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Math 504 Lecture 24

1. Positive and nonnegative matrices ([HorJoh,
Chapter 8]) (cont’d)

1.1. The spectral radius (cont’d)

Recall from last lecture:
The spectral radius of a square matrix A is

ρ (A) := max {|λ| | λ ∈ σ (A)} .

Corollary 1.1.1. Let A ∈ Rn×n and B ∈ Rn×n satisfy B ≥ A ≥ 0, then ρ (A) ≤
ρ (B).

(Inequalities between matrices are entrywise. Nonnegative or positive matrices
have real entries by definition.)

Let us now prove some bounds for ρ (A) when A ≥ 0.
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Definition 1.1.2. Let F be a field. Let A ∈ Fn×m.
(a) The column sums of A are the m sums

n

∑
i=1

Ai,j = (the sum of all entries of the j-th column of A) for j ∈ [m] .

(b) The row sums of A are

n

∑
j=1

Ai,j = (the sum of all entries of the i-th row of A) for i ∈ [n] .

(c) Now, assume that F = C and n > 0 and m > 0. Then, we set

||A||∞ := (largest row sum of |A|) = max
i∈[n]

m

∑
j=1

∣∣Ai,j
∣∣

and

||A||1 := (largest column sum of |A|) = max
j∈[m]

n

∑
i=1

∣∣Ai,j
∣∣ .

These two numbers are called the ∞-norm and the 1-norm of A (for reasons I
will explain on zoom).

Example 1.1.3. The column sums of
(

a b
c d

)
are a + c and b + d.

Warning 1.1.4. The column sums of a matrix are not the entries of the sum of its
columns. Rather, the latter entries are the row sums, whereas the column sums
are the entries of the sum of the rows.

Remark 1.1.5. Let A ∈ Fn×m.
(a) The row sums of A are the column sums of AT.
(b) If F = C, then ||A||∞ =

∣∣∣∣AT
∣∣∣∣

1.

Lemma 1.1.6. Let A ∈ Cn×n. Then:
(a) We have ρ (A) ≤ ||A||∞.
(b) If A ≥ 0 and if all row sums of A are equal, then ρ (A) = ||A||∞.
(c) We have ρ (A) ≤ ||A||1.
(d) If A ≥ 0 and if all column sums of A are equal, then ρ (A) = ||A||1.

Proof. (a) We have ρ (A) = |λ| for some eigenvalue λ of A. Consider this λ, and let
v = (v1, v2, . . . , vn)

T ∈ Cn be a nonzero λ-eigenvector.
Choose an i ∈ [n] such that |vi| = max {|v1| , |v2| , . . . , |vn|}. Then, |vi| > 0 (since

v is nonzero).
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Now, the i-th entry of the column vector Av is
n
∑

j=1
Ai,jvj; however, the same entry

is λvi (since Av = λv). Comparing these facts, we obtain

λvi =
n

∑
j=1

Ai,jvj.

Taking absolute values, we obtain

|λvi| =
∣∣∣∣∣ n

∑
j=1

Ai,jvj

∣∣∣∣∣ ≤ n

∑
j=1

∣∣Ai,jvj
∣∣︸ ︷︷ ︸

=|Ai,j|·|vj|≤|Ai,j|·|vi|
(since the choice of i

yields |vj|≤|vi|)

(by the triangle inequality)

≤
n

∑
j=1

∣∣Ai,j
∣∣ · |vi| .

Since |vi| > 0, we can cancel |vi| from this inequality (since the left hand side is
|λvi| = |λ| · |vi|), and thus we obtain

|λ| ≤
n

∑
j=1

∣∣Ai,j
∣∣ = (the i-th row sum of |A|)

≤ (the largest row sum of |A|) = ||A||∞ .

Since ρ = |λ|, this rewrites as ρ ≤ ||A||∞, qed.
(b) Assume that A ≥ 0 and that all row sums of A are equal. Let e = (1, 1, . . . , 1)T ∈

Rn, and let κ be the common value of the row sums of A. Then, Ae = κe (since Ae
is the vector whose entries are the row sums of A, but all these row sums are equal
to κ). Hence, κ is an eigenvalue of A (since e 6= 0), so that ρ (A) ≥ |κ| = κ (since
A ≥ 0 entails κ ≥ 0).

On the other hand, part (a) of the lemma yields

ρ (A) ≤ ||A||∞ = (the largest row sum of |A|) = (the largest row sum of A) = κ

(since all row sums of A are κ). Combining this with ρ (A) ≥ κ, we obtain ρ (A) =
κ = ||A||∞. This proves part (b).

(c) Apply part (a) to AT instead of A, and recall that
∣∣∣∣AT

∣∣∣∣
∞ = ||A||1 and

ρ
(

AT) = ρ (A).
(d) Similar to part (c).

Now, we can bound ρ (A) from both sides when A ≥ 0:
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Theorem 1.1.7. Let A ∈ Rn×n satisfy A ≥ 0. Then,

(the smallest row sum of A) ≤ ρ (A) ≤ (the largest row sum of A) .

Proof. The inequality ρ (A) ≤ (the largest row sum of A) follows from part (a) of
the lemma, because

||A||∞ =

the largest row sum of |A|︸︷︷︸
=A

 = (the largest row sum of A) .

It remains to prove that (the smallest row sum of A) ≤ ρ (A).
Let r1, r2, . . . , rn be the row sums of A. Let ri be the smallest among them. We

must then prove that ri ≤ ρ (A). If ri = 0, this is obvious. So WLOG assume that
ri > 0. Hence, all r1, r2, . . . , rn are positive.

Let B the n× n-matrix whose (u, v)-th entry is
ri

ru
Au,v. So B is obtained from A

by scaling each row such that the row sums all become ri. Hence, the matrix B is
≥ 0 (since A ≥ 0), and its row sums are all equal to ri. Hence, part (b) of the above
lemma (applied to B instead of A) yields

ρ (B) = ||B||∞ = (the largest row sum of |B|)
= (the largest row sum of B) = ri

(since all row sums of B are ri). However, for each u ∈ [n], we have
ri

ru
Au,v ≤ Au,v

(since ri ≤ ru). In other words, B ≤ A. Hence, the Corollary from last time (applied
to B and A instead of A and B) yields ρ (B) ≤ ρ (A). Hence, ri = ρ (B) ≤ ρ (A),
qed.

Corollary 1.1.8. Let A ∈ Rn×n satisfy A ≥ 0. Let x1, x2, . . . , xn be any n positive
reals. Then,

min
i∈[n]

n

∑
j=1

xi

xj
ai,j ≤ ρ (A) ≤ max

i∈[n]

n

∑
j=1

xi

xj
ai,j.

Proof. Let D = diag (x1, x2, . . . , xn). Then, we can apply the previous theorem to
DAD−1 instead of A, and notice that the row sums of DAD−1 are exactly the sums

n
∑

j=1

xi

xj
ai,j for i ∈ [n]. (And, of course, ρ

(
DAD−1) = ρ (A)).

Remark 1.1.9. If the x1, x2, . . . , xn in the above corollary are chosen appropriately,
both of the inequalities can become equalities. (This follows from the Perron–
Frobenius theorems further below.)
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1.2. Perron–Frobenius theorems

We now come to the most important results about nonnegative matrices: the
Perron–Frobenius theorems.

1.2.1. Motivation

Recall a standard situation in probability theorem. Consider a system (e.g., a slot
machine) that can be in one of n possible states s1, s2, . . . , sn. Every minute, the
system randomly changes states according to the following rule: If the system is
in state si, then it changes to state sj with probability Pi,j, where P is a (fixed, pre-
determined) nonnegative n× n-matrix whose row sums all equal 1 (such a matrix
is called row-stochastic). This is commonly known as a Markov chain.

Given such a Markov chain, one often wonders about its “steady state”: If you
wait long enough, how likely is the system to be in a given state?

Example 1.2.1. Let P =

(
0.9 0.1
0.5 0.5

)
. We encode the two states s1 and s2 as the

basis vectors e1 = (1, 0) and e2 = (0, 1) of the vector space R1×2 (we work with
row vectors here for convenience). Thus, a probability distribution on the set
of states (i.e., a distribution of the form “state s1 with probability a1 and state
s2 with probability a2”) corresponds to a row vector (a1, a2) ∈ R1×2 satisfying
a1 ≥ 0 and a2 ≥ 0 and a1 + a2 = 1.

If we start at state s1 and let k minutes pass, then the probability distribution
for the resulting state is s1Pk. More generally, if we start with a probability
distribution d ∈ R1×2 and let k minutes pass, then the resulting state will be
distributed according to dPk. So we wonder: What is lim

k→∞
dPk as k → ∞ ? Does

this limit even exist?
We can notice one thing right away: If lim

k→∞
dPk exists, then this limit is a left

1-eigenvector of P, in the sense that it is a row vector y such that yP = y (since

y = lim
k→∞

dPk = lim
k→∞

dPk+1 =

(
lim
k→∞

dPk
)

P = yP). Since it is furthermore a

vector whose coordinates add up to 1 (because it is a limit of such vectors), this
often allows us to explicitly compute it. In the above case, for example, we get

lim
k→∞

dPk =

(
5
6

,
1
6

)
.

But does this limit actually exist? Yes, in this specific example, but this isn’t
quite that obvious. Note that this limit (known as the steady state of the Markov
chain) actually does not depend on the starting distribution d.

Does this generalize? Not always. Here are two bad examples:
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• If P = I2 =

(
1 0
0 1

)
, then lim

k→∞
dPk = d for each d, so the limits do depend

on d.

• If P =

(
0 1
1 0

)
, then lim

k→∞
dPk does not exist unless d = (0.5, 0.5), since in

all other cases the sequence
(
dPk)

k≥0 oscillates between (a1, a2) and (a2, a1).

Perhaps surprisingly, such cases are an exception. For most row-stochastic matri-
ces P (that is, nonnegative matrices whose row sums all equal 1), there is a unique
steady state (i.e., left 1-eigenvector), and it can be obtained as lim

k→∞
dPk for any start-

ing distribution d. To be more precise, this holds whenever P is positive (i.e., all
Pi,j > 0). Some weaker assumptions also suffice.

More general versions of these facts hold even if we don’t assume P to be row-
stochastic, but merely require P > 0 (or P ≥ 0 with some extra conditions). These
will be the Perron and Perron–Frobenius theorems.

1.2.2. The theorems

Theorem 1.2.2 (Perron theorem). Let A ∈ Rn×n satisfy A > 0. Then:
(a) We have ρ (A) > 0.
(b) The number ρ (A) is an eigenvalue of A and has algebraic multiplicity 1

(and therefore geometric multiplicity 1 as well).
(c) There is a unique ρ (A)-eigenvector x = (x1, x2, . . . , xn)

T ∈ Cn of A with
x1 + x2 + · · ·+ xn = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A =

ρ (A) yT and x1y1 + x2y2 + · · ·+ xnyn = 1. This vector y is also positive.
(e) We have (

1
ρ (A)

A
)m
→ xyT as m→ ∞.

(f) The only eigenvalue of A that has absolute value ρ (A) is ρ (A) itself.

We will prove this next time.

Theorem 1.2.3 (Perron–Frobenius 1). Let A ∈ Rn×n satisfy A ≥ 0. Then:
(a) The number ρ (A) is an eigenvalue of A.
(b) The matrix A has a nonzero nonnegative ρ (A)-eigenvector.

To get stronger statements without requiring A > 0, we need two further prop-
erties of A.
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Definition 1.2.4. Let A ∈ Rn×n be an n× n-matrix.
(a) We say that A is reducible if there exist two disjoint nonempty subsets I

and J of [n] such that I ∪ J = [n] and such that

Ai,j = 0 for all i ∈ I and j ∈ J.

Equivalently, A is reducible if and only if there exists a permutation matrix P
such that

P−1AP =

(
B C

0(n−r)×r D

)
for some 0 < r < n and some B, C, D.

(b) We say that A is irreducible if A is not reducible.
(c) We say that A is primitive if there exists some m > 0 such that Am > 0.

Theorem 1.2.5 (Perron–Frobenius 2). Let A ∈ Rn×n be nonnegative and irre-
ducible. Then:

(a) We have ρ (A) > 0.
(b) The number ρ (A) is an eigenvalue of A and has algebraic multiplicity 1

(and therefore geometric multiplicity 1 as well).
(c) There is a unique ρ (A)-eigenvector x = (x1, x2, . . . , xn)

T ∈ Cn of A with
x1 + x2 + · · ·+ xn = 1. This eigenvector x is furthermore positive. (It is called
the Perron vector of A.)

(d) There is a unique vector y = (y1, y2, . . . , yn)
T ∈ Cn such that yT A =

ρ (A) yT and x1y1 + x2y2 + · · ·+ xnyn = 1. This vector y is also positive.
(e) Assume furthermore that A is primitive. We have(

1
ρ (A)

A
)m
→ xyT as m→ ∞.

(f) Assume again that A is primitive. The only eigenvalue of A that has abso-
lute value ρ (A) is ρ (A) itself.

Remark 1.2.6. If A is the row-stochastic matrix P corresponding to a Markov
chain, then:

• A is irreducible if and only if there is no set of states from which you cannot
escape (except for the empty set and for the set of all states);

• A is primitive if and only if there is no “oscillation”.
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