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Math 504 Lecture 19

1. Hermitian matrices (cont’d)

1.1. Consequences of the interlacing theorem

Recall: If A ∈ Cn×n is a Hermitian matrix (i.e., a square matrix satisfying A∗ = A),
then we denote its eigenvalues by λ1 (A) , λ2 (A) , . . . , λn (A) in weakly increasing
order (with multiplicities). This makes sense, since we know that these eigenvalues
are reals.

Last time, Hugo proved:

Theorem 1.1.1 (Cauchy’s interlacing theorem, aka eigenvalue interlacing theo-
rem). Let A ∈ Cn×n be a Hermitian matrix. Let j ∈ [n]. Let B ∈ C(n−1)×(n−1) be
the matrix obtained from A by removing the j-th row and the j-th column. Then,

λ1 (A) ≤ λ1 (B) ≤ λ2 (A) ≤ λ2 (B) ≤ · · · ≤ λn−1 (A) ≤ λn−1 (B) ≤ λn (A) .

In other words,

λi (A) ≤ λi (B) ≤ λi+1 (A) for each i ∈ [n− 1] .
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A converse of this theorem also holds:

Proposition 1.1.2. Let λ1, λ2, . . . , λn and µ1, µ2, . . . , µn−1 be real numbers satisfy-
ing

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn.

Then, there exist n− 1 reals y1, y2, . . . , yn−1 ∈ R and a real a ∈ R such that the
matrix

A :=


µ1 y1

µ2 y2
. . . ...

µn−1 yn−1
y1 y2 · · · yn−1 a


(where all empty cells are supposed to be filled with 0s) has eigenvalues
λ1, λ2, . . . , λn. (This matrix is, of course, Hermitian, since it is real symmetric.)

Proof. Omitted. (Exercise?)

Now, let us derive some consequences from Cauchy’s interlacing theorem. We
begin with a straightforward generalization:

Corollary 1.1.3 (Cauchy’s interlacing theorem for multiple deletions). Let A ∈
Cn×n be a Hermitian matrix. Let r ∈ {0, 1, . . . , n}. Let C ∈ Cr×r be the result of
removing n− r rows and the corresponding n− r columns from A. (That is, we
pick some j1 < j2 < · · · < jn−r, and we remove the j1-st, j2-nd, . . ., jn−r-th rows
from A, and we remove the j1-st, j2-nd, . . ., jn−r-th columns from A.) Then, for
each j ∈ [r], we have

λj (A) ≤ λj (C) ≤ λj+n−r (A) .

Proof. Induction on n− r.
The base case (n− r = 0) is trivial, since C = A in this case.
In the induction step, we obtain C from B by removing a single row and the

corresponding column. Thus, by the original Cauchy interlacing theorem, we get
λj (B) ≤ λj (C). However, by the induction hypothesis, we get λj (A) ≤ λj (B).
Combining these inequalities, we get λj (A) ≤ λj (C). The remaining inequality
λj (C) ≤ λj+n−r (A) is proved similarly: By the original Cauchy interlacing the-
orem, we get λj (C) ≤ λj+1 (B). However, by the induction hypothesis, we get
λj+1 (B) ≤ λj+1+(n−r−1) (A) = λj+n−r (A).

The next corollary provides a minimum/maximum description of the sum of the
first m smallest/largest eigenvalues of a Hermitian matrix:

Corollary 1.1.4. Let A ∈ Cn×n be a Hermitian matrix. Let m ∈ {0, 1, . . . , n}.
Then,

λ1 (A) + λ2 (A) + · · ·+ λm (A) = min
isometries V∈Cn×m

Tr (V∗AV)
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and

λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn (A) = max
isometries V∈Cn×m

Tr (V∗AV) .

Proof. First of all, it suffices to show the first equality, because the second follows
by applying the first to −A instead of A.

First, we shall show that

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ Tr (V∗AV) for every isometry V ∈ Cn×m.

Indeed, let V ∈ Cn×m be an isometry. Thus, V is an n×m-matrix whose columns
are orthonormal. As we have seen in the first chapter(?), we can extend each or-
thonormal tuple of vectors to an orthonormal basis. Doing this to the columns of
V, we thus obtain an orthonormal basis of Cn whose first m entries are the columns
of V. Let U be the matrix whose columns are the entries of this basis. Then,

U =
(

V Ṽ
)

(in block-matrix notation)

by construction of this basis, and furthermore the matrix U is unitary since its
columns form an orthonormal basis.

Since U is unitary, we have U∗AU ∼ A and therefore

λj (U∗AU) = λj (A) for all j ∈ [n] .

However, U =
(

V Ṽ
)

entails

U∗AU =
(

V Ṽ
)∗

A
(

V Ṽ
)
=

(
V∗

Ṽ∗

)
A
(

V Ṽ
)
=

(
V∗AV ∗
∗ ∗

)
,

where the three ∗s mean blocks that we don’t care about. So the matrix V∗AV is ob-
tained from U∗AU by removing a bunch of rows and the corresponding columns.
Hence, the previous corollary yields

λj (U∗AU) ≤ λj (V∗AV) for all j ∈ [m]

(since U∗AU is Hermitian (because A is Hermitian)). In other words,

λj (A) ≤ λj (V∗AV) for all j ∈ [m]

(since λj (U∗AU) = λj (A)). Adding these inequalities together, we obtain

λ1 (A) + λ2 (A) + · · ·+ λm (A)

≤ λ1 (V∗AV) + λ2 (V∗AV) + · · ·+ λm (V∗AV)

= (the sum of all eigenvalues of V∗AV)(
since V∗AV is an m×m-matrix

and thus has m eigenvalues

)
= Tr (V∗AV)
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(since the sum of all eigenvalues of a matrix is the trace of this matrix).
Now, we need to show that there exists a unitary matrix V ∈ Cn×m such that

λ1 (A) + λ2 (A) + · · ·+ λm (A) = Tr (V∗AV) .

To do this, we construct V as follows: We pick an eigenvector xi of A at eigenvalue
λi (A) for each i ∈ [n] in such a way that (x1, x2, . . . , xn) is an orthonormal basis
of Cn. (This is possible because of Theorem 2.6.1 (b).) Now, let V ∈ Cn×m be
the matrix whose columns are x1, x2, . . . , xm. This matrix V is an isometry, since
x1, x2, . . . , xm are orthonormal. Moreover,

V∗AV =


x∗1
x∗2
...

x∗m

 A
(

x1 x2 · · · xm
)

=


x∗1 Ax1 x∗1 Ax2 · · · x∗1 Axm
x∗2 Ax1 x∗2 Ax2 · · · x∗2 Axm

...
... . . . ...

x∗m Ax1 x∗m Ax2 · · · x∗m Axm

 ,

so that

Tr (V∗AV) =
m

∑
j=1

x∗j Axj︸︷︷︸
=λj(A)xj

(since xj is an eigenvector of A
at eigenvalue λj(A))

=
m

∑
j=1

λj (A) x∗j xj︸︷︷︸
=||xj||2=1

(since (x1,x2,...,xn)
is an orthonormal basis)

=
m

∑
j=1

λj (A) = λ1 (A) + λ2 (A) + · · ·+ λm (A) .

This is precisely what we needed. Thus, we conclude that

λ1 (A) + λ2 (A) + · · ·+ λm (A) = min
isometries V∈Cn×m

Tr (V∗AV) .

As we said above, this completes the proof.

Corollary 1.1.5. Let A ∈ Cn×n be a Hermitian n× n-matrix. Let m ∈ {0, 1, . . . , n}.
Let i1, i2, . . . , im ∈ [n] be distinct. Then,

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ Ai1,i1 + Ai2,i2 + · · ·+ Aim,im
≤ λn−m+1 (A) + λn−m+2 (A) + · · ·+ λn (A) .

In words: For a Hermitian matrix A, each sum of m distinct diagonal entries of
A is sandwiched between the sum of the m smallest eigenvalues of A and the sum
of the m largest eigenvalues of A.
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Proof. Let C be the matrix obtained from A by removing all but the i1-st, i2-nd, . . .,
im-th rows and the corresponding columns of A. Then,

Tr C = Ai1,i1 + Ai2,i2 + · · ·+ Aim,im .

However, Cauchy’s interlacing theorem for multiple deletions yields

λj (A) ≤ λj (C) for each j ∈ [m] .

Summing these up, we obtain

λ1 (A) + λ2 (A) + · · ·+ λm (A) ≤ λ1 (C) + λ2 (C) + · · ·+ λm (C)
= (the sum of all eigenvalues of C)
= Tr C = Ai1,i1 + Ai2,i2 + · · ·+ Aim,im .

So we have proved the first of the required two inequalities. The second follows by
applying the first to −A instead of A.

The above corollary has a bunch of consequences that are obtained by restating
it in terms of something called majorization. Let us define this concept and see
what it entails.

1.2. Introduction to majorization theory

Convention 1.2.1. Let x = (x1, x2, . . . , xn)
T ∈ Rn be a column vector with real

entries. Then, for each i ∈ [n], we let x↓i denote the i-th largest entry of x.

So
(

x↓1 , x↓2 , . . . , x↓n
)

is the unique permutation of the tuple (x1, x2, . . . , xn) that
satisfies

x↓1 ≥ x↓2 ≥ · · · ≥ x↓n.

For example, if x = (3, 5, 2)T, then x↓1 = 5 and x↓2 = 3 and x↓3 = 2.
Similarly, we define x↑i to be the i-th smallest entry of x.

Definition 1.2.2. Let x ∈ Rn and y ∈ Rn be two column vectors with real entries.
Then, we say that x majorizes y (and we write x < y) if and only if we have

m

∑
i=1

x↓i ≥
m

∑
i=1

y↓i for each m ∈ [n] ,

with equality for m = n (and possibly for other m’s). In other words, x majorizes
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y if and only if

x↓1 ≥ y↓1 ;

x↓1 + x↓2 ≥ y↓1 + y↓2 ;

x↓1 + x↓2 + x↓3 ≥ y↓1 + y↓2 + y↓3 ;
. . . ;

x↓1 + x↓2 + · · ·+ x↓n−1 ≥ y↓1 + y↓2 + · · ·+ y↓n−1;

x↓1 + x↓2 + · · ·+ x↓n = y↓1 + y↓2 + · · ·+ y↓n.

Example 1.2.3. We have 
1
3
5
7

 ≥


2
2
6
6

 ,

since

7 ≥ 6;
7 + 5 ≥ 6 + 6;

7 + 5 + 3 ≥ 6 + 6 + 2;
7 + 5 + 3 + 1 = 6 + 6 + 2 + 2.

Example 1.2.4. We don’t have 
1
3
5
7

 ≥


0
2
6
8

 ,

since we don’t have 7 ≥ 8.

The intuition behind majorization is the following: x majorizes y if and only if
you can obtain y from x by “having the entries come closer together (while keeping
the average equal)”.

Proposition 1.2.5. Majorization is a partial order: i.e., a reflexive, antisymmetric
and transitive relation.

However, it is not a total order: For example, the sequences

x :=


2
2
4
6

 and y =


1
3
5
5
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satisfy neither x < y nor y < x, since we have 6 > 5 but 6 + 4 + 2 < 5 + 5 + 3.
Now we can restate our last corollary as follows:

Corollary 1.2.6 (Schur’s theorem). Let A ∈ Cn×n be a Hermitian n× n-matrix.
Then,

(A1,1, A2,2, . . . , An,n)
T < (λ1 (A) , λ2 (A) , . . . , λn (A))T .

In words: The tuple of diagonal entries of A majorizes the tuple of eigenvalues
of A.

Proof. We need to show that

• the sum of the m largest diagonal entries of A is ≥ to the sum of the m largest
eigenvalues of A for each m ∈ [n];

• the sum of all diagonal entries of A equals the sum of all eigenvalues of A.

But the first of these two statements is the first inequality in the above corollary,
whereas the second statement is the well-known theorem that the trace of a matrix
is the sum of its eigenvalues.

Now, what can we do with majorizing vectors? Here is probably the most im-
portant property:

Theorem 1.2.7 (Karamata’s inequality). Let I ⊆ R be an interval. Let f : I → R

be a convex function. Let x = (x1, x2, . . . , xn)
T ∈ Rn and y = (y1, y2, . . . , yn)

T ∈
Rn be two vectors such that x < y. Then,

f (x1) + f (x2) + · · ·+ f (xn) ≥ f (y1) + f (y2) + · · ·+ f (yn) .

For example, applying this to f (t) = t2, we obtain

x2
1 + x2

2 + · · ·+ x2
n ≥ y2

1 + y2
2 + · · ·+ y2

n.

Next time, we will prove Karamata’s inequality.

November 15, 2021


	Hermitian matrices (cont'd)
	Consequences of the interlacing theorem
	Introduction to majorization theory


