:

(a) We have ρ (A) > 0.

(b) The number ρ (A) is an eigenvalue of A and has algebraic multiplicity 1
(and therefore geometric multiplicity 1 as well).

(c) There is a unique ρ (A)-eigenvector x = (x1, x2, . . . , xn)
T ∈ Cn of A with

x1 + x2 + · · ·+ xn = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A =

ρ (A) yT and x1y1 + x2y2 + · · ·+ xnyn = 1. This vector y is also positive.

(e) We have (
1

ρ (A)
A
)m
→ xyT as m→ ∞.

(f) The only eigenvalue of A that has absolute value ρ (A) is ρ (A) itself.
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