Math 504: Advanced Linear Algebra

Hugo Woerdeman, with edits by Darij Grinberg*

November 17, 2021 (unfinished!)

Contents

1.	Hermitian matrices (cont'd)		1
	1.1.	Introduction to majorization theory (cont'd)	1

Math 504 Lecture 20

1. Hermitian matrices (cont'd)

1.1. Introduction to majorization theory (cont'd)

Recall:

Convention 1.1.1. Let $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$ be a column vector with real entries. Then, for each $i \in [n]$, we let x_i^{\downarrow} denote the *i*-th largest entry of *x*. So $(x_1^{\downarrow}, x_2^{\downarrow}, ..., x_n^{\downarrow})$ is the unique permutation of the tuple $(x_1, x_2, ..., x_n)$ that satisfies

$$x_1^{\downarrow} \ge x_2^{\downarrow} \ge \cdots \ge x_n^{\downarrow}.$$

For example, if $x = (3, 5, 2)^T$, then $x_1^{\downarrow} = 5$ and $x_2^{\downarrow} = 3$ and $x_3^{\downarrow} = 2$. Similarly, we define x_i^{\uparrow} to be the *i*-th smallest entry of *x*.

^{*}Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

Definition 1.1.2. Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ be two column vectors with real entries. Then, we say that x **majorizes** y (and we write $x \succeq y$) if and only if we have

$$\sum_{i=1}^m x_i^{\downarrow} \ge \sum_{i=1}^m y_i^{\downarrow}$$
 for each $m \in [n]$,

with equality for m = n (and possibly for other *m*'s). In other words, *x* majorizes *y* if and only if

$$\begin{aligned} x_1^{\downarrow} \geq y_1^{\downarrow}; \\ x_1^{\downarrow} + x_2^{\downarrow} \geq y_1^{\downarrow} + y_2^{\downarrow}; \\ x_1^{\downarrow} + x_2^{\downarrow} + x_3^{\downarrow} \geq y_1^{\downarrow} + y_2^{\downarrow} + y_3^{\downarrow}; \\ \dots; \\ x_1^{\downarrow} + x_2^{\downarrow} + \dots + x_{n-1}^{\downarrow} \geq y_1^{\downarrow} + y_2^{\downarrow} + \dots + y_{n-1}^{\downarrow}; \\ x_1^{\downarrow} + x_2^{\downarrow} + \dots + x_n^{\downarrow} = y_1^{\downarrow} + y_2^{\downarrow} + \dots + y_n^{\downarrow}. \end{aligned}$$

Last time, we gave an intuition for majorization: We said that x majorizes y if and only if you can obtain y from x by "having the entries come closer together (while keeping the average equal)". Let us now turn this into an actual theorem. First, some definitions:

Definition 1.1.3. (a) If $x \in \mathbb{R}^n$ is any column vector, then x_i will mean the *i*-th coordinate of x (for any $i \in [n]$).

(b) If $x \in \mathbb{R}^n$ is any column vector, then x^{\downarrow} will mean the column vector obtained from *x* by sorting the coordinates in weakly decreasing order. Thus,

$$x^{\downarrow} = \left(x_1^{\downarrow}, x_2^{\downarrow}, \dots, x_n^{\downarrow}\right)^T.$$

(c) A vector $x \in \mathbb{R}^n$ is said to be weakly decreasing if $x_1 \ge x_2 \ge \cdots \ge x_n$.

Lemma 1.1.4. Let $x, y \in \mathbb{R}^n$. Then, $x \succeq y$ if and only if $x^{\downarrow} \succeq y^{\downarrow}$.

Proof. The definition of \succeq only involves x^{\downarrow} and y^{\downarrow} . In other words, whether or not we have $x \succeq y$ does not depend on the order of the coordinates of x or of those of y. Thus, replacing x and y by x^{\downarrow} and y^{\downarrow} doesn't make any difference.

Definition 1.1.5. Let $x \in \mathbb{R}^n$. Let $i, j \in [n]$ be such that $x_i \leq x_j$. Let $t \in [x_i, x_j]$ (that is, $t \in \mathbb{R}$ and $x_i \leq t \leq x_j$). Let $y \in \mathbb{R}^n$ be the column vector obtained from x by

replacing the coordinates x_i and x_j by u and v

for some $u, v \in [x_i, x_j]$ satisfying $u + v = x_i + x_j$.

Then, we say that y is obtained from x by a **Robin Hood move** (short: **RH move**), and we write

$$x \xrightarrow{\mathrm{RH}} y.$$

Moreover, if *x* and *y* are weakly decreasing, then this RH move is said to be an **order-preserving RH move** (short **OPRH move**), and we write

$$x \stackrel{\text{OPRH}}{\longrightarrow} y.$$

Example 1.1.6. (a) Replacing two coordinates of a vector *x* by their average is an RH move.

(**b**) Swapping two coordinates of a vector *x* is an RH move.

(c) If $x \in \mathbb{R}^n$ is weakly decreasing, then replacing two adjacent entries of x by their average is an OPRH move.

(d) More generally: If $x \in \mathbb{R}^n$ is weakly decreasing, then replacing its coordinates x_i and x_{i+1} by u and $x_i + x_{i+1} - u$ is an OPRH move if and only if $u \in \left[\frac{x_i + x_{i+1}}{2}, x_i\right]$.

Proposition 1.1.7. If $x \xrightarrow{\text{RH}} y$, then the sum of the entries of *x* equals the sum of the entries of *y*.

Proof. Clear.

Lemma 1.1.8. Let $x, y \in \mathbb{R}^n$ be weakly decreasing column vectors such that y is obtained from x by a (finite) sequence of OPRH moves. Then, $x \succeq y$.

Proof. Recall that the relation \succeq is reflexive and transitive. Thus, if $x_{[0]} \succeq x_{[1]} \succeq \cdots \succeq x_{[m]}$, then $x_{[0]} \succeq x_{[m]}$. Therefore, it suffices to prove the proposition in the case when *y* is obtained from *x* by a **single** OPRH move.

So let us assume that *y* is obtained from *x* by a **single** RH move. Let this move be replacing x_i and x_j by *u* and *v*, where $x_i \le x_j$ and $u, v \in [x_i, x_j]$ with $u + v = x_i + x_j$. WLOG we have $x_i < x_j$ (since otherwise, the OPRH move changes nothing). Therefore, i > j (since *x* is weakly decreasing). Thus,

 $y = (x_1, x_2, \dots, x_{j-1}, v, x_{j+1}, x_{j+2}, \dots, x_{i-1}, u, x_{i+1}, x_{i+2}, \dots, x_n)$

(since *y* is obtained from *x* by replacing x_i and x_j by *u* and *v*).

Now, we must prove that $x \geq y$. In other words, we must prove that

 $x_1 + x_2 + \dots + x_m \ge y_1 + y_2 + \dots + y_m$

for each $m \in [n]$ (since *x* and *y* are weakly decreasing), and we must prove that

$$x_1+x_2+\cdots+x_n=y_1+y_2+\cdots+y_n.$$

The latter equality follows from $u + v = x_i + x_j$. So we only need to prove the former inequality. So let us fix an $m \in [n]$. We must show that

 $x_1 + x_2 + \dots + x_m \ge y_1 + y_2 + \dots + y_m$

We are in one of the following cases:

- 1. We have m < j.
- 2. We have $j \le m < i$.
- 3. We have $i \leq m$.

In Case 1, we have $x_1 + x_2 + \cdots + x_m = y_1 + y_2 + \cdots + y_m$, because $x_p = y_p$ for all $p \le m$ in this case.

In Case 2, we have

$$y_1 + y_2 + \dots + y_m = x_1 + x_2 + \dots + x_{j-1} + v + x_{j+1} + x_{j+2} + \dots + x_m$$

= $(x_1 + x_2 + \dots + x_m) + \underbrace{v - x_j}_{(\text{since } v \in [x_i, x_j])}$
 $\leq x_1 + x_2 + \dots + x_m.$

In Case 3, we have

$$y_{1} + y_{2} + \dots + y_{m}$$

$$= x_{1} + x_{2} + \dots + x_{j-1} + v + x_{j+1} + x_{j+2} + \dots + x_{i-1} + u + x_{i+1} + x_{i+2} + \dots + x_{m}$$

$$= (x_{1} + x_{2} + \dots + x_{m}) + \underbrace{(u - x_{i}) + (v - x_{j})}_{(\text{since } u + v = x_{i} + x_{j})}$$

 $= x_1 + x_2 + \cdots + x_m.$

So we have proved $x_1 + x_2 + \cdots + x_m \ge y_1 + y_2 + \cdots + y_m$ in all cases, and we are done.

Theorem 1.1.9 (RH criterion for majorization). Let $x, y \in \mathbb{R}^n$ be two weakly decreasing column vectors. Then, $x \geq y$ if and only if y can be obtained from x by a (finite) sequence of OPRH moves.

Example 1.1.10. (a) We have $(4,1,1) \geq (2,2,2)$, and indeed (2,2,2) can be obtained from (4,1,1) by OPRH moves as follows:

$$(4,1,1) \xrightarrow{\text{OPRH}} (3,2,1) \xrightarrow{\text{OPRH}} (2,2,2).$$

(b) We have $(7,5,2,0) \geq (4,4,3,3)$, and indeed (4,4,3,3) can be obtained from (7,5,2,0) by OPRH moves as follows:

$$(7,5,2,0) \stackrel{\text{OPRH}}{\longrightarrow} (6,6,2,0) \stackrel{\text{OPRH}}{\longrightarrow} (6,5,3,0) \stackrel{\text{OPRH}}{\longrightarrow} (6,4,3,1) \stackrel{\text{OPRH}}{\longrightarrow} (4,4,3,3) \,.$$

Here is another way to do this:

$$(7,5,2,0) \xrightarrow{\text{OPRH}} (7,4,3,0) \xrightarrow{\text{OPRH}} (4,4,3,3).$$

Proof of Theorem. \Leftarrow : This follows from the lemma above.

 \implies : Let $x \succcurlyeq y$. We must show that *y* can be obtained from *x* by a finite sequence of OPRH moves.

If x = y, then this is clear (just take the empty sequence). So we WLOG assume that $x \neq y$. We claim now that there is a further weakly decreasing vector $z \in \mathbb{R}^n$ such that

- 1. we have $x \xrightarrow{\text{OPRH}} z$;
- 2. we have $z \succcurlyeq y$;
- 3. the vector *z* has more entries in common with *y* than *x* does; in other words, we have

$$|\{i \in [n] \mid z_i = y_i\}| > |\{i \in [n] \mid x_i = y_i\}|.$$

In other words, we claim that by making a strategic OPRH move starting at x, we can reach a vector z that still majorizes y but has at least one more entry in common with y than x does. If we can prove this claim, then we will automatically obtain a recursive procedure to transform x into y by a sequence of OPRH moves. (And in fact, this procedure will use at most n moves, because each move makes the vector agree with y in at least one more position.)

So let us prove our claim.

Since x is weakly decreasing, we have $x = x^{\downarrow}$. Similarly, $y = y^{\downarrow}$. Thus, from $x \succeq y$, we obtain

$$x_1 + x_2 + \dots + x_m \ge y_1 + y_2 + \dots + y_m$$
 for all $m \in [n]$,

as well as $x_1 + x_2 + \dots + x_n = y_1 + y_2 + \dots + y_n$.

Combining $x \neq y$ with $x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_n$, we see that there exists some $a \in [n]$ such that $x_a > y_a$ (why?). Moreover, there exists some pair $(a, b) \in [n] \times [n]$ such that

$$x_a > y_a$$
 and $x_b < y_b$ and $a < b$.

(*Proof:* Pick the smallest *a* such that $x_a \neq y_a$, then the inequality $x_1 + x_2 + \cdots + x_a \ge y_1 + y_2 + \cdots + y_a$ shows that $x_a > y_a$. Now, pick the smallest b > a such that

 $x_1 + x_2 + \cdots + x_b = y_1 + y_2 + \cdots + y_b$, then comparing this with $x_1 + x_2 + \cdots + x_{b-1} \ge y_1 + y_2 + \cdots + y_{b-1}$ yields $x_b < y_b$, and thus we have found our pair (a, b).) So let us pick such a pair (a, b) with smallest possible b - a. Then,

$$egin{array}{ll} x_a > y_a, \ x_j = y_j & ext{for all } a < j < b, \ x_b < y_b \end{array}$$

(here, the equalities $x_j = y_j$ come from the "smallest possible b - a" condition). Since *y* is weakly decreasing, we thus have

$$x_a > y_a \ge$$
 (all of the x_j and y_j with $a < j < b$) $\ge y_b > x_b$.

(If there are no a < j < b, then this is supposed to read $x_a > y_a \ge y_b > x_b$.) This shows, in particular, that y_a, y_b lie in the open interval (x_a, x_b) .

Now, we make an RH move that "squeezes x_a and x_b together" until either x_a reaches y_a or x_b reaches y_b (whatever happens first). In formal terms, this means that we

replace x_a and x_b by y_a and $x_a + x_b - y_a$ if $x_a - y_a \le y_b - x_b$, and replace x_a and x_b by $x_a + x_b - y_b$ and y_b if $x_a - y_a \ge y_b - x_b$.

Let $z \in \mathbb{R}^n$ be the resulting *n*-tuple. We claim that *z* is weakly decreasing and satisfies the three requirements 1, 2, 3 above:

- 1. we have $x \xrightarrow{\text{OPRH}} z$:
- 2. we have $z \succ y$;
- 3. the vector *z* has more entries in common with *y* than *x* does; in other words, we have

$$|\{i \in [n] \mid z_i = y_i\}| > |\{i \in [n] \mid x_i = y_i\}|.$$

Indeed, the chain of inequalities

 $x_a > y_a \ge$ (all of the x_j and y_j with a < j < b) $\ge y_b > x_b$

reveals that z is weakly decreasing; thus, our RH move is an OPRH move. So requirement 1 holds.

Requirement 2 is not hard to check (distinguish between the cases m < a, $a \le m < b$ and $m \ge b$). Requirement 3 is easy: $x_a > y_a$ and $x_b < y_b$ but one of z_a and z_b equals the corresponding y_a or y_b .

This completes the proof, as explained above.