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1. Hermitian matrices (cont’d)

1.1. Introduction to majorization theory (cont’d)

Recall:

Convention 1.1.1. Let x = (x1, x2, . . . , xn)
T ∈ Rn be a column vector with real

entries. Then, for each i ∈ [n], we let x↓i denote the i-th largest entry of x.

So
(

x↓1 , x↓2 , . . . , x↓n
)

is the unique permutation of the tuple (x1, x2, . . . , xn) that
satisfies

x↓1 ≥ x↓2 ≥ · · · ≥ x↓n.

For example, if x = (3, 5, 2)T, then x↓1 = 5 and x↓2 = 3 and x↓3 = 2.
Similarly, we define x↑i to be the i-th smallest entry of x.
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Definition 1.1.2. Let x ∈ Rn and y ∈ Rn be two column vectors with real entries.
Then, we say that x majorizes y (and we write x < y) if and only if we have

m

∑
i=1

x↓i ≥
m

∑
i=1

y↓i for each m ∈ [n] ,

with equality for m = n (and possibly for other m’s). In other words, x majorizes
y if and only if

x↓1 ≥ y↓1 ;

x↓1 + x↓2 ≥ y↓1 + y↓2 ;

x↓1 + x↓2 + x↓3 ≥ y↓1 + y↓2 + y↓3 ;
. . . ;

x↓1 + x↓2 + · · ·+ x↓n−1 ≥ y↓1 + y↓2 + · · ·+ y↓n−1;

x↓1 + x↓2 + · · ·+ x↓n = y↓1 + y↓2 + · · ·+ y↓n.

Last time, we gave an intuition for majorization: We said that x majorizes y if
and only if you can obtain y from x by “having the entries come closer together
(while keeping the average equal)”. Let us now turn this into an actual theorem.
First, some definitions:

Definition 1.1.3. (a) If x ∈ Rn is any column vector, then xi will mean the i-th
coordinate of x (for any i ∈ [n]).

(b) If x ∈ Rn is any column vector, then x↓ will mean the column vector
obtained from x by sorting the coordinates in weakly decreasing order. Thus,

x↓ =
(

x↓1 , x↓2 , . . . , x↓n
)T

.

(c) A vector x ∈ Rn is said to be weakly decreasing if x1 ≥ x2 ≥ · · · ≥ xn.

Lemma 1.1.4. Let x, y ∈ Rn. Then, x < y if and only if x↓ < y↓.

Proof. The definition of < only involves x↓ and y↓. In other words, whether or not
we have x < y does not depend on the order of the coordinates of x or of those of
y. Thus, replacing x and y by x↓ and y↓ doesn’t make any difference.

Definition 1.1.5. Let x ∈ Rn. Let i, j ∈ [n] be such that xi ≤ xj. Let t ∈
[
xi, xj

]
(that is, t ∈ R and xi ≤ t ≤ xj). Let y ∈ Rn be the column vector obtained from
x by

replacing the coordinates xi and xj by u and v

for some u, v ∈
[
xi, xj

]
satisfying u + v = xi + xj.
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Then, we say that y is obtained from x by a Robin Hood move (short: RH
move), and we write

x RH−→ y.

Moreover, if x and y are weakly decreasing, then this RH move is said to be
an order-preserving RH move (short OPRH move), and we write

x OPRH−→ y.

Example 1.1.6. (a) Replacing two coordinates of a vector x by their average is an
RH move.

(b) Swapping two coordinates of a vector x is an RH move.
(c) If x ∈ Rn is weakly decreasing, then replacing two adjacent entries of x by

their average is an OPRH move.
(d) More generally: If x ∈ Rn is weakly decreasing, then replacing its co-

ordinates xi and xi+1 by u and xi + xi+1 − u is an OPRH move if and only if

u ∈
[

xi + xi+1

2
, xi

]
.

Proposition 1.1.7. If x RH−→ y, then the sum of the entries of x equals the sum of
the entries of y.

Proof. Clear.

Lemma 1.1.8. Let x, y ∈ Rn be weakly decreasing column vectors such that y is
obtained from x by a (finite) sequence of OPRH moves. Then, x < y.

Proof. Recall that the relation < is reflexive and transitive. Thus, if x[0] < x[1] <
· · · < x[m], then x[0] < x[m]. Therefore, it suffices to prove the proposition in the
case when y is obtained from x by a single OPRH move.

So let us assume that y is obtained from x by a single RH move. Let this move
be replacing xi and xj by u and v, where xi ≤ xj and u, v ∈

[
xi, xj

]
with u + v =

xi + xj. WLOG we have xi < xj (since otherwise, the OPRH move changes nothing).
Therefore, i > j (since x is weakly decreasing). Thus,

y =
(
x1, x2, . . . , xj−1, v, xj+1, xj+2, . . . , xi−1, u, xi+1, xi+2, . . . , xn

)
(since y is obtained from x by replacing xi and xj by u and v).

Now, we must prove that x < y. In other words, we must prove that

x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym

for each m ∈ [n] (since x and y are weakly decreasing), and we must prove that

x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.
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The latter equality follows from u + v = xi + xj. So we only need to prove the
former inequality. So let us fix an m ∈ [n]. We must show that

x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym

We are in one of the following cases:

1. We have m < j.

2. We have j ≤ m < i.

3. We have i ≤ m.

In Case 1, we have x1 + x2 + · · ·+ xm = y1 + y2 + · · ·+ ym, because xp = yp for
all p ≤ m in this case.

In Case 2, we have

y1 + y2 + · · ·+ ym = x1 + x2 + · · ·+ xj−1 + v + xj+1 + xj+2 + · · ·+ xm

= (x1 + x2 + · · ·+ xm) + v− xj︸ ︷︷ ︸
≤0

(since v∈[xi,xj])

≤ x1 + x2 + · · ·+ xm.

In Case 3, we have

y1 + y2 + · · ·+ ym

= x1 + x2 + · · ·+ xj−1 + v + xj+1 + xj+2 + · · ·+ xi−1 + u + xi+1 + xi+2 + · · ·+ xm

= (x1 + x2 + · · ·+ xm) + (u− xi) +
(
v− xj

)︸ ︷︷ ︸
=0

(since u+v=xi+xj)

= x1 + x2 + · · ·+ xm.

So we have proved x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym in all cases, and we
are done.

Theorem 1.1.9 (RH criterion for majorization). Let x, y ∈ Rn be two weakly
decreasing column vectors. Then, x < y if and only if y can be obtained from x
by a (finite) sequence of OPRH moves.

Example 1.1.10. (a) We have (4, 1, 1) < (2, 2, 2), and indeed (2, 2, 2) can be ob-
tained from (4, 1, 1) by OPRH moves as follows:

(4, 1, 1) OPRH−→ (3, 2, 1) OPRH−→ (2, 2, 2) .
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(b) We have (7, 5, 2, 0) < (4, 4, 3, 3), and indeed (4, 4, 3, 3) can be obtained from
(7, 5, 2, 0) by OPRH moves as follows:

(7, 5, 2, 0) OPRH−→ (6, 6, 2, 0) OPRH−→ (6, 5, 3, 0) OPRH−→ (6, 4, 3, 1) OPRH−→ (4, 4, 3, 3) .

Here is another way to do this:

(7, 5, 2, 0) OPRH−→ (7, 4, 3, 0) OPRH−→ (4, 4, 3, 3) .

Proof of Theorem. ⇐=: This follows from the lemma above.
=⇒: Let x < y. We must show that y can be obtained from x by a finite sequence

of OPRH moves.
If x = y, then this is clear (just take the empty sequence). So we WLOG assume

that x 6= y.. We claim now that there is a further weakly decreasing vector z ∈ Rn

such that

1. we have x OPRH−→ z;

2. we have z < y;

3. the vector z has more entries in common with y than x does; in other words,
we have

|{i ∈ [n] | zi = yi}| > |{i ∈ [n] | xi = yi}| .

In other words, we claim that by making a strategic OPRH move starting at x,
we can reach a vector z that still majorizes y but has at least one more entry in
common with y than x does. If we can prove this claim, then we will automatically
obtain a recursive procedure to transform x into y by a sequence of OPRH moves.
(And in fact, this procedure will use at most n moves, because each move makes
the vector agree with y in at least one more position.)

So let us prove our claim.
Since x is weakly decreasing, we have x = x↓. Similarly, y = y↓. Thus, from

x < y, we obtain

x1 + x2 + · · ·+ xm ≥ y1 + y2 + · · ·+ ym for all m ∈ [n] ,

as well as x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn.
Combining x 6= y with x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn, we see that there

exists some a ∈ [n] such that xa > ya (why?). Moreover, there exists some pair
(a, b) ∈ [n]× [n] such that

xa > ya and xb < yb and a < b.

(Proof: Pick the smallest a such that xa 6= ya, then the inequality x1 + x2 + · · ·+ xa ≥
y1 + y2 + · · · + ya shows that xa > ya. Now, pick the smallest b > a such that
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x1 + x2 + · · ·+ xb = y1 + y2 + · · ·+ yb, then comparing this with x1 + x2 + · · ·+
xb−1 ≥ y1 + y2 + · · ·+ yb−1 yields xb < yb, and thus we have found our pair (a, b).)

So let us pick such a pair (a, b) with smallest possible b− a. Then,

xa > ya,
xj = yj for all a < j < b,

xb < yb

(here, the equalities xj = yj come from the “smallest possible b − a” condition).
Since y is weakly decreasing, we thus have

xa > ya ≥
(
all of the xj and yj with a < j < b

)
≥ yb > xb.

(If there are no a < j < b, then this is supposed to read xa > ya ≥ yb > xb.) This
shows, in particular, that ya, yb lie in the open interval (xa, xb).

Now, we make an RH move that “squeezes xa and xb together” until either xa
reaches ya or xb reaches yb (whatever happens first). In formal terms, this means
that we

replace xa and xb by ya and xa + xb − ya if xa − ya ≤ yb − xb, and
replace xa and xb by xa + xb − yb and yb if xa − ya ≥ yb − xb.

Let z ∈ Rn be the resulting n-tuple. We claim that z is weakly decreasing and
satisfies the three requirements 1, 2, 3 above:

1. we have x OPRH−→ z;

2. we have z < y;

3. the vector z has more entries in common with y than x does; in other words,
we have

|{i ∈ [n] | zi = yi}| > |{i ∈ [n] | xi = yi}| .

Indeed, the chain of inequalities

xa > ya ≥
(
all of the xj and yj with a < j < b

)
≥ yb > xb

reveals that z is weakly decreasing; thus, our RH move is an OPRH move. So
requirement 1 holds.

Requirement 2 is not hard to check (distinguish between the cases m < a, a ≤
m < b and m ≥ b). Requirement 3 is easy: xa > ya and xb < yb but one of za and zb
equals the corresponding ya or yb.

This completes the proof, as explained above.
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