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Math 504 Lecture 21

1. Hermitian matrices (cont’d)

1.1. Introduction to majorization theory (cont’'d)

Recall:

e If x € R" is a column vector and i € [n], then x; denotes the i-th coordinate
(= entry) of x.

e If x € R" is a column vector, then x denotes the weakly decreasing per-
mutation of x (that is, the vector with the same entries as x but in weakly
decreasing order).

¢ For two vectors x,y € R", we say that x majorizes y (and we write x = y) if
and only if

m m
>y g for each m € [n]

=1 i=1

i
and
x1+x2+...+xn:y1—|—y2+...+yn'
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¢ A Robin Hood move (short RH move) transforms a vector x € R" into a
vector y € R” that is constructed as follows: Pick two distinct 7, ] € [n] satis-
fying x; < xj, and pick two numbers u,v € [x;, xj] satisfy u 4+ v = x; + x;, and
replace the i-th and the j-th entries of x by u and v.

This RH move is said to be an order-preserving RH move (short OPRH move)
if both x and y are weakly decreasing.

Last time we proved:

Theorem 1.1.1 (RH criterion for majorization). Let x,y € R" be two weakly
decreasing column vectors. Then, x = vy if and only if y can be obtained from x
by a (finite) sequence of OPRH moves.

Now, what can we do with majorization? Probably the most important property
of majorizing pairs of vectors is the following:

Theorem 1.1.2 (Karamata’s inequality). Let I C R be an interval. Let f : I — R
be a convex function. Let x € I" and y € I"" be two vectors such that x >= y. Then,

fa) +f(x) +- 4 f (%) 2 f (1) + f (y2) + -+ f () -

Before we prove this, let us state a simple corollary:

Corollary 1.1.3 (Jensen’s inequality). Let I C R be an interval. Let f : | — R be

. X1 tx 4 +x
a convex function. Let x1,x,...,x, € I. Let m = ! 2 L Then,
n

f ) +f(x2) +- o+ f(xn) 2 nf (m).

Proof. This follows from Karamata’s inequality, since it is easy to see (exercise) that
(xl,xz,...,xn)T# (m,m,...,m)T. O

Let us now prove Karamata’s inequality:

Proof of Karamata’s inequality. It is enough to prove the claim in the case when x and
y are weakly decreasing (because permuting the entries of any of x and y does not
change anything).

Furthermore, it is enough to prove the claim in the case when x RALC y (this
means that y is obtained from x by a single OPRH move). In fact, if we can show
this, then it will mean that the sum f (x1) + f (x2) + - - - + f (x5,) decreases (weakly)
every time we apply an OPRH move. Therefore, if y is obtained from x by a
sequence of OPRH moves, then f (x1) + f(x2) +---+ f (xn) > f(y1) + f (y2) +
-+ =+ f (yn). But the theorem we proved last time shows that this is always satisfied
when x = v.
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So let us assume that x o5 y. Thus, y is obtained from x by picking two entries
x; and x; with x; < x;j and replacing them by u and v, where u,v € [x;, x;] with
u+v=ux+x;. Consider these x;, Xj,u,v. It clearly suffices to show that

fxi)+f(x) = f(w)+ f (o).
How do we do this? From u € [x;, x;], we obtain

u=Axi+(1-2)x; for some A € [0,1]

(namely, A =

(u — x;)). Consider this A. Then,

! J
v=(1-A)x;+ Ax; (since u +v = x; + x;) .
However, f is convex. From u = Ax; + (1 — A) xj, we obtain
fu)=fAxi+(1-=A)x;) <Af(x)+(1—=A)f (x)) (since f is convex)

and
fO)=f(A=MN)xi+Ax;) < (1-A)f(x) +Af ().

Adding together these two inequalities, we obtain
f)+f0) < (Af () + (1=2A) f(x)) + (1= A) f (i) + Af (x7))
= fx)+f (%), qed.
So Karamata’s inequality is proved. O

Karamata’s inequality has lots of applications, since there are many convex func-
tions around. For instance:

e f(t) = t" defines a convex function on R whenever n € IN is even.

e f(t) = t" defines a convex function on R} whenever n € R\ (0,1). Other-
wise, it defines a concave function (so that —f is a convex function).

e f(t) = sint defines a concave function on [0, 7r] and a convex function on
[7t,27].

Karamata’s inequality has a converse: If x,y € R" are two vectors such that

fla)+f(xa) -4 f () 2 fyr) +f(y2) + -+ f (yn)

for every convex function f : R — R, then x > y. Even better:
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Theorem 1.1.4 (absolute-value criterion for majorization). Let x € R" and y € R"
be two vectors. Then, x = y if and only if all t € RR satisfy

X1 =t |xa =t + A [xn =t >y —t| + y2 =ty — H]

Proof. =: Assume that x > y. Let t € R. Consider the function

ftI]R—>]R,
z+> |z —t].

This function f; is convex (this follows easily from the triangle inequality). Hence,
Karamata’s inequality yields

fr(x1) + fe(x2) + -+ fr (xn) = fr (1) + fe (y2) + -+ fe (yn) -

By the definition of f;, this means
lxp =t |xa =t 4+ xn =t >y =ty — ]+ Ay — H]

So we have proved the “=" direction of the theorem.
<=: We shall refer to the inequality

|xg — ¢+ —t|+ -+ |xp—t > y1 — |+ |ly2—t|+ -+ |yn — t]

as the absolute value inequality. So we assume that the absolute value inequality
holds for all + € R. (Actually, it will suffice to assume that it holds for all t &

{x1,%2, .., Xn, Y1, Y2, - -, Yn}-)

We must prove that x = v.

WLOG assume that x and y are weakly decreasing (since permuting the entries
changes neither the absolute value inequality nor the claim x = y).

Let t = max{xy,y1}. Then, for all i € [n], we have t = max{xy,y1} > x1 > x;
(since x is weakly decreasing) and therefore |x; — t| = t — x; and similarly |y; — t| =
t —y;. Thus, the absolute value inequality rewrites as

(t—x1)+(t—x2)+"-+(t—xn)2(t—yl)-I-(t—yz)—i-"'-l-(t—yn).
In other words,
nt—(x1+ x4 +x)>nt—(y1+ya+ -+ ya).

In other words,
X1+x+--+xp <y1ty2+---+yn

Similarly, by taking t = min {x;, ¥, }, we obtain

X1+x2+- X 2 Y1 ty2+ -ty
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Combining these two inequalities, we obtain
X1+x+ -+ xpa=y1+y2+-+yn
Now, let k € [n]. Set t = xy. Then, since x is weakly decreasing, we have
X1 2 Xp 2 n 2 X =12 X1 2 Xjyp = 70+ 2 X
Thus,

oy =t 4 2 =t 4 o — f

=[xt o=t e ) | o~ e e 0 —
N e e S—— S——r ~— S——
=x1—t =xp—t =xp—t =t—X11 =t—Xj42 =t—xy
= (1= 1)+ (2= )+ o+ (= 1) + (= Xp0) + (= Xg2) + -+ (E— 1))
= (x1+x2+ - A xp) —kt+ (n—k) £ — (X1 + X2 + -0+ xn)
=2(x1+x2+-Fx)+(n=2k)t— (xy+x24+ -+ x,)

(here, I have added x; + xp + - - - + x to the first parenthesis and subtracted it back
from the last) and

lyr — [+ [y2 — [+ + [yn — t|

= | ly1—t[+]y2—t[+ -+ lyx =t | + | [vrs1 =t + Y2 =t + -+ [yn — £
—_—— N N—— N o N _ ~——
Syt >yt >yt Sty 2tV >t—y,
>((n—tH+Wa—t)+ -+ W—1)+ ((E—yrr1) + (E—yr2) +- -+ (E—yn))
=W tya+-ty) —kt+ (n k)t = (Y1 + Yo+ Yn)
=2+t Fy)+ =2k t—(y1+y2+ -+ yn)-

Now, the absolute value inequality
xr = £+ [ =t - | = E > [y = E[ A+ [y2 = ey —
becomes

2(xp+x0+ - Fx) +(m—2k)t—(x1+ x4+ xp)
>y =t +lya—t|+- -+ |yn — 1]
>2(1 4o+ Fy)+(m=2k)t— (y1+ya+- -+ yn).

Subtracting (n — 2k) t from both sides, we obtain

2(x1+x2+---+xk)—(x1+x2+~~~+xn)
>2y1tyat+ty) = Wity yn).
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Adding the equality
X1+xo+- - +xp=y1+Y2+--+VYn
to this inequality, we obtain
2(xp x4 txg) 221 +y2+ k)

In other words,
X1+xXo+- + X 2>Y1+Y2+ 0+ Y

Since x and y are weakly decreasing, this shows that x = y (since x1 +x2 + -+ +
Xp = Y1+ Y2+ -+ ypn). This proves the “<=" direction of the theorem. O

Majorizing pairs of vectors are closely related to doubly stochastic matrices:

Definition 1.1.5. A matrix S € R"*" is said to be doubly stochastic if its entries
Sj satisfy the following three conditions:

1. We have S;; > 0 for all i, .

n
2. We have }_ S;; =1 for each i € [n].
j=1

n
3. We have }_ S;; =1 for each j € [n].
i=1

In other words, a doubly stochastic matrix is an n x n-matrix whose entries are
nonnegative reals and whose rows and columns have sum 1 each.

Exercise 1.1.1. Show that even if we allow S to be rectangular, the conditions 2
and 3 still force S to be a square matrix.

1 1 1
2 3 6
Example 1.1.6. (a) The matrix % 31 411 is doubly stochastic.
5 7
2w
(b) Each doubly stochastic 2 x 2-matrix has the form
A 1-=A
(1—)\ N ) for some A € [0,1].
(c) Any permutation matrix is doubly stochastic.
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Proposition 1.1.7. Let S € R"*" be a matrix whose entries are nonnegative reals.
Lete = (1,1,...,1)" € R™. Then, S is doubly stochastic if and only if Se = e and
elS =el.

I Corollary 1.1.8. Any product of doubly stochastic matrices is again doubly
stochastic.

| Exercise 1.1.2. Prove this proposition and this corolllary.
Now, the connection with majorization:

Theorem 1.1.9. Let x,y € R" be two vectors. Then, x > y if and only if there
exists a doubly stochastic matrix S such that y = Sx.

Proof. =: Assume that x = y. We must prove that there exists a doubly stochastic
matrix S such that y = Sx.

By example (c) (and the corollary), it suffices to show this in the case when x and
y are weakly decreasing.

By the corollary, it suffices to show this in the case when x QR y (since in the

general case, y is obtained from x by a sequence of such moves).

So let us assume that x Zo5 y. Thus, y is obtained from x by picking two entries

x; and xj with x; < x; and replacing them by u and v, where 1,0 € [x;, xj] with
u+v=ux+x;. Consider these x;, xj,u,v. It clearly suffices to show that

fxi)+f(x) = f(w)+f (o).
How do we do this? From u € [x;, x;]|, we obtain

u=Ax;+(1-7A)x; for some A € [0,1]

(namely, A = (u — xj)). Consider this A. Then,

X; — j
v=(1-A)x;+ Ax; (since u 4+ v = x; + x;) .

This entails that y = Sx, where S is a matrix given by

Sii=A, Sij=1-24, Sii=1-=A4, Sii=A
Sk =1 for each k ¢ {i,j},
Ske=0 for all remaining k, /.

For example, if i = 2 and j = 4, then
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(where all empty cells are filled with zeroes). In this case,

X1 X1 X1

Sx=3S§ X2 = )\X2+(1—A)X4 = u =Y.
X3 X3 X3
X4 (1 —A) Xp + Axy Y

So we are done proving the “=" direction.
<=: Assume that y = Sx for some doubly stochastic S. Then,

n
= (Sx); = Y _ Sijxj for every i € [n].
=1

Thus, for every convex function f : R — IR, we have

f )+ f(y2) + -+ f (yn)

= (Esm) v #(Esmm) e s
=1 =1 =1

— ——— — —— S——_— ———
n n n
<L S1f (%) <L S2if (%) <L Snif (%)
= = =
(by the weighted Jensen inequality, (by the weighted Jensen inequality, (by the weighted Jensen inequality,
since the Sy ;’s are nonnegative reals  since the S; ;’s are nonnegative reals since the S, ;s are nonnegative reals
with sum —1) with sum =1) with sum =1)
n n
< Zisl]f x] +252]f x] '+Z%Sn,jf (x]')
] =

]

n
L \(51,]' + 52,]' +- 1+ Sn,jZf (x]-)

=1
(since S is doubly stochastic)

= if(xj) =f(x1) + f(x2) + -+ f (xn).
p

In particular, we can apply this to the convex function f; : R — R, z +— |z —t| for
any t € R, and we obtain

ly1 =ty =ty — ] < xg =t A | — |+ X — ]
In other words,
lxp =t |xa =t + A xn =t >y =ty =t [y — H]

Therefore, by the absolute value criterion, we have x > y. This proves the “<="
direction.
O
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