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Math 504 Lecture 23

1. Positive and nonnegative matrices ([HorJoh,
Chapter 8])

1.1. Basics

Recall the triangle inequality:

Proposition 1.1.1 (triangle inequality). Let z1, z2, . . . , zn be n complex numbers.
Then,

|z1|+ |z2|+ · · ·+ |zn| ≥ |z1 + z2 + · · ·+ zn| .
Equality holds if and only if z1, z2, . . . , zn have the same argument (i.e., there

exists some w ∈ C such that z1, z2, . . . , zn are nonnegative real multiples of w).

Definition 1.1.2. Let A ∈ Cn×m be a matrix.
(a) We say that A is positive (and write A > 0) if all entries of A are positive

reals.
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(b) We say that A is nonnegative (and write A ≥ 0) if all entries of A are
nonnegative reals.

(c) We let |A| ∈ Rn×m be the nonnegative matrix obtained by replacing each
entry of A by its absolute value. In other words,

|A| =


|A1,1| |A1,2| · · · |A1,m|
|A2,1| |A2,2| · · · |A2,m|

...
... . . . ...

|An,1| |An,2| · · · |An,m|

 .

Remark 1.1.3. Recall that row vectors and column vectors are matrices. Thus,
v > 0 and v ≥ 0 and |v| are defined for them as well. If v = (v1, v2, . . . , vk)

T,
then |v| = (|v1| , |v2| , . . . , |vk|)T.

Warning 1.1.4. Do not mistake |v| (a vector) for ||v|| (a number). Also, for a
matrix A, do not mistake |A| for (an old notation for) the determinant of A.

Exercise 1.1.1. Prove that for any vector v ∈ Cm, we have |||v||| = ||v||, where
the left hand side means the length of |v|.

Definition 1.1.5. Let A, B ∈ Rn×m be two matrices with real entries. Then:
(a) We say that A ≥ B if and only if A− B ≥ 0 (or, equivalently, Ai,j ≥ Bi,j for

all i ∈ [n] and j ∈ [m]).
(b) We say that A > B if and only if A− B > 0 (or, equivalently, Ai,j > Bi,j for

all i ∈ [n] and j ∈ [m]).
(c) We say that A ≤ B if and only if A− B ≤ 0 (or, equivalently, Ai,j ≤ Bi,j for

all i ∈ [n] and j ∈ [m]).
(d) We say that A < B if and only if A− B < 0 (or, equivalently, Ai,j < Bi,j for

all i ∈ [n] and j ∈ [m]).

Example 1.1.6. We have
(

1 2
3 4

)
≥
(

0 2
2 4

)
.

Remark 1.1.7. Again, recall that row vectors and column vectors are matrices
too, so this applies to them as well.

Warning 1.1.8. The relations ≥ and ≤ and not total orders. For instance, (2, 1) is
neither ≥ nor ≤ to (3, 0).
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Warning 1.1.9. Do not mistake ≥ for < (majorization).

Warning 1.1.10. For n = 0, the trivial vector v = () ∈ R0 satisfies v > v and
v < v and v ≥ v and v ≤ v, because the “for all” statements are vacuously true.

Warning 1.1.11. Given two matrices A and B, the relation A ≥ B is not equivalent
to “A > B or A = B”. For example, (2, 1) ≥ (3, 1), but neither > nor =.

Proposition 1.1.12. Let A ∈ Cn×m and B ∈ Cm×p be two matrices. Then,

|A| · |B| ≥ |AB| .

Proof. We must prove that (|A| · |B|)i,k ≥ |AB|i,k for all i and k.
So let i ∈ [n] and k ∈ [p]. Then,

(|A| · |B|)i,k =
m

∑
j=1
|A|i,j︸ ︷︷ ︸
=|Ai,j|

· |B|j,k︸ ︷︷ ︸
=|Bj,k|

=
m

∑
j=1

∣∣Ai,j
∣∣ · ∣∣Bj,k

∣∣︸ ︷︷ ︸
=|Ai,jBj,k|

=
m

∑
j=1

∣∣Ai,jBj,k
∣∣ ≥ ∣∣∣∣∣ m

∑
j=1

Ai,jBj,k

∣∣∣∣∣ .

In view of

|AB|i,k =
∣∣∣(AB)i,k

∣∣∣ = ∣∣∣∣∣ m

∑
j=1

Ai,jBj,k

∣∣∣∣∣ ,

we can rewrite this as (|A| · |B|)i,k ≥ |AB|i,k, qed.

Corollary 1.1.13. Let A ∈ Cn×n and k ∈N. Then, |A|k ≥
∣∣Ak
∣∣.

Proof. Induction on k, using the previous proposition (and the fact that |In| = In).

Proposition 1.1.14. Let A ∈ Cn×m and x ∈ Cm. Then:
(a) We have |A| · |x| ≥ |Ax|.
(b) If at least one row of A is positive and we have A ≥ 0 and |Ax| = A · |x|,

then |x| = ωx for some ω ∈ C satisfying |ω| = 1.
(c) If x > 0 and Ax = |A| x, then A = |A| (so that A ≥ 0).

Proof. (a) follows from the previous proposition.
(b) Assume that at least one row of A is positive and we have A ≥ 0 and |Ax| =

A · |x|.
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We have assumed that at least one row of A is positive. Let the i-th row of A be
positive. Write x = (x1, x2, . . . , xn)

T. From |Ax| = A · |x|, we have

(the i-th entry of |Ax|) = (the i-th entry of A · |x|) =
n

∑
j=1

Ai,j ·
∣∣xj
∣∣ ,

so that

n

∑
j=1

Ai,j ·
∣∣xj
∣∣ = (the i-th entry of |Ax|) = |the i-th entry of Ax|

=

∣∣∣∣∣ n

∑
j=1

Ai,jxj

∣∣∣∣∣
(since the i-th entry of Ax is

n
∑

j=1
Ai,jxj). This is an equality case of the triangle

inequality (since Ai,j =
∣∣Ai,j

∣∣ for all j). Thus, the complex numbers Ai,jxj for all
j ∈ [n] have the same argument. In other words, the xj for all j ∈ [n] have the same
argument. But this means that we can multiply x by a complex number on the unit
circle and obtain a vector of positive reals. That latter vector, of course, will be |x|.

(c) Suppose x > 0 and Ax = |A| x. We must show that A = |A| (so that A ≥ 0).
Write x = (x1, x2, . . . , xn)

T. Fix i ∈ [n]. Then,

(the i-th entry of Ax) = (the i-th entry of |A| x) ,

i.e.
n

∑
j=1

Ai,jxj =
n

∑
j=1

∣∣Ai,j
∣∣ xj︸ ︷︷ ︸

=|Ai,jxj|

=
n

∑
j=1

∣∣Ai,jxj
∣∣ ≥ ∣∣∣∣∣ n

∑
j=1

Ai,jxj

∣∣∣∣∣ ≥ n

∑
j=1

Ai,jxj.

This is a chain of inequalities in which the first and the last side are equal. Thus,
all inequalities in it must be equalities. In particular, we thus have equality in the

triangle inequality
n
∑

j=1

∣∣Ai,jxj
∣∣ ≥ ∣∣∣∣∣ n

∑
j=1

Ai,jxj

∣∣∣∣∣. Hence, the complex numbers Ai,jxj for

all j ∈ [n] have the same argument. Moreover,

∣∣∣∣∣ n
∑

j=1
Ai,jxj

∣∣∣∣∣ ≥ n
∑

j=1
Ai,jxj must also

become an equality, so this argument has to be 0. This shows that the complex
numbers Ai,jxj for all j ∈ [n] are nonnegative reals. Since x > 0, this means that
the Ai,j are nonnegative reals. Since we have proved this for all i, we thus conclude
that all entries of A are nonnegative reals. Hence, A = |A|.

Proposition 1.1.15. Let A, B, C, D be four complex matrices.
(a) If A ≤ B and C ≤ D, then A + C ≤ B + D if A + C and B + D are well-

defined.
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(b) If A ≤ B and 0 ≤ C, then AC ≤ BC if AC and BC are well-defined.
(c) If A ≤ B and 0 ≤ C, then CA ≤ CB if CA and CB are well-defined.
(d) If 0 ≤ A ≤ B and 0 ≤ C ≤ D, then 0 ≤ AC ≤ BD if AC and BD are

well-defined.
(e) If 0 ≤ A ≤ B and k ∈N, then 0 ≤ Ak ≤ Bk.

Proof. (a) Straightforward.
(b) Assume A ≤ B and 0 ≤ C. Then, compare

(AC)i,k = ∑
j

Ai,jCj,k with (BC)i,k = ∑
j

Bi,jCj,k.

The right hand side of the first equation is ≤ to the right hand side of the second,
because Ai,j ≤ Bi,j and Cj,k ≥ 0 for all j. So (AC)i,k ≤ (BC)i,k. Thus, AC ≤ BC.

(c) Similar.
(d) Part (b) yields AC ≤ BC. Part (c) yields BC ≤ BD. Since ≤ is transitive, this

entails AC ≤ BD.
(e) Follows from (d) by induction on k.

1.2. The spectral radius

Definition 1.2.1. The spectral radius ρ (A) of a matrix A ∈ Cn×n (with n > 0) is
defined to be the largest absolute value of an eigenvalue of A. That is,

ρ (A) := max {|λ| | λ ∈ σ (A)} .

Note that ρ (A) is always a nonnegative real.

By Exercise 3.4.2 (equivalence A ⇐⇒ C), a square matrix A satisfies ρ (A) = 0 if
and only if A is nilpotent.

If A = diag (λ1, λ2, . . . , λn), then ρ (A) = max {|λ1| , |λ2| , . . . , |λn|}.

Theorem 1.2.2. Let A ∈ Cn×n and B ∈ Rn×n be such that B ≥ |A|. Then,
ρ (A) ≤ ρ (B).

Proof. If ρ (A) = 0, then this is obvious. So, WLOG assume that ρ (A) > 0.

We can thus scale both matrices A and B by
1

ρ (A)
. This does not break the

inequality B ≥ |A|, and also does not break the claim ρ (A) ≤ ρ (B) (since ρ (λA) =
|λ| ρ (A) for any λ ∈ C).

So we WLOG assume that ρ (A) = 1. (This is achieved by the scaling we just
mentioned.)

This yields that A has an eigenvalue λ with |λ| = 1. Let v be a nonzero eigen-
vector at this eigenvalue λ. Thus,

Amv = λmv for any m ∈N.
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Now, we must prove ρ (A) ≤ ρ (B). In other words, we must prove that 1 ≤
ρ (B). Assume the contrary. Thus, ρ (B) < 1. Hence, all eigenvalues of B have
absolute value < 1. Hence, Corollary 3.5.2 shows that lim

m→∞
Bm = 0. Therefore,

lim
m→∞

Bm |v| = 0.

However, B ≥ |A| ≥ 0 entails Bm ≥ |A|m, so that

Bm |v| ≥ |A|m |v| ≥ |Am| · |v|
(
since |A|m ≥ |Am|

)
≥ |Amv| = |λmv| = |λm|︸︷︷︸

=1
(since |λ|=1)

· |v| = |v| .

In view of lim
m→∞

Bm |v| = 0, this is only possible if |v| = 0. However, |v| 6= 0 (since
v is nonzero). Contradiction, qed.

Corollary 1.2.3. Let A ∈ Cn×n and B ∈ Rn×n be such that B ≥ |A|. Then,
ρ (A) ≤ ρ (|A|) ≤ ρ (B).

Proof. Applying the above theorem to |A| instead of B, we get ρ (A) ≤ ρ (|A|).
Applying the above theorem to |A| instead of A, we get ρ (|A|) ≤ ρ (B) (since
||A|| = |A|).

Corollary 1.2.4. Let A ∈ Rn×n and B ∈ Rn×n satisfy B ≥ A ≥ 0, then ρ (A) ≤
ρ (B).

Proof. Apply the theorem, noticing that |A| = A.

Corollary 1.2.5. Let A ∈ Rn×n satisfy A ≥ 0.
(a) If Ã is a principal submatrix of A (that is, a matrix obtained from A by

removing a bunch of rows along with the corresponding columns), then ρ
(

Ã
)
≤

ρ (A).
(b) We have max {Ai,i | i ∈ [n]} ≤ ρ (A).
(c) If Ai,i > 0 for some i ∈ [n], then ρ (A) > 0.

Proof. (a) Let Ã be a principal submatrix of A. For simplicity, I assume that Ã is A
without the n-th row and the n-th column. Thus,

A =

(
Ã y
x λ

)
(in block-matrix notation)

for some nonnegative x, y and λ. Now, it is easy to see that

ρ
(

Ã
)
= ρ

((
Ã 0
0 0

))
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(since σ

((
Ã 0
0 0

))
= σ

(
Ã
)
∪ {0}). However, 0 ≤

(
Ã 0
0 0

)
≤
(

Ã y
x λ

)
= A,

so the previous corollary yields

ρ

((
Ã 0
0 0

))
≤ ρ (A) .

So ρ
(

Ã
)
≤ ρ (A). This proves part (a).

(b) We must show that Ai,i ≤ ρ (A) for all i ∈ [n].
So let i ∈ [n]. Then, the 1 × 1-matrix

(
Ai,i

)
is a principal submatrix of A

(obtained by removing all rows of A other than the i-th one, and all columns of
A other than the i-th one). Hence, part (a) yields ρ

((
Ai,i

))
≤ ρ (A). However,

ρ
((

Ai,i
))

= |Ai,i| = Ai,i (since A ≥ 0). Therefore, Ai,i ≤ ρ (A), qed.
(c) Follows from (b).
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