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1. Hermitian matrices (cont’d)

1.1. Introduction to majorization theory (cont’d)

Recall:

• If x ∈ Rn is a column vector and i ∈ [n], then xi denotes the i-th coordinate
(= entry) of x.

• If x ∈ Rn is a column vector, then x↓ denotes the weakly decreasing per-
mutation of x (that is, the vector with the same entries as x but in weakly
decreasing order).

• For two vectors x, y ∈ Rn, we say that x majorizes y (and we write x < y) if
and only if

m

∑
i=1

x↓i ≥
m

∑
i=1

y↓i for each m ∈ [n]

and
x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.
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• A Robin Hood move (short RH move) transforms a vector x ∈ Rn into a
vector y ∈ Rn that is constructed as follows: Pick two distinct i, j ∈ [n] satis-
fying xi ≤ xj, and pick two numbers u, v ∈

[
xi, xj

]
satisfy u + v = xi + xj, and

replace the i-th and the j-th entries of x by u and v.

This RH move is said to be an order-preserving RH move (short OPRH move)
if both x and y are weakly decreasing.

Last time we proved:

Theorem 1.1.1 (RH criterion for majorization). Let x, y ∈ Rn be two weakly
decreasing column vectors. Then, x < y if and only if y can be obtained from x
by a (finite) sequence of OPRH moves.

Now, what can we do with majorization? Probably the most important property
of majorizing pairs of vectors is the following:

Theorem 1.1.2 (Karamata’s inequality). Let I ⊆ R be an interval. Let f : I → R

be a convex function. Let x ∈ In and y ∈ In be two vectors such that x < y. Then,

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) .

Before we prove this, let us state a simple corollary:

Corollary 1.1.3 (Jensen’s inequality). Let I ⊆ R be an interval. Let f : I → R be

a convex function. Let x1, x2, . . . , xn ∈ I. Let m =
x1 + x2 + · · ·+ xn

n
. Then,

f (x1) + f (x2) + · · ·+ f (xn) ≥ n f (m) .

Proof. This follows from Karamata’s inequality, since it is easy to see (exercise) that
(x1, x2, . . . , xn)

T < (m, m, . . . , m)T.

Let us now prove Karamata’s inequality:

Proof of Karamata’s inequality. It is enough to prove the claim in the case when x and
y are weakly decreasing (because permuting the entries of any of x and y does not
change anything).

Furthermore, it is enough to prove the claim in the case when x OPRH−→ y (this
means that y is obtained from x by a single OPRH move). In fact, if we can show
this, then it will mean that the sum f (x1) + f (x2) + · · ·+ f (xn) decreases (weakly)
every time we apply an OPRH move. Therefore, if y is obtained from x by a
sequence of OPRH moves, then f (x1) + f (x2) + · · · + f (xn) ≥ f (y1) + f (y2) +
· · ·+ f (yn). But the theorem we proved last time shows that this is always satisfied
when x < y.
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So let us assume that x OPRH−→ y. Thus, y is obtained from x by picking two entries
xi and xj with xi ≤ xj and replacing them by u and v, where u, v ∈

[
xi, xj

]
with

u + v = xi + xj. Consider these xi, xj, u, v. It clearly suffices to show that

f (xi) + f
(
xj
)
≥ f (u) + f (v) .

How do we do this? From u ∈
[
xi, xj

]
, we obtain

u = λxi + (1− λ) xj for some λ ∈ [0, 1]

(namely, λ =
1

xi − xj

(
u− xj

)
). Consider this λ. Then,

v = (1− λ) xi + λxj
(
since u + v = xi + xj

)
.

However, f is convex. From u = λxi + (1− λ) xj, we obtain

f (u) = f
(
λxi + (1− λ) xj

)
≤ λ f (xi) + (1− λ) f

(
xj
)

(since f is convex)

and
f (v) = f

(
(1− λ) xi + λxj

)
≤ (1− λ) f (xi) + λ f

(
xj
)

.

Adding together these two inequalities, we obtain

f (u) + f (v) ≤
(
λ f (xi) + (1− λ) f

(
xj
))

+
(
(1− λ) f (xi) + λ f

(
xj
))

= f (xi) + f
(
xj
)

, qed.

So Karamata’s inequality is proved.

Karamata’s inequality has lots of applications, since there are many convex func-
tions around. For instance:

• f (t) = tn defines a convex function on R whenever n ∈N is even.

• f (t) = tn defines a convex function on R+ whenever n ∈ R \ (0, 1). Other-
wise, it defines a concave function (so that − f is a convex function).

• f (t) = sin t defines a concave function on [0, π] and a convex function on
[π, 2π].

Karamata’s inequality has a converse: If x, y ∈ Rn are two vectors such that

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn)

for every convex function f : R→ R, then x < y. Even better:
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Theorem 1.1.4 (absolute-value criterion for majorization). Let x ∈ Rn and y ∈ Rn

be two vectors. Then, x < y if and only if all t ∈ R satisfy

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

Proof. =⇒: Assume that x < y. Let t ∈ R. Consider the function

ft : R→ R,
z 7→ |z− t| .

This function ft is convex (this follows easily from the triangle inequality). Hence,
Karamata’s inequality yields

ft (x1) + ft (x2) + · · ·+ ft (xn) ≥ ft (y1) + ft (y2) + · · ·+ ft (yn) .

By the definition of ft, this means

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

So we have proved the “=⇒” direction of the theorem.
⇐=: We shall refer to the inequality

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t|

as the absolute value inequality. So we assume that the absolute value inequality
holds for all t ∈ R. (Actually, it will suffice to assume that it holds for all t ∈
{x1, x2, . . . , xn, y1, y2, . . . , yn}.)

We must prove that x < y.
WLOG assume that x and y are weakly decreasing (since permuting the entries

changes neither the absolute value inequality nor the claim x < y).
Let t = max {x1, y1}. Then, for all i ∈ [n], we have t = max {x1, y1} ≥ x1 ≥ xi

(since x is weakly decreasing) and therefore |xi − t| = t− xi and similarly |yi − t| =
t− yi. Thus, the absolute value inequality rewrites as

(t− x1) + (t− x2) + · · ·+ (t− xn) ≥ (t− y1) + (t− y2) + · · ·+ (t− yn) .

In other words,

nt− (x1 + x2 + · · ·+ xn) ≥ nt− (y1 + y2 + · · ·+ yn) .

In other words,
x1 + x2 + · · ·+ xn ≤ y1 + y2 + · · ·+ yn.

Similarly, by taking t = min {xn, yn}, we obtain

x1 + x2 + · · ·+ xn ≥ y1 + y2 + · · ·+ yn.
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Combining these two inequalities, we obtain

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.

Now, let k ∈ [n]. Set t = xk. Then, since x is weakly decreasing, we have

x1 ≥ x2 ≥ · · · ≥ xk = t ≥ xk+1 ≥ xk+2 ≥ · · · ≥ xn.

Thus,

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t|

=

|x1 − t|︸ ︷︷ ︸
=x1−t

+ |x2 − t|︸ ︷︷ ︸
=x2−t

+ · · ·+ |xk − t|︸ ︷︷ ︸
=xk−t

+

|xk+1 − t|︸ ︷︷ ︸
=t−xk+1

+ |xk+2 − t|︸ ︷︷ ︸
=t−xk+2

+ · · ·+ |xn − t|︸ ︷︷ ︸
=t−xn


= ((x1 − t) + (x2 − t) + · · ·+ (xk − t)) + ((t− xk+1) + (t− xk+2) + · · ·+ (t− xn))

= (x1 + x2 + · · ·+ xk)− kt + (n− k) t− (xk+1 + xk+2 + · · ·+ xn)

= 2 (x1 + x2 + · · ·+ xk) + (n− 2k) t− (x1 + x2 + · · ·+ xn)

(here, I have added x1 + x2 + · · ·+ xk to the first parenthesis and subtracted it back
from the last) and

|y1 − t|+ |y2 − t|+ · · ·+ |yn − t|

=

|y1 − t|︸ ︷︷ ︸
≥y1−t

+ |y2 − t|︸ ︷︷ ︸
≥y2−t

+ · · ·+ |yk − t|︸ ︷︷ ︸
≥yk−t

+

|yk+1 − t|︸ ︷︷ ︸
≥t−yk+1

+ |yk+2 − t|︸ ︷︷ ︸
≥t−yk+2

+ · · ·+ |yn − t|︸ ︷︷ ︸
≥t−yn


≥ ((y1 − t) + (y2 − t) + · · ·+ (yk − t)) + ((t− yk+1) + (t− yk+2) + · · ·+ (t− yn))

= (y1 + y2 + · · ·+ yk)− kt + (n− k) t− (yk+1 + yk+2 + · · ·+ yn)

= 2 (y1 + y2 + · · ·+ yk) + (n− 2k) t− (y1 + y2 + · · ·+ yn) .

Now, the absolute value inequality

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t|

becomes

2 (x1 + x2 + · · ·+ xk) + (n− 2k) t− (x1 + x2 + · · ·+ xn)

≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t|
≥ 2 (y1 + y2 + · · ·+ yk) + (n− 2k) t− (y1 + y2 + · · ·+ yn) .

Subtracting (n− 2k) t from both sides, we obtain

2 (x1 + x2 + · · ·+ xk)− (x1 + x2 + · · ·+ xn)

≥ 2 (y1 + y2 + · · ·+ yk)− (y1 + y2 + · · ·+ yn) .
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Adding the equality

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn

to this inequality, we obtain

2 (x1 + x2 + · · ·+ xk) ≥ 2 (y1 + y2 + · · ·+ yk) .

In other words,
x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk.

Since x and y are weakly decreasing, this shows that x < y (since x1 + x2 + · · ·+
xn = y1 + y2 + · · ·+ yn). This proves the “⇐=” direction of the theorem.

Majorizing pairs of vectors are closely related to doubly stochastic matrices:

Definition 1.1.5. A matrix S ∈ Rn×n is said to be doubly stochastic if its entries
Si,j satisfy the following three conditions:

1. We have Si,j ≥ 0 for all i, j.

2. We have
n
∑

j=1
Si,j = 1 for each i ∈ [n].

3. We have
n
∑

i=1
Si,j = 1 for each j ∈ [n].

In other words, a doubly stochastic matrix is an n× n-matrix whose entries are
nonnegative reals and whose rows and columns have sum 1 each.

Exercise 1.1.1. Show that even if we allow S to be rectangular, the conditions 2
and 3 still force S to be a square matrix.

Example 1.1.6. (a) The matrix


1
2

1
3

1
6

1
2

1
4

1
4

0
5

12
7
12

 is doubly stochastic.

(b) Each doubly stochastic 2× 2-matrix has the form(
λ 1− λ

1− λ λ

)
for some λ ∈ [0, 1] .

(c) Any permutation matrix is doubly stochastic.
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Proposition 1.1.7. Let S ∈ Rn×n be a matrix whose entries are nonnegative reals.
Let e = (1, 1, . . . , 1)T ∈ Rn. Then, S is doubly stochastic if and only if Se = e and
eTS = eT.

Corollary 1.1.8. Any product of doubly stochastic matrices is again doubly
stochastic.

Exercise 1.1.2. Prove this proposition and this corolllary.

Now, the connection with majorization:

Theorem 1.1.9. Let x, y ∈ Rn be two vectors. Then, x < y if and only if there
exists a doubly stochastic matrix S such that y = Sx.

Proof. =⇒: Assume that x < y. We must prove that there exists a doubly stochastic
matrix S such that y = Sx.

By example (c) (and the corollary), it suffices to show this in the case when x and
y are weakly decreasing.

By the corollary, it suffices to show this in the case when x OPRH−→ y (since in the
general case, y is obtained from x by a sequence of such moves).

So let us assume that x OPRH−→ y. Thus, y is obtained from x by picking two entries
xi and xj with xi ≤ xj and replacing them by u and v, where u, v ∈

[
xi, xj

]
with

u + v = xi + xj. Consider these xi, xj, u, v. It clearly suffices to show that

f (xi) + f
(
xj
)
≥ f (u) + f (v) .

How do we do this? From u ∈
[
xi, xj

]
, we obtain

u = λxi + (1− λ) xj for some λ ∈ [0, 1]

(namely, λ =
1

xi − xj

(
u− xj

)
). Consider this λ. Then,

v = (1− λ) xi + λxj
(
since u + v = xi + xj

)
.

This entails that y = Sx, where S is a matrix given by

Si,i = λ, Si,j = 1− λ, Sj,i = 1− λ, Sj,j = λ,

Sk,k = 1 for each k /∈ {i, j} ,
Sk,` = 0 for all remaining k, `.

For example, if i = 2 and j = 4, then

S =


1

λ 1− λ
1

1− λ λ


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(where all empty cells are filled with zeroes). In this case,

Sx = S


x1
x2
x3
x4

 =


x1

λx2 + (1− λ) x4
x3

(1− λ) x2 + λx4

 =


x1
u
x3
v

 = y.

So we are done proving the “=⇒” direction.
⇐=: Assume that y = Sx for some doubly stochastic S. Then,

yi = (Sx)i =
n

∑
j=1

Si,jxj for every i ∈ [n] .

Thus, for every convex function f : R→ R, we have

f (y1) + f (y2) + · · ·+ f (yn)

= f

(
n

∑
j=1

S1,jxj

)
︸ ︷︷ ︸
≤

n
∑

j=1
S1,j f (xj)

(by the weighted Jensen inequality,
since the S1,j’s are nonnegative reals

with sum =1)

+ f

(
n

∑
j=1

S2,jxj

)
︸ ︷︷ ︸
≤

n
∑

j=1
S2,j f (xj)

(by the weighted Jensen inequality,
since the S2,j’s are nonnegative reals

with sum =1)

+ · · ·+ f

(
n

∑
j=1

Sn,jxj

)
︸ ︷︷ ︸
≤

n
∑

j=1
Sn,j f (xj)

(by the weighted Jensen inequality,
since the Sn,j’s are nonnegative reals

with sum =1)

≤
n

∑
j=1

S1,j f
(
xj
)
+

n

∑
j=1

S2,j f
(
xj
)
+ · · ·+

n

∑
j=1

Sn,j f
(
xj
)

=
n

∑
j=1

(
S1,j + S2,j + · · ·+ Sn,j

)︸ ︷︷ ︸
=1

(since S is doubly stochastic)

f
(
xj
)

=
n

∑
j=1

f
(
xj
)
= f (x1) + f (x2) + · · ·+ f (xn) .

In particular, we can apply this to the convex function ft : R → R, z 7→ |z− t| for
any t ∈ R, and we obtain

|y1 − t|+ |y2 − t|+ · · ·+ |yn − t| ≤ |x1 − t|+ |x2 − t|+ · · ·+ |xn − t| .

In other words,

|x1 − t|+ |x2 − t|+ · · ·+ |xn − t| ≥ |y1 − t|+ |y2 − t|+ · · ·+ |yn − t| .

Therefore, by the absolute value criterion, we have x < y. This proves the “⇐=”
direction.
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